Comparação de Assinaturas de Amostras em Árvores Probabilísticas de Contexto
Autor(es) e Instituição:
Marina Martins Lobato
Diego Leal
Denise Duarte
Apresentador:
Marina e Diego
Introduzidas por Rissanem em 1983, as árvores probabilísticas de contexto (PCT) são uma classe promissora de modelos que podem auxiliar na área da genética, lingüística ou qualquer outra, onde as amostras sejam sequencias de dados discretos e se tenha interesse em encontrar um modelo gerador para os dados. As PCT também são conhecidas na literatura como Variable Length Markov Chains (VLMC). Em contraste com os modelos de cadeia de Markov, onde cada variável no tempo t depende de um número xo de variáveis no passado, em modelos de PCT, o tamanho do passado relevante para prever
o próximo simbolo pode variar com base na realização especíca observada.
Resumo estendido: