Número:
15
Ano:
2008
Autor:
Jaume Llibre
Ana Cristina Mereu
Abstract:
Assume that the linear part at a singular point of a C^k differential system with k=3,4,5 in R^4 has pure imaginary eigenvalues in resonance 1:2 when k=3,4 and in resonance 2:3 when k=5. If k=3 from this singular point it can bifurcate 0 or 1 one-parameter family of periodic orbits. If k=4 it can bifurcate 0, 1, 2, 3 or 4 one-parameter families of periodic orbits and if k=5 it can bifurcate 0, 1, 2, 3, 4, 5 or 6 one-parameter families of periodic orbits. The tool for proving such a result is the averaging theory.
Keywords:
limit cycle
periodic orbit
Hopf bifurcation
Liapunov center theorem
averaging theory
resonance 1:2
resonance 3:2
Mathematics Subject Classification 2000 (MSC 2000):
34C29; 34C25; 47H11;
Arquivo: