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Abstract. The space of tempered distributions S′ can be realized as a se-
quence spaces by means of the Hermite representation theorems (see [1], [7]
and [8]). In this paper we introduce and study two new products of tempered
distributions based in these Hermite representation. In particular, we obtain

the products [H]δ = δ
2
, [δ]vp( 1

x
) = −δ′ and [δ(r)]vp( 1

x
) = − δ(r+1)

r+1
, for r even.

1. Introduction

Owing to the large employment of Schwartz distributions in the natural science
and other mathematical fields, where products of distributions often appear, the
problem of extend the ordinary multiplication between functions to distributions,
has been objective of many studies (see [4] and the references given there). There is,
however, no canonical way to define such products. A possible approach to define a
product of a pair of distributions is approximate one of them by smooth functions,
multiply this approximation by the other distribution, and pass to a limit. In
the case of the sequential approach (see [1] pp 242) the approximation is done by
convolution with δ-sequences, in this work we propose take the approximation given
by the Fourier-Hermite expansion of the distribution.

More precisely, our methods by multiply tempered distributions are based in the
Hermite representation theorem for S ′ (see [1] pp 182, [7] exemple 7 pp 260 and [8]
pp 143) which establishes that every S ∈ S ′ can be represented by a Hermite series

(1) S =
∞∑

n=0

bnhn

where {hn} are the Hermite functions in R, bn =< S, hn > and the equality is in
the weak sense.

In this context we says that there exist the product [S]T of the tempered distri-
butions S and T , if

∑∞
k=0 ckhk ∈ S ′ where the coefficients ck are given by

(2) ck = lim
m→∞

m∑
n=0

bn < T, hnhk > .

The product [S]T of S and T is, by definition,
∑∞

k=0 ckhk. Symmetrically, we define
the product S[T ]. These products are not commutative but is clear that S[T ] =
[T ]S. Moreover, this products extent the product of the set OM of multipliers with
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S ′. We calculate the products [H]δ = δ
2 , [δ]vp( 1

x ) = −δ′ and [δ(r)]vp( 1
x ) = − δ(r+1)

r+1 ,
for r even.

The plan of exposition is as follows: In section 2 we have compiled some ba-
sic facts on Hermite functions and the Hermite representation theorems. For the
convenience of the reader we enunciate without proof the material relevant, thus
making our exposition self-contained. We also calculate the Hermite representa-
tions of some important distributions. In section 3, we introduce the definitions of
the products of tempered distributions and we study its properties. In section 4, we
calculate some products to show how use this method and its advantages. Finally,
in the appendix we prove two technical formulas.

2. Preliminaries.

Throughout this paper we shall use freely concepts and notations of P. Antosik,
et. al. [1], L. Schwartz [7] and A. Zemanian [9].

Let S = S(R) be the space of infinitely differentiable functions which together
with all its derivatives are of rapid decrease.

For each m ∈ N ∪ {0}, we consider ‖ · ‖m the norm of S given by

‖ϕ‖m =
( ∫ ∞

−∞

1
2m

| (− d2

dx2
+ x2 + 1)mϕ(x) |2 dx

) 1
2
.

We observe that S provides with these norms is a sequentially complete locally
convex space and its dual space S ′ is the space of tempered distributions.

The Hermite polynomials Hn(x) are defined by

(3) Hn(x) = (−1)ne
x2
2

dn

dxn
e−

x2
2

for n ∈ N ∪ {0} or equivalently

(4) Hn(x) = 2−
n
2

[n/2]∑

k=0

(−1)kn!(
√

2x)n−2k

k!(n− 2k)!
.

The Hermite functions hn(x) are defined by

(5) hn(x) = (
√

2πn!)−
1
2 e−

1
4 x2

Hn(x)

for n ∈ N ∪ {0}. Some properties of the Hermite functions that we will often use
follows.

• hn ∈ S for all n ∈ N ∪ {0},
• hn is an even (odd) function if n is even (odd),
• √n + 1hn+1(x) + 2h′n(x) =

√
nhn−1(x) for all n ∈ N ∪ {0},

• √n + 1hn+1(x) = xhn(x)−√nhn−1(x) for all n ∈ N ∪ {0},
• {hn : n ∈ N ∪ {0}} is an orthonormal basis of L2(R).

The Hermite representation theorem for S states an topological isomorphism from
S onto the space of sequences s, given by

s = {(an) ∈ `2 :
∞∑

n=0

(n + 1)2m | an |2< ∞, for all m ∈ N ∪ {0}}.
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s is a locally convex space with the following sequences of norms

| (an) |m= (
∞∑

n=0

(n + 1)2m | an |2) 1
2 .

Theorem 1. Let h : S → s be the application h(ϕ) = (< ϕ, hn >) where <
ϕ, hn >=

∫∞
−∞ ϕ(x)hn(x)dx, for n ∈ N∪{0}. Then h is a topological isomorphism.

Let us denote by s′ the set

{(bn) : for some (C, m) ∈ R× N, | bn |≤ C(n + 1)m for all n}.
It is clear that s′ is the (topological) dual space of s.

Theorem 2. Let H : S ′ → s′ be the application H(T ) = (< T, hn >). Then H is
a topological isomorphism. Moreover, if T ∈ S ′ we have that

T =
∞∑

n=0

< T, hn > hn

in the weak sense and for all ϕ ∈ S,

< T,ϕ >=< H(T ),h(ϕ) >=
∞∑

n=0

< T, hn >< ϕ, hn > .

We says that the sequence H(T ) are the Hermite coefficients of the tempered
distribution T .

Now, we calculates the Hermite coefficients for the product ϕ · T in relation to
the Hermite coefficient of ϕ ∈ S and T ∈ S ′.
Proposition 1. Let ϕ ∈ S and T ∈ S ′ be such that h(ϕ) = (an) and H(T ) = (bm).
Then H(ϕ · T ) = (ck) where ck are given by

(6) ck =
∞∑

n=0

∞∑
m=0

anbm

∫ ∞

−∞
hm(x)hn(x)hk(x) dx.

Proof. Let us first recall that < ϕ · T, φ >=< T, ϕφ > for φ ∈ S. By the Hermite
representation theorems, it follows that ϕ =

∑∞
n=0 anhn and T =

∑∞
n=0 bnhn.

Then

< ϕT, hk >=< T, ϕhk >=< T,

∞∑
n=0

anhnhk >=
∞∑

n=0

an < T, hnhk > .

Since hnhk =
∑∞

m=0(
∫∞
−∞ hm(x)hn(x)hk(x) dx)hm, we have

< ϕT, hk >=
∞∑

n=0

∞∑
m=0

anbm

∫ ∞

−∞
hm(x)hn(x)hk(x) dx.

¤

Now, we shows the Hermite coefficients of some important tempered distributions
(see [1], [3], [5] and [6]).

2.1. The delta distribution. (see [1] pp 191.)

(7) < δ, hn >= hn(0) =

{
(−1)

n
2

4√2π

√
1
2

3
4 · · · n−1

n for n even,

0 for n odd.
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2.2. The constant distribution 1. (see [1] pp 190.)

(8) < 1, hn >=
∫ ∞

−∞
hn(x) dx =

{
4
√

8π
√

1
2

3
4 · · · n−1

n for n even,

0 for n odd.

2.3. The xp
+ distribution. (see [6] pp 162.)

We recall that < xp
+, φ >=

∫∞
0

xpφ(x) dx.

(9) < xp
+, hn >=

{
(
√

2πn!)−
1
2 2pΓ(p+1

2 )Wn(2p + 1) for n even,

(
√

2πn!)−
1
2 2p+1Γ(p+2

2 )Wn(2p + 1) for n odd

where Wn(x) are polynomials such that W0(x) = W1(x) = 1 and

Wn+2(x) = xWn(x) + n(n− 1)Wn−2(x).

Note that if p = 0, then xp
+ is the Heaviside distribution H.

2.4. The distribution principal value of 1
x . (see [1] pp 193.)

A straightforward computation from the recursive expression for the Hermite
coefficients of 1

x (see [1] pp 193), yields

(10) < vp(
1
x

), hn >=

{
0 for n even,

2
√

π√
nhn−1(0)

(∑n−1
i even(−1)

i
2 h2

i (0)
)

for n odd.

2.5. The δ′ distribution.

(11) < δ′, hn >= −h′n(0) =
√

nhn−1(0).

2.6. The δ+ distribution. We recall that δ+ = vp( 1
x ) − iπδ. Applying (7) and

(10), we have

(12) < δ+, hn >=





(−iπ) (−1)
n
2

4√2π

√
1
2

3
4 · · · n−1

n for n even,

2
√

π√
nhn−1(0)

(∑n−1
i even(−1)

i
2 h2

i (0)
)

for n odd.

2.7. The sgn distribution. (see [1] pp 194.)
Some easy algebraic manipulations, gives

(13) < sgn, hn >=

{
0 for n even,

4(−1)
n−1

2√
n
√

πhn−1(0)

(∑n−1
i even(−1)

i
2 h2

i (0)
)

for n odd.

3. Hermite products for tempered distributions

Let S and T be in S ′ with H(S) = (bn) and H(T ) = (em). The Hermite
representation theorem for S ′ ensures that the followings definitions are well posed.

Definition 1. Suppose that for all k ∈ N ∪ {0} there exists

ck = lim
m→∞

m∑
n=0

bn < T, hnhk >

and that (ck) ∈ s′. We define the left Hermite product [S]T ∈ S ′ by

(14) [S]T =
∞∑

k=0

ckhk.
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Definition 2. Suppose that for all k ∈ N ∪ {0} there exists

dk = lim
m→∞

m∑
n=0

en < S, hnhk >

and that (dk) ∈ s′. We define the right Hermite product S[T ] ∈ S ′ by

(15) S[T ] =
∞∑

k=0

dkhk.

We observe that [S]T = T [S].

Remark 1. We have that

ck = lim
m→∞

m∑

i=0

∞∑
n=0

bienC(n, i, k)

and

dk = lim
m→∞

m∑
n=0

∞∑

i=0

enbiC(n, i, k),

where C(n, i, k) =
∫∞
−∞ hn(x)hi(x)hk(x) dx.

Here and subsequently, Sm and Tm denotes the partial sums
∑m

n=0 bnhn and∑m
i=0 enhn respectively.

Proposition 2. The products [S]T and S[T ] are not commutative and are not
partially associative.

Proof. Let us show that [δ′]δ 6= δ′[δ]. In fact, from < δ, hnhk >= 0 for n odd and
< δ′, hn >= 0 for n even, we have that

< [δ′]δ, hk >= lim
m→∞

m∑
n=0

< δ′, hn >< δ, hnhk >= 0.

By other hand,

lim
m→∞

m∑
n=0

< δ, hn >< δ′, hnφk > = lim
m→∞

m∑
even n

−hn(0)φn(0)h′k(0)

= −h′k(0) lim
m→∞

m∑
even n

π−
1
2
1
2
· · · n− 1

n

= ±∞.

We conclude that [δ′]δ = 0 and [δ]δ′ does not exist, consequently the Hermite
products are not commutative.

We claim that [ϕ]([δ′]δ) 6= [ϕδ′]δ for ϕ ∈ S such that ϕ′(0) 6= 0. In fact, we have
that [ϕδ′]δ does not exist, because for k even

∞∑
n=0

< ϕδ′, hn >< δ, hnhk > =
∞∑

even n

< δ′, ϕhn >< δ, hnhk >

= −ϕ′(0)hk(0)
m∑

even n

1√
π

1
2
· · · n− 1

n

= ±∞.
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By another hand, ϕ([δ′]δ) = ϕ0 = 0. This proves that the Hermite products are
not partially associative. ¤

The Hermite products verifies the Leibnitz rule.

Proposition 3. Let S and T be in S ′. Then

([S]T )′ = [S′]T + [S]T ′

and
(S[T ])′ = S′[T ] + S[T ′].

Proof. Let k ∈ N ∪ {0}, we have that

< ([S]T )′, hk > = − < [S] · T, h′k >

= lim
m→∞

< SmT,−h′k >

= lim
m→∞

< (SmT )′, hk >

= lim
m→∞

< S′mT + SmT ′, hk >

= < [S′]T + [S]T ′, hk > .

¤

Let OM denote the set of multipliers of the space S ′. The Hermite products
[S]T and S[T ] extend the product of OM by S ′.
Proposition 4. Let T ∈ S ′ and f ∈ OM . Then [T ]f = [f ] · T = fT .

Proof. Let k ∈ N ∪ {0}, we have that

< f [T ], hk > = lim
m→∞

< fTm, hk >

= lim
m→∞

< Tm, fhk >

= < T, fhk >

= < fT, hk >

and the Theorem 2 shows that f [T ] = fT .
By the regularity theorem for S ′, there exist a r ∈ N ∪ {0} and g ∈ C(R)

polynomially bounded such that T = g(r). Then

< [f ]T, hk > = lim
m→∞

< fmT, hk >

= lim
m→∞

(−1)r

∫ ∞

−∞
g(x)(fmhk)(r)(x) dx

= lim
m→∞

(−1)r
r∑

i=0

(
r

i

) ∫ ∞

−∞
g(x)f (i)

m (x)h(r−i)
k (x) dx,

where fm =
∑m

k=0 < f, hk > hk.
Let us observe that S is dense inM = {h ∈ C(R) : supx∈R |xαh(x)| < ∞ for all α ∈

N ∪ {0}} with the topology induced by the semi-norms ‖h‖α = supx∈R |xαh(x)|.
By this density we have that for all ϕ ∈M,

lim
m→∞

∫ ∞

−∞
f (i)

m (x)ϕ(x) dx =
∫ ∞

−∞
f (i)(x)ϕ(x) dx.
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Since gφ
(r−i)
k ∈M, it follows that

lim
m→∞

∫ ∞

−∞
g(x)f (i)

m (x)h(r−i)
k (x) dx =

∫ ∞

−∞
g(x)f (i)(x)h(r−i)

k (x) dx.

Combining the above equalities, we obtain that

< [f ]T, hk > = (−1)r
r∑

i=0

(
r

i

) ∫ ∞

−∞
g(x)f (i)(x)h(r−i)

k (x) dx

= < T, fhk >

= < fT, hk >

and the Proposition follows from Theorem 2. ¤

4. Some examples of Hermite products

Example 1. [H]δ = δ[H] = 1
2δ

Since hn(0) = 0 if n is odd, hn is an even function if n is even and Proposition
4, we have

< [H] · δ, φk > = lim
m→∞

m∑
n even

< H,hn >< δ, hnhk >

=
m∑

n even

1
2

< 1, hn >< δ, hnhk >

=
1
2

< [1]δ, hk >

=
1
2

< δ, hk > .

Example 2. The products [δ] · δ and δ · [δ] does not exist.

For k even, from the formula (7) we have

lim
m→∞

m∑
n=0

< δ, hn >< δ, hnhk > = lim
m→∞

m∑
n=0

< δ, hn >2< δ, hk >

= hk(0) lim
m→∞

m∑
n even

1
2
√

2π

1
2

3
4
· · · n− 1

n

= ±∞.

This proves that [δ] · δ does not exist.

Example 3. [δ]vp( 1
x ) = vp( 1

x )[δ] = −δ′ (see A. Gonzalez-Dominguez and R.
Scarfiello [2].)

It suffices to show that < [δ]vp( 1
x ), hk >=< δ′, hk > for k odd. In fact, if k is

even we have that < −δ′, hk >= 0 and

< [δ]vp(
1
x

), hk >= lim
m→∞

m∑
n even

< δ, hn >< vp(
1
x

), hnhk >= 0

because hnhk is even.
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Let us observe the following formula (proof in the appendix) for k odd,

(16) < vp(
1
x

), hnhk >=

{
hn(0)√

khk−1(0)
for n > k,

0 for n ≤ k.

For k odd, from the above formula and
∑k−1

n even h2
n(0) = kh2

k−1(0) it follows that

< [δ]vp(
1
x

), hk > = lim
m→∞

m∑
n=0

< δ, hn >< vp(
1
x

), hnhk >

=
1√

khk−1(0)

k−1∑
n even

h2
n(0)

=
1√

khk−1(0)
kh2

k−1(0)

= < −δ′, hk > .

Example 4. Let T ∈ S ′ such that for n even, < T, hn >= 0. Then

[T ]δ = δ[T ] = 0

In fact,

< [T ]δ, hk >= lim
m→∞

m∑

odd n

< T, hn >< δ, hnhk >= 0

because < δ, hnhk >= hn(0)hk(0) = 0 for n odd.

Example 5. [δ(r)]vp( 1
x ) = − δ(r+1)

r+1 , for r even.

It suffices to show that < [δ(r)]vp( 1
x ), hk >=< − δ(r+1)

r+1 , hk > for k odd. In fact,

if k is even we have that < − δ(r+1)

r+1 , hk >= 0 and

< [δ(r)]vp(
1
x

), φk >= lim
m→∞

m∑
n even

h(r)
n (0) < vp(

1
x

), hnhk >= 0

because hnhk is even.
For k odd, from the formula (16) it follows that

< [δ(r)]vp(
1
x

), φk > = lim
m→∞

m∑
n=0

< δ(r), hn >< vp(
1
x

), hnhk >

=
k−1∑
n=0

h(r)
n (0)

hn(0)√
khk−1(0)

.

Applying the following formula (proof in the appendix)

(17)
k−1∑
n=0

h(r)
n (0)hn(0) =

1
r + 1

√
khk−1(0)h(r+1)

k (0),

we obtain

< [δ(r)]vp(
1
x

), φk > =
1

r + 1
h

(r+1)
k (0)

= < −δ(r+1)

r + 1
, hk > .
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5. Appendix

5.1. Proof of the formula (16). From the recurrence relations for Hermite func-
tions, we have that

hk(x) =
xhk−1(x)√

k
−
√

k − 1√
k

hk−2(x).

By the above formula and the orthogonality of the Hermite functions,

< vp(
1
x

), hnhk > =
∫ ∞

−∞

1
x

hn(x)hk−1(x) dx

=
1√
k

∫ ∞

−∞
hn(x)hk−1(x) dx−

√
k − 1√

k

∫ ∞

−∞

1
x

hn(x)hk−2(x) dx

=
1√
k

δn,k−1 −
√

k − 1√
k

< vp(
1
x

), hnhk−2 > .

Combining the above recurrence relation and the formula (7), it is easy to check
that for k odd

< vp(
1
x

), hnhk >=

{
hn(0)√

khk−1(0)
for n > k,

0 for n ≤ k.

5.2. Proof of the formula (17). From the recurrence relations for Hermite func-
tions, we have that
√

k

x− y

(
hk(x)hk−1(y)− hk(y)hk−1(x)

)
= hk−1(x)hk−1(y) +

√
k − 1

(
hk−1(x)hk−2(y)− hk−1(y)hk−2(x)

)
.

Applying this formula k times, yields
k−1∑
n=0

hn(x)hn(y) =

√
k

x− y

(
hk(x)hk−1(y)− hk(y)hk−1(x)

)

Taking y = 0 in the above formula, we obtain

(18)
k−1∑
n=0

hn(x)hn(0) =

√
k

x
hk(x)hk−1(0)

Our next claim is that

(19) lim
x→0

dr

dxr

hk(x)
x

=
h

(r+1)
k (0)
r + 1

.

In fact,

lim
x→0

dr

dxr

hk

x
(x) = lim

x→0

r∑

i=0

(
r

i

)
h

(r−i)
k (x) (

1
x

)(i)(x)

=
r∑

i=0

(
r

i

)
lim
x→0

h
(r−i)
k (x)

(−1)ii!
xi+1

.

Applying i+1 times the L’Hospital rule to each term of the right side, we obtain
(19).



10 PEDRO CATUOGNO, SANDRA MOLINA AND CHRISTIAN OLIVERA

Finally, differentiating r times the identity (18) and making use of (19), we get
k−1∑
n=0

h(r)
n (0)hn(0) =

1
r + 1

√
khk−1(0)h(r+1)

k (0).
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