Aproximações Determinísticas para Distribuições a Posteriori Marginais

Apresentador/Autor: 
Thiago Guerrera Martins
Resumo: 

Um dos grandes desafios em estatística Bayesiana é obter, quando não há solução analítica disponível, aproximações para distribuições a posteriori marginais de forma precisa e eficiente. Nessa dissertação é feita uma revisão na literatura de métodos determinísticos para este fim em um contexto geral, e mostra-se que ainda há modelos de importância atual que são melhor estimados ao utilizar estes métodos em vez dos baseados em simulação. O método Integrated Nested Laplace Approximations (INLA), aplicado na importante classe de modelos que envolvem Campos Aleatórios Markovianos Gaussianos (CAMG), é descrito e, através de exemplificação, uma discussão qualitativa sobre o método é apresentada. Foi proposta a utilização do INLA para realização de inferência em modelos dinâmicos Bayesianos para processos pontuais espaço-temporais ao invés da abordagem usual que utiliza Markov Chain Monte Carlo (MCMC). Por fim, é apresentada uma importante extensão do INLA, onde a dependência entre o conjunto de dados e o campo latente, da forma como apresentada na descrição do INLA, é generalizada.