On Hermite Representation of Distributions and Products

Número: 
47
Ano: 
2005
Autor: 
Pedro J. Catuogno
Sandra Molina
Christian Olivera
Abstract: 

The space of tempered distributions $\mathcal{S}^{\prime}$ can be realized as a sequence spaces by means of the Hermite representation theorems. In this paper we introduce and study two new products of tempered distributions based in these Hermite representation. In particular, we obtain the products $[H]\delta=\frac{\delta}{2}$, $[\delta] vp(\frac{1}{x})=-\delta^{\prime}$ and$[\delta^{(r)}]vp(\frac{1}{x})=-\frac{\delta^{(r+1)}}{r+1}$, for $r$ even.

Keywords: 
Product of distributions
Hermite functions
Hermite expansion coefficients
Mathematics Subject Classification 2000 (MSC 2000): 
Primary: 46F99 ; Secondary: 42C10;
Observação: 
submitted 09/05.
Arquivo: