Número:
49
Ano:
2004
Autor:
Francisco O. V. de Paiva
Eugenio Massa
Abstract:
In this paper we establish the existence of multiple solutions for the semilinear elliptic problem\[\begin{array}{lll}-\Delta u = -\lambda |u|^{q-2}u +au+g(u) & {\rm in} & \Omega\\ \ \ \ \ u = 0 & {\rm on} & \partial \Omega,\end{array}\]where $\Omega \subset \mathbb{R}^N$ is a bounded domain with smooth boundary $\partial \Omega$, $g:\mathbb{R}\to \mathbb{R}$ is a function of class $C^1$ such that $g(0)=g'(0)=0$, $\lambda>0$ is real parameter, $a\in\R$, and $1
Keywords:
multiplicity of solution
Mathematics Subject Classification 2000 (MSC 2000):
35J65 (35J20)
Observação:
1991 Mathematical Subject Classification: 35J65 (35J20)
Arquivo: