An introduction to Sub-Riemannian geometry (Prof. Adriano Da Silva -- Universidad Tarapacá, Chile)
Período: 07/04 a 28/05
Seg-Qua, 10:30 -- 12:00
Sala 222 (IMECC)
Topics: Sub-Riemannian structures. Sub-Riemannian distance and Rasheviskii-Chow’s
Theorem. Existence of length minimizers. Completeness. Pontryagin extremals and the
PMP. Geometric characterization of Pontryagin extremals. Invariant Sub-Riemannian
structures on Lie groups and homogeneous spaces.
Bibliography:
1. Agrachev, D. Barilari and U. Boscain, “A Comprehensive Introduction to Sub-Riemannian
Geometry”. Cambridge University Press, 2019.
2. R. Montgomery, “A tour of subriemannian geometries, their geodesics and applications”.
Mathematics surveys and Monographs, vol.91,
3. L. Rifford, “Sub-Riemannian Geometry and Optimal Transport”. Springer, 2014.
4. E. Le Donne, “Lecture notes on sub-Riemannian geometry – from the Lie group viewpoint”
http://enrico.ledonne.googlepages.com/