On the Problem of Optimal Reconstruction

Número: 
31
Ano: 
2006
Autor: 
Alexander Kushpel
Sérgio A. Tozoni
Abstract: 

We find lower bounds for linear and Alexandrov's cowidths of Sobolev's classes on Compact Riemannian homogeneous manifolds $M^{d}$. Using these results we give an explicit solution of the problem of optimal reconstruction of functions from Sobolev's classes $W^{\gamma}_{p}(M^{d})$ in $L_{q}(M^{d})$, $1 \leq p \leq q \leq \infty$.

Keywords: 
homogeneous space
sphere
reconstruction
data points
polynomial
spline
Mathematics Subject Classification 2000 (MSC 2000): 
41A46; 42B15
Observação: 
submitted 09/06.