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On teaching mathematics1

Mathematics is a part of physics. Physics is an experimental science, a part of
natural science. Mathematics is the part of physics where experiments are cheap.

The Jacobi identity (which forces the altitudes of a triangle to meet in a point)
is an experimental fact in the same way as the fact that the earth is round (that
is, homeomorphic to a ball). But it can be discovered with less expense.

In the middle of the twentieth century an attempt was made to separate physics
and mathematics. The consequences turned out to be catastrophic. Whole gen-
erations of mathematicians grew up without knowing half of their science and, of
course, in total ignorance of any other sciences. They first began teaching their ugly
scholastic pseudo-mathematics to their students, then to schoolchildren (forgetting
Hardy’s warning that ugly mathematics has no permanent place under the sun).

Since scholastic mathematics that is cut off from physics is fit neither for teach-
ing nor for application in any other science, the result was a universal hatred of
mathematicians, both on the part of the poor schoolchildren (some of whom in the
meantime became ministers) and of the users.

The ugly building constructed by undereducated mathematicians who were
exhausted by their inferiority complexes and who were unable to make themselves
familiar with physics, reminds one of the rigorous axiomatic theory of odd numbers.
Obviously, it is possible to create such a theory and make pupils admire the per-
fection and internal consistency of the resulting structure (in which, for example,
the sum of an odd number of terms and the product of any number of factors are
defined). From this sectarian point of view, even numbers could either be declared
a heresy or, with the passage of time, be introduced into the theory supplemented
with a few “ideal” objects (in order to comply with the needs of physics and the
real world).

Unfortunately, it was an ugly twisted construction of mathematics like the one
above which predominated in the teaching of mathematics for decades. Having
originated in France, this perversity quickly spread to the teaching of foundations
of mathematics, first to university students, then to school children in all special-
izations (first in France, then in other countries, including Russia).

To the question “what is 2 + 3” a French primary school pupil replied “3 + 2,
since addition is commutative”. He did not know what the sum was equal to and
could not even understand what was being asked!

Another French pupil (quite rational, in my opinion) defined mathematics as
follows: “there is a square, but that still has to be proved”. Judging by my teach-
ing experience in France, the university students’ idea of mathematics (even those

1This is an extended text of an address at a discussion on the teaching of mathematics in
Palais de Découverte in Paris on 7 March 1997.



230 On teaching mathematics

taught mathematics at the Ecole Normale Supérieure: I am sorriest of all for these
obviously intelligent but deformed young people) is as poor as that of this pupil.

For example, these students have never seen a paraboloid and a question about
the shape of the surface given by the equation xy = z2 puts the mathematicians
studying at ENS into a stupour. Drawing a curve given by parametric equations
(like x = t3 − 3t, y = t4 − 2t2) on a plane is a totally impossible problem for them
(and, probably, even for most French professors of mathematics).

Beginning with l’Hôpital’s first textbook on calculus (“calculus for understanding
curved lines”) and continuing roughly until Goursat’s textbook, the ability to solve
such problems was considered (along with knowledge of the times tables) to be a
necessary part of the craft of every mathematician.

Mentally challenged zealots of “abstract mathematics” removed all the geometry
(whereby connections with physics and reality most often occur in mathematics)
from the curriculum. The calculus textbooks by Goursat, Hermite and Picard were
recently dumped by the student library of the Universities Paris 6 and 7 (Jussieu)
as obsolete and, therefore, harmful (they were only rescued by my intervention).

ENS students who have sat through courses on differential and algebraic geome-
try (read by respected mathematicians) turned out be acquainted neither with the
Riemann surface of the elliptic curve y2 = x3+ax+ b nor even with the topological
classification of surfaces (not to mention elliptic integrals of the first kind and the
group property of an elliptic curve, that is, the Euler-Abel addition theorem). They
were only taught Hodge structures and Jacobian varieties!

How could this happen in France, which gave the world Lagrange and Laplace,
Cauchy and Poincaré, Leray and Thom? It seems to me that a reasonable explana-
tion was given by I. G. Petrovskii, who taught me in 1966: genuine mathematicians
do not gang up, but the weak need gangs in order to survive. They can unite
on various grounds (it could be super-abstraction, anti-Semitism or “applied and
industrial” problems), but the essence is always the solution of a social problem:
survival in conditions of more literate surroundings.

By the way, I shall remind you of a warning given by Pasteur: there never have
been and never will be any “applied sciences”, there are only applications of sciences
(quite useful ones!).

In those days I treated Petrovskii’s words with some doubt, but now I am becom-
ing more and more convinced of how right he was. A considerable part of super-
abstract activity simply boils down to industrializing the shameless grabbing of
discoveries from discoverers and then systematically assigning them to epigons–
generalizers. Just as America is not named after Columbus, mathematical results
are almost never called by the names of their discoverers.

In order to avoid being misquoted, I have to note that for some unknown reason
my own achievements have never been expropriated in this way, although this was
constantly happening both to my teachers (Kolmogorov, Petrovskii, Pontryagin,
Rokhlin) and to my pupils. Professor M. Berry once formulated the following two
principles.
The Arnold Principle. If a notion bears a personal name, then this name is not

the name of the discoverer.
The Berry Principle. The Arnold Principle is applicable to itself.
It is, however, time to go back to the teaching of mathematics in France.
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When I was a first-year student in the Faculty of Mechanics and Mathematics
at Moscow State University, the lectures on calculus were read by the set-theoretic
topologist L. A. Tumarkin, who conscientiously retold the old classical calculus
course of French type in the Goursat version. He told us that integrals of rational
functions along algebraic curves can be taken if the corresponding Riemann surface
is a sphere and, generally speaking, cannot be taken if its genus is higher, and that
for sphericity it is sufficient to have a sufficiently large number of double points on
the curve of a given degree (which forces the curve to be unicursal: it is possible to
draw its real points on the projective plane without lifting the pen from the paper).

These facts capture the imagination to the extent that (even when given without
any proofs) they give a better and more correct idea of modern mathematics than
all the volumes of the Bourbaki treatise. Indeed, here we discover the existence
of a wonderful connection between things which seem to be completely different:
on the one hand, the existence of an explicit expression for the integrals and the
topology of the corresponding Riemann surface and, on the other hand, the number
of double points and the genus of the corresponding Riemann surface, which also
exhibits itself in the real domain in the form of unicursality.

Jacobi noted the most fascinating property of mathematics, that in it one and
the same function controls both the presentations of an integer as a sum of four
squares and the real movement of a pendulum.

These discoveries of connections between heterogeneous mathematical objects
can be compared with the discovery of the connection between electricity and mag-
netism in physics or with the discovery of the similarity in the geology of the east
coast of America and the west coast of Africa.

The emotional significance of such discoveries for teaching is difficult to overes-
timate. It is they who teach us to search and find such wonderful phenomena of
harmony in the universe.

The de-geometrization of mathematical education and the divorce from physics
sever these ties. For example, not only students but also modern algebraic geome-
ters on the whole do not know the fact, observed here by Jacobi, that an elliptic
integral of the first kind expresses the time of motion along an elliptic phase curve
in the corresponding Hamiltonian system.

Rephrasing the famous words on the electron and the atom, it can be said that
a hypocycloid is as inexhaustible as an ideal in a polynomial ring. But teaching
ideals to students who have never seen a hypocycloid is as ridiculous as teaching
addition of fractions to children who have never cut (at least mentally) a cake or
an apple into equal parts. No wonder that children prefer to add a numerator to a
numerator and a denominator to a denominator.

From my French friends I have heard that a tendency towards super-abstract
generalizations is their traditional national trait. I do not entirely disagree that
this might be a question of a hereditary disease, but I would like to underline the
fact that I borrowed the cake-and-apple example from Poincaré.

The scheme of construction of a mathematical theory is exactly the same as
that in any other natural science. First we consider some objects and make some
observations in special cases. Then we try and find the limits of application of our
observations by seeking counter-examples to prevent the unjustified extension of
our observations to too wide a range of events (example: the number of partitions
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of the consecutive odd numbers 1, 3, 5, 7, 9 into an odd number of summands gives
the sequence 1, 2, 4, 8, 16, but then comes 29).

As a result we formulate the empirical discovery that we have made (for example,
Fermat’s conjecture or Poincaré’s conjecture) as clearly as possible. After this there
comes the difficult period of checking the reliability of the conclusions obtained.

At this point a special technique has been developed in mathematics. This tech-
nique, when applied to the real world, is sometimes useful, but can sometimes also
lead to self-deception. This technique is called modelling. When constructing a
model, the following idealization is made: certain facts which are only known with
a certain degree of probability or with a certain degree of accuracy, are considered to
be “absolutely” correct and are accepted as “axioms”. The sense of this “absolute-
ness” lies precisely in the fact that we allow ourselves to operate with these “facts”
according to the rules of formal logic, in the process declaring as “theorems” all
that we can derive from them.

It is obvious that in any real-life activity it is impossible to place total reliance
on such deductions, if only because the parameters of the phenomena studied are
never known absolutely exactly and a small change in parameters (for example,
in the initial conditions of a process) can totally change the result. It is for this
reason that a reliable long-term weather forecast is impossible and will remain
impossible, no matter how much we develop computers and devices which record
initial conditions.

In exactly the same way a small change in the axioms (of which we cannot
be completely sure) is capable, generally speaking, of leading to completely dif-
ferent conclusions from those that are obtained from theorems which have been
deduced from the accepted axioms. The longer and fancier the chain of deductions
(“proofs”), the less reliable is the final result.

Complex models are rarely useful (except for those writing their dissertations).

The mathematical technique of modelling consists in ignoring this trouble and
speaking about your deductive model as if it coincided with reality. The fact that
this path, which is obviously incorrect from the point of view of natural science,
often leads to useful results in physics is called “the inconceivable effectiveness of
mathematics in the natural sciences” (or “the Wigner principle”).

Here we can add a remark by I. M. Gel’fand: there exists another phenomenon
comparable in its inconceivability with the inconceivable effectiveness of mathemat-
ics in physics noted by Wigner, and that is the equally inconceivable ineffectiveness
of mathematics in biology.

“The subtle poison of mathematical education” (in F. Klein’s words) for a physi-
cist consists precisely in that the absolutized model is separated from reality and is
no longer comparable with it. Here is a simple example. Mathematics teaches us
that the solution of the Malthus equation dx/dt = x is uniquely determined by the
initial conditions (that is, that the corresponding integral curves in the (t, x)-plane
do not intersect). This conclusion of the mathematical model bears little relevance
to reality. A computer experiment shows that all these integral curves have com-
mon points on the negative t-semi-axis. Thus, curves with the initial conditions
x(0) = 0 and x(0) = 1 practically intersect at t = −10, and at t = −100 you cannot
fit in an atom between them. Properties of the space at such small distances are
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not described at all by Euclidean geometry. The application of the uniqueness the-
orem in this situation obviously exceeds the accuracy of the model. This has to be
respected in practical applications of the model, otherwise one might find oneself
in serious trouble.

I would like to note, however, that the same uniqueness theorem explains why
the final stage of mooring a ship to a quay is carried out manually: on steering if the
velocity of approach were defined as a smooth (linear) function of the distance, the
process of mooring would require an infinitely long period of time. The alternative is
an impact with the quay (which is damped by suitable non-ideally elastic bodies).
Incidentally, this problem had to be seriously confronted when landing the first
descending apparatus on the Moon and Mars, and also when docking with space
stations; here the uniqueness theorem is working against us.

Unfortunately, neither such examples nor discussion of the danger of fetishising
theorems are to be found in modern mathematical textbooks, even the better ones.
I even get the impression that scholastic mathematicians (who have little know-
ledge of physics) believe in the principal difference of axiomatic mathematics from
the modelling which is common in natural science and which always requires the
subsequent checking of deductions by an experiment.

Not to mention the relative character of initial axioms, one cannot ignore the
inevitability of logical mistakes in long arguments (say, in the form of a computer
breakdown caused by cosmic rays or quantum oscillations). Every working mathe-
matician knows that, without some form of control (best of all by examples), after
some ten pages half the signs in formulae will be wrong and twos will find their way
from denominators into numerators.

The technology of combatting such errors is the same external control by exper-
iments or observations as is to be found in any experimental science, and it should
be taught from the very beginning to all juniors in schools.

Attempts to create “pure” deductive-axiomatic mathematics have led to the
rejection of the scheme used in physics (observation, model, investigation of the
model, conclusions, testing by observations) and its replacement by the scheme
definition, theorem, proof. It is impossible to understand an unmotivated defi-
nition but this does not stop the criminal algebraist-axiomatizers. For example,
they would readily define the product of natural numbers by means of the long
multiplication rule. Then the commutativity of multiplication becomes difficult to
prove but it is still possible to deduce it as a theorem from the axioms. It is then
possible to force poor students to learn this theorem and its proof (with the aim
of bolstering the authority of both the science and the persons teaching it). It is
obvious that such definitions and proofs can do nothing but harm to the teaching
and practical work.

It is only possible to understand the commutativity of multiplication by counting
and re-counting soldiers by ranks and files or by calculating the area of a rectangle in
two ways. Any attempt to do without this interference by physics and reality with
mathematics is sectarian and isolationist, and destroys the image of mathematics
as a useful human activity in the eyes of all sensible people.

I shall reveal a few more such secrets (in the interest of poor students).
The determinant of a matrix is the (oriented) volume of the parallelepiped whose

edges are its columns. If students are told this secret (which is carefully hidden
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in purified algebraic education), then the whole theory of determinants becomes
a clear chapter of the theory of multilinear forms. If determinants are defined
otherwise, then any sensible person will forever hate all determinants, Jacobians
and the implicit function theorem.

What is a group? Algebraists teach that this is supposedly a set with two
operations that satisfy a load of easily-forgettable axioms. This definition provokes
a natural protest: why would any sensible person need such pairs of operations?
“Oh, curse this maths” concludes the student (who, possibly, becomes the Minister
for Science in the future).

We get a totally different situation if we start off not with the group but with
the concept of a transformation (a one-to-one mapping of a set onto itself) as was
done historically. A collection of transformations of a set is called a group if along
with any two transformations it contains the result of their consecutive application,
and along with any transformation its inverse.

This is the entire definition. The so-called “axioms” are in fact just (obvious)
properties of groups of transformations. What axiomatizers call “abstract groups”
are just groups of transformations of various sets considered up to isomorphism
(a one-to-one mapping preserving the operations). As Cayley proved, there are no
“more abstract” groups in the world. So why do the algebraists keep on tormenting
students with the abstract definition?

By the way, in the 1960s I taught group theory to Moscow schoolchildren. Avoid-
ing all the axiomatics and staying as close as possible to physics, in half a year I
reached Abel’s theorem on the insolubility of a general equation of degree five by
radicals (having on the way taught the pupils complex numbers, Riemann surfaces,
fundamental groups and monodromy groups of algebraic functions). This course
was later published by one of the audience, V. Alekseev, as a book: Abel’s theorem
via problems.

What is a smooth manifold? In a recent American book I read that Poincaré
was not acquainted with this notion (which he himself introduced) and that the
“modern” definition was only given by Veblen in the late 1920s: a manifold is a
topological space which satisfies a long series of axioms.

For what sins must students try and find their way through all these twists and
turns? Actually, in Poincaré’s Analysis Situs there is an absolutely clear definition
of a smooth manifold which is much more useful than the “abstract” one.

A smooth k-dimensional submanifold of the Euclidean space RN is a subset which
in a neighbourhood of each of its points is the graph of a smooth mapping of Rk into
RN−k (where Rk and RN−k are coordinate subspaces). This is a straightforward
generalization of the commonest smooth curves on the plane (such as the circle
x2 + y2 = 1) and of curves and surfaces in three-dimensional space.

Between smooth manifolds are naturally defined smooth mappings. Diffeomor-
phisms are mappings which, together with their inverses, are smooth.

An “abstract” smooth manifold is a smooth submanifold of a Euclidean space
considered up to diffeomorphism. There are no “more abstract” finite-dimensional
smooth manifolds in the world (Whitney’s theorem). Why do we keep on tor-
menting students with the abstract definition? Would it not be better to prove for
them the theorem on the explicit classification of closed two-dimensional manifolds
(surfaces)?
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It is this wonderful theorem (which asserts, for example, that any compact con-
nected oriented surface is a sphere with a number of handles) that gives a correct
impression of what modern mathematics is, and not the super-abstract generaliza-
tions of näıve submanifolds of a Euclidean space which in fact do not give anything
new and are presented as achievements of the axiomatizers.

The theorem on the classification of surfaces is a top-class mathematical achie-
vement, comparable with the discovery of America or X-rays. This is a genuine
discovery of mathematical natural science and it is even difficult to say whether
the fact itself is more attributable to physics or to mathematics. In its significance
for both applications and the development of the right Weltanschauung it by far
surpasses such “achievements” of mathematics as the proof of Fermat’s last theorem
or the proof of the fact that any sufficiently large whole number can be represented
as the sum of three primes.

For the sake of publicity modern mathematicians sometimes present such sport-
ing achievements as the last word in their science. Understandably this not only
does not contribute to society’s appreciation of mathematics but, on the contrary,
causes a healthy distrust of the necessity of wasting energy on (rock-climbing-type)
exercises with such exotic questions of interest to no-one.

The theorem on the classification of surfaces should be included in high school
mathematics courses (probably, without proof), but for some reason is not even
included in university mathematics courses (from which in France, by the way, all
geometry has been banished in recent decades).

The return of mathematical teaching at all levels from scholastic chatter to pre-
senting the important domain of natural science is the main current problem for
France. I was astonished to learn that all the mathematical books with the best and
most important methodical approach are almost unknown to students here (and
apparently have not been translated into French). Among these are Numbers and
figures by Rademacher and Toeplitz, Geometry and the imagination by Hilbert and
Cohn-Vossen,What is mathematics? by Courant and Robbins, How to solve it and
Mathematics and plausible reasoning by Polya, and Development of mathematics
in the nineteenth century by F. Klein.

I remember well what a strong impression Hermite’s calculus course (which does
exist in Russian translation!) made on me in my school years.

Riemann surfaces appear in it, I think, in one of the first lectures (all the analysis
is, of course, complex, as it should be). Asymptotics of integrals are investigated
by means of path deformations on Riemann surfaces under the motion of branch
points (nowadays, we would call this Picard-Lefschetz theory). Picard, by the way,
was Hermite’s son-in-law; mathematical abilities are often inherited by sons-in-law:
the dynasty Hadamard, P. Levy, L. Schwarz, U. Frisch is another famous example
in the Paris Academy of Sciences.

Hermite’s “obsolete” course of one hundred years ago (now probably discarded
from student libraries of French universities) was much more modern than the very
boring calculus textbooks with which students are nowadays tormented.

If mathematicians do not come to their senses, then the consumers, who continue
to need mathematical theory that is modern in the best sense of the word and
who preserve the immunity of any sensible person to useless axiomatic chatter,
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will in the end turn down the services of the undereducated scholastics in both the
schools and the universities.

A teacher of mathematics who has not got to grips with at least some of the
volumes of the course by Landau and Lifshitz will then become a relic like the
person nowadays who does not know the difference between an open and a closed
set.

V. I. Arnold

Translated by A. GORYUNOV
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