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Resumo
Os campos vetoriais de Filippov são objeto de estudo de grande relevância, tanto
em termos de seus aspectos teóricos quanto aplicados. Além disso, a análise de
conjuntos minimais desempenha um papel fundamental na compreensão do
comportamento qualitativo global de sistemas dinâmicos. Assim, a determinação
da existência ou não desses conjuntos é um tema crucial e amplamente explo-
rado nesta área de pesquisa. Nesta tese, investigamos se determinadas classes
de campos vetoriais de Filippov apresentam ciclos limite após pequenas pertur-
bações. A característica de Euler de uma variedade compacta bidimensional e o
comportamento local dos campos vetoriais suaves definidos nela estão interli-
gados pelo Teorema de Poincaré-Hopf. Até então, tal resultado não havia sido
estabelecido para campos vetoriais de Filippov, e demonstramos a sua validade
neste contexto. Enquanto, nos casos suaves, as singularidades correspondem aos
pontos onde o campo vetorial se anula, no âmbito dos campos vetoriais de Filip-
pov, a noção de singularidade abrange novos tipos de pontos, a saber, pontos
de pseudo-equilíbrio e tangência. Neste contexto, a definição clássica de índice
para singularidades em campos vetoriais suaves é estendida para abranger as
singularidades dos campos vetoriais de Filippov.

Palavras-chave: Ciclo limite. Campos vetoriais de Filippov. Índice de singulari-
dades. Sistemas dinâmicos. Sistemas Hamiltonianos.



Abstract
Filippov vector fields are the subject of highly relevant study, both in terms of
their theoretical and applied aspects. Additionally, the analysis of minimal sets
plays a fundamental role in understanding the global qualitative behavior of
dynamical systems. Therefore, determining the existence or non-existence of
these sets is a crucial and extensively explored topic in this research area. In this
thesis, we investigate whether certain classes of Filippov vector fields exhibit
limit cycles after small perturbations. The Euler characteristic of a compact two-
dimensional manifold and the local behavior of smooth vector fields defined
on it are interconnected through the Poincaré-Hopf Theorem. Until now, such a
result had not been established for Filippov vector fields, and we demonstrate
its validity in this context. While, in smooth cases, singularities consist of points
where the vector field vanishes, in the context of Filippov vector fields, the notion
of singularity also includes new types of points, namely, pseudo-equilibrium
points and tangency points. In this context, the classical definition of the index for
singularities in smooth vector fields is extended to encompass the singularities
of Filippov vector fields.

Keywords: Limit cycle. Filippov vector fields. Singularity index. Dynamical
systems. Hamiltonian systems.
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Introduction

Understanding singularity indices and the Poincaré-Hopf theorem
holds paramount importance in the realm of dynamical systems and topology.
Singularity indices provide a profound insight into the nature of critical points
within vector fields, offering a means to classify and comprehend the behavior
of complex dynamical systems. These indices serve as key indicators of stability,
helping researchers distinguish between different types of singularities and
predict the overall behavior of a system. The Poincaré-Hopf theorem, on the
other hand, establishes a deep connection between the topology of a manifold
and the distribution of singularities on that manifold (see, for instance [54]). It
serves as a fundamental tool for characterizing the global behavior of vector
fields and understanding the topological features of the underlying space.

Filippov dynamical systems constitute a distinct class of nonlinear
dynamic systems characterized by nonsmooth differential equations. They derive
their name from the Russian mathematician Alexei Filippov, who pioneered
the theory underlying these systems. Considering the significance of Filippov
systems and their extensive practical applications (see, for instance, [27, 45]),
and recognizing the absence of a result akin to the Poincaré-Hopf theorem in
this particular context, we have formulated an index (see, for instance, [7]). This
index serves as a generalization of the continuous vector fields index, with the
added capability of being computable for Filippov discontinuous fields.

Theorem A. Let Z be a Filippov vector field (defined on a 2-dimensional compact
manifold M). Denote the set of the singularities of Z by S and assume that they are all
isolated. Then, ¸

pPS
Ip(Z) = χ(M),

where χ(M) is the Euler Characteristic of M and Ip(Z) is the index of singularity p in
the Filippov vector field Z .

Theorem A becomes feasible due to the introduction of a new def-
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inition of singularity index, based on the following regularization invariance
principle:

Theorem B. Let Z be the Filippov vector field given by (1.3), Zε its ST-regularization
(1.8), D an open set and B � D, a closed ball such that BB does not contain any singu-
larities of Z. Then, for ε ¡ 0 sufficiently small, BB does not contain any singularities of
Zε and IBB(Z) = IBB(Zε).

Limit cycles hold profound significance in the study of dynamical sys-
tems, providing crucial insights into their behaviour, stability, and applications
across various fields. In the context of general dynamical systems, the presence
of limit cycles serves as a key indicator of sustained oscillatory behavior, offering
a comprehensive understanding of periodic orbits and system dynamics. These
cycles play a pivotal role in stability analysis, control design, and the identifi-
cation of bifurcation scenarios, influencing fields ranging from engineering to
ecology.

In the first result in which we provide an upper bound for the number
of limit cycles, we work with a piecewise continuous vector field, separated
by a circle, in which one of the fields has a linear center and the other field
has a quadratic center, (see, for instance, [5]). In [10], we have that a quadratic
differential system that has centers at the origin can be written as ẋ = �y� bx2 �
cxy� dy2 , ẏ = x + ax2 + exy� ay2, if at least one of the four following conditions
hold (i) e � 2b = c + 2a = 0 or (ii) b + d = 0 or (iii) c + 2a = e + 3b + 5d =

a2 + bd + 2d2 = 0 or (iv) c = a = 0. This result can also be found in the original
works of Kapteyn and Bautin [2, 28, 29].

Theorem C. Consider a differential system formed by a linear differential center and a
quadratic differential center and separated by a circle. Consider the change of variables
x = kX + α, y = MY + β, with k, M � 0. Then the following statements hold.

(a) There are no continuous piecewise differential systems (3.1) with quadratic differ-
ential center of type (i), (ii), (iii), with d � 0. When d = 0 system (iii) becomes
system (iv).
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(b) The continuous piecewise differential system (3.1) with a quadratic differential
center of type (iv) has at most three limit cycles.

In Filippov systems, where non-smoothness introduces additional
complexity, the study of limit cycles becomes especially pertinent. Limit cycles
in Filippov systems contribute to our understanding of robust periodic behavior
in the presence of discontinuities, shedding light on the intricate dynamics of
systems with sliding motions. The exploration of limit cycles in Filippov systems
is essential for unraveling the unique challenges posed by non-smooth dynamical
behavior, making it a crucial area of research with applications in control, robotics,
and other domains where discontinuous dynamics are prevalent. Overall, the
study of limit cycles in both general and Filippov dynamical systems plays a
pivotal role in advancing our understanding of complex, real-world phenomena
and enhancing the predictability and control of dynamic processes.

Theorem D. Given a discontinuous piecewise differential system, separated by a straight
line, defined by two arbitrary Hamiltonians H1(x, y) and H2(x, y)

(a) if both Hamiltonians are of degree 2, then system has no limit cycles.

(b) if both Hamiltonians are of degree 3, then system has at most one limit cycle.

(c) if both Hamiltonians are of degree 4, then system has at most three limit cycles.

Moreover, there are differential systems formed by two convenient Hamiltonians H1(x, y)
and H2(x, y) of the corresponding degree realizing the upper bounds on the number of
limit cycles of statements (a) and (b).

Finally, we consider three lines of discontinuity, the circle, the parabola
and the hyperbola, where the vector fields are Hamiltonians of degree two.

Theorem E. The maximum number of limit cycles of piecewise differential systems
formed by two hamiltonians systems of degree two, intersecting the discontinuity line
f (x, y) = 0 in two points the is

(i) 3, for f (x, y) = x2 + y2 � 1,
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(ii) 3, for f (x, y) = x2 � y,

(iii) 2, for f (x, y) = 1� xy.

These upper bounds are reached.

This thesis is organized as follows:

In chapter 1, we extend the classical index definition for singularities
of smooth vector fields to encompass singularities of Filippov vector fields. This
extension is grounded on an invariance property under a regularization process.
Introducing this novel index definition enables us to formulate a version of
the Poincaré–Hopf Theorem specifically tailored for Filippov vector fields. As
a consequential result, we establish a Hairy Ball Theorem within this context,
asserting that "any Filippov vector field defined on a sphere must possess at least
one singularity (in the Filippov sense)."

In chapter 2, we classify the index of singularities of low codimen-
sion. In the context of continuous vector fields, well-established knowledge
dictates that the index of a saddle is consistently minus one, while the index of a
node is consistently one, irrespective of its stability. This means that by merely
identifying the singularity, we can gain insight into its index without the need
to calculate the integral that defines it. In this chapter, our goal is to adopt a
parallel approach, extending this principle to classify Filippov singularities of
codimension zero and one.

In chapter 3, we delve into the analysis of continuous piecewise dif-
ferential systems delimited by a circle, comprising a linear differential center and
a quadratic differential center. As it is typical in planar differential systems, one
of the main difficulties for understanding their dynamics consists in controlling
their limit cycles. Our research is centered on discerning the maximum number
of limit cycles that can be exhibited by such a continuous piecewise differential
system.

In chapter 4, our focus shifts to the examination of the maximum num-
ber of limit cycles in discontinuous piecewise differential systems, composed of
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two Hamiltonian systems separated by a straight line. We investigate three dis-
tinct scenarios: when both Hamiltonian systems on each side of the discontinuity
line simultaneously have degrees one, two, or three. Our findings reveal that in
these three cases, the maximum number of limit cycles is zero, one, and three,
respectively. Additionally, we provide evidence that there exist discontinuous
piecewise differential systems that achieve these maximum numbers of limit
cycles.

In chapter 5, we studied the maximum number of limit cycles of
discontinuous piecewise differential systems, formed by two Hamiltonians sys-
tems of degree one with three distinct lines of discontinuity either a circle, or
a parabola, or a hyperbola. Our analysis reveals that the maximum number of
limit cycles for piecewise differential systems intersecting the line of disconti-
nuity at two points is three for both the circle and the parabola, and two for the
hyperbola.
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1 Poincaré-Hopf Theorem for Filippov
vector fields on 2-dimensional compact
manifolds

The content within this chapter corresponds to paper [7].

1.1 Introduction
The Poincaré–Hopf Theorem is a classical result that relates the Euler

characteristic of a compact manifold with the indices of the singularities of
smooth vector fields defined on it (see, for instance, [18, 47]). A well known
application of such a theorem is the Hairy Ball Theorem which asserts that any
smooth vector field defined on a sphere has at least one singularity (see, for
instance, [46]). This result, although it may seem purely theoretical, is also useful
in applied areas of science (see, for instance, [53, 57]).

On the other hand, Filippov vector fields constitute an important class
of dynamical systems, mainly because of their wide range of applications in
many areas of science (see, for instance, [27, 45]). Roughly speaking, Filippov
vector fields are piecewise smooth vector fields for which the local trajectories at
points of non-smoothness are provided by the Filippov’s convention. The concept
of singularity for Filippov vector fields encompasses the usual one (for smooth
vector fields), but also comprehend some new kinds of points over the non-
smoothness set, namely, pseudo-equilibria and tangency points (see, for instance
[22]). The formal definition of Filippov vector fields and their singularities will
be provided in Section 1.2.

So far, a version of the Poincaré–Hopf Theorem for Filippov vector
fields is not known. This is mainly because of the lack of a nice index definition
for singularities in this context. As expected, a version of the Hairy Ball Theorem



Chapter 1. Poincaré-Hopf Theorem for Filippov vector fields on 2-dimensional compact manifolds 18

for Filippov vector fields is not known either. In other words, the following
question is open: “Is there any Filippov vector field defined on a sphere without
singularities?”

In this paper, we are firstly concerned in extending the classical index
definition to singularities of Filippov vector fields. Such an extension is provided
by definitions 3, 4, and 5, which are based on an invariance property under a
regularization process established by Theorem 3. With this new index definition,
we are able to state and prove our main result, the Poincaré–Hopf Theorem
for Filippov vector fields (Theorem 14). Consequently, we also get a Hairy Ball
Theorem in this context, i.e. “any Filippov vector field defined on a sphere must
have at least one singularity (in the Filippov sense)”.

This chapter is structured as follows. Section 1.2 is devoted to discuss
the basic notions and definition of Filippov vector fields. The definition of index
for singularities of Filippov vector fields is provided in Section 1.3 and some
of their properties are established in Section 1.4. Our main result, the Poincaré–
Hopf Theorem for Filippov vector fields, is then stated and proven in Section
1.5. Section 1.6 is dedicated to discuss the invariance property of this new index
definition under a regularization process and to presenting a proof for Theorem 3.
An Appendix is also provided with some concepts and properties of the classical
index for singularities of smooth vector fields.

1.2 Basic notions on Filippov vector fields
In this section, we introduce Filippov’s convention for piecewise

smooth vector fields defined on 2-dimensional compact manifolds. We also
introduce the concept of singularities of Filippov vector fields.

First, let M be a 2-dimensional compact manifold and N � M be
a 1-dimensional compact submanifold of M. Denote by Ci, i P t1, 2, . . . , ku,
the connected components of MzN (which is finite in number because of the
compactness of M and N). Let Xi : M Ñ TM, for i P t1, 2, . . . , ku, be smooth
vector fields on M, i.e. Xi(p) P TpM for every p P M. Accordingly, we consider a
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piecewise smooth vector field on M given by

Z(p) = Xi(p) if p P Ci, for i P t1, 2, . . . , ku, (1.1)

for which N is called non-smoothness manifold.

The trajectories of (1.1), for points in N, can be locally described by
the Filippov’s convention (see [13]). To do so, we have to obtain a description
of (1.1) in local coordinates around points of the non-smoothness manifold N.
Since N is a 1-dimensional compact submanifold of M, we can find, for each
q P N, a chart (U, Φ) of M around q (i.e. Φ : U Ñ R2 is a local coordinate system
and U � M is a neighborhood of q) and a function H : U Ñ R, having 0 as a
regular value, such that

• S := N XU = H�1(0), and

• UzS is composed by two disjoint open sets, S+ = tp P U : H(p) ¥ 0u
and S� = tp P U : H(p) ¤ 0u, such that Z+ = Z |S+ and Z� = Z |S� are
smooth vector fields.

Let D = Φ(U) and consider the following smooth vector fields defined on D

F+ := Φ�Z+ : Σ+ Ñ R2 and F� := Φ�Z� : Σ� Ñ R2

(pushforward of Z+ and Z� by Φ, respectively). The local coordinate system Φ
can be chosen in such a way that the non-smoothness manifold S is transformed
into a straight segment, i.e. f (x) := H �Φ�1(x), x = (x, y) P D, is such that

Σ := f�1(0) = t(x, y) P D : y = 0u = Φ(S). (1.2)

In addition,

Σ+ := tx P D : f (x) ¥ 0u = Φ(S+) and Σ� := tx P D : f (x) ¤ 0u = Φ(S�).

Thus, the piecewise smooth vector field (1.1) can be locally described around
q P N by the following piecewise smooth vector field on D (see Figure 1),

Z(x) = Φ�(Z |U) :=

#
F+(x), if f (x) ¥ 0,

F�(x), if f (x) ¤ 0.
(1.3)
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Usually, the Filippov vector field (1.3) is concisely denoted by Z = (F+, F�) f .

U

ΦM Σ

N

D

Z+

Z�

F+

F�Z |U ÞÑ Z = Φ�Z |U

Figure 1 – Local description of the piecewise smooth vector field (1.1) in M by
using local coordinates around points at the non-smoothness manifold
N.

Remark 1. We shall see that the Filippov’s convention for trajectories of (1.3) only
depends on the zero set Σ of the function f . Thus, in the local description (1.3) of (1.1),
it would be sufficient to consider f (x, y) = y (see expression (1.2)). However, in the
next section, we are going to introduce a regularization process for Filippov vector
fields, which will be a key tool for defining a index in this context. For such a process,
the expression of the function f plays some role (see expression (1.8)) and that is why
we must carry f in the Filippov vector field (1.3) instead of just Σ. It is important to
anticipate that the index definition will not depend on f (see Remark 4).

In [13], Filippov conventioned that the trajectories of (1.3) correspond
to the solutions of the differential inclusion

ẋ P FZ(x), (1.4)

where FZ is the following set-valued function

FZ(x) =
F+(x) + F�(x)

2
+ sign( f (x))

F+(x)� F�(x)
2

,

with

sign(u) =

$'&'%
�1 if u   0,
[�1, 1] if u = 0,
1 if u ¡ 0.
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The piecewise smooth vector field (1.1) is called Filippov vector field when its local
trajectories (i.e. trajectories of (1.3) for each q P N) are ruled by the Filippov’s
convention.

The solutions of the differential inclusion (1.4) have an easy geomet-
rical interpretation which is fairly discussed in the research literature. In order
to establish this geometrical interpretation, some regions on Σ must be distin-
guished. First, denote by Fh the first Lie derivative of h in the direction of the
vector field F, i.e. F f (x) = x∇ f (x), F(x)y.

The crossing region, denoted by Σc, consists of the points x P Σ such
that F+ f (x)F� f (x) ¡ 0. Notice that at a point x P Σc, the solutions either side of
the non-smoothness manifold Σ, reaching x, can be joined continuously, forming
a solution that crosses Σ (see Figure 2).

The sliding region (resp. escaping region), denoted by Σs (resp. Σe),
consists of the points x P Σ such that F+ f (x)   0 and F� f (x) ¡ 0 (resp. F+ f (x) ¡
0 and F� f (x)   0). Notice that, at a point x P Σs (resp. x P Σe), both vector F+(x)
and F�(x) point inward (resp. outward) Σ in such a way that the solutions
on either side of Σ, reaching x, cannot be concatenate. Alternatively, for x P
Σs,e = Σs Y Σe � N, the solutions on either side of Σ, reaching x, can be joined
continuously to solutions that slide on Σs,e following the so-called sliding vector
field (see Figure 2):

Zs(x) =
F� f (x)F+(x)� F+ f (x)F�(x)

F� f (x)� F+ f (x)
, for x P Σ. (1.5)

The sliding vector field (1.5) associated with the Filippov vector field (1.3) defined
on D naturally induces a sliding vector field on U X N associated with the
Filippov vector field (1.1) defined on the manifold M.

In what follows, we introduce the concept of singularities of Filippov
vector fields (see, for instance, [22]).

Definition 1. Consider the Filippov vector field Z given by (1.3). We say that x0 P D
is a singularity of Z if one of the following conditions hold:

(a) x0 P Σ+ (resp. x0 P Σ�) and F+(x0) = 0 (resp. F�(x0) = 0).
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(b) x0 P Σs Y Σe and Zs(x0) = 0.

(c) x0 P Σ and F+ f (x0) = 0 or F� f (x0) = 0.

In case (a), if x0 R Σ, then x0 is just a singularity of one of the smooth vector fields,
F+ or F�. Otherwise, it is called boundary equilibrium. In case (b), x0 is a called
pseudo-equilibrium. In case (c), x0 is called tangential singularity.

Any point that does not satisfies the definition above is called regular.

x1

x2 x3

Σs Σe

Σc

F+

F�

Figure 2 – Illustration of Filippov’s convention. The point x1 P Σs represents a
pseudo-equilibrium and the points x2, x3 P BΣc represent tangential
singularities.

Definition 1 can be naturally extended to the Filippov vector field
(1.1) defined on the manifold M as follows.

Definition 2. Consider the Filippov vector field Z given by (1.1). We say that p0 P M
is a singularity of Z if there exists a chart (U, Φ) of M around p0 such that Φ(p0)

satisfies Definition 1.

1.3 Index of Filippov vector fields
This section is devoted to provide the definition for index of singular-

ities of Filippov vector fields defined on 2-dimensional compact manifolds.

First, for A1, A2 : U � R2 Ñ R2 vector fields and x P U, satisfying
det(A2(x)|A1(x)) � 0, we define the following auxiliary function,

H(A1,A2)(x) :=
}A1(x)}2 � xA1(x), A2(x)y

det
(

A2(x)|A1(x)
) . (1.6)
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We start by defining the index of the Filippov vector field (1.3) on a
circle BB, where B is the closed ball B = Br(x0) = tx P R2 : }x� x0} ¤ ru.

Definition 3. Let Z be the Filippov vector field given by (1.3) and B � D a closed ball
such that BB does not contain any singularities of Z. The index of Z on B is defined by

IBB(Z) :=
1

2π

(
J(Z) +

»
Γ+

ωW +

»
Γ�

ωW

)
, (1.7)

where ωW is the following usual differential 1-form

ωW :=
�y

x2 + y2 dx +
x

x2 + y2 dy,

Γ� = tZ(x), x P BBr(x0)X Σ�u, and J(Z) = J+(Z) + J�(Z) with

J�(Z) =

$&%tg�1
(

H(F+,F�)(�r, 0)
)
� tg�1

(
H(F�,F+)(�r, 0)

)
, D(�r) � 0,

0, D(�r) = 0,

where D(�r) = det(F+(�r, 0)|F�(�r, 0)).

The above definition is based on the fact that the index given by (1.7)
is invariant under Sotomayor-Texeira regularization (ST-regularization) [56], see
Theorem 3 below. Roughly speaking, a regularization of a piecewise smooth
vector field Z is a 1-parameter family Zε of Cr, r ¥ 0, vector fields such that Zε

converges to Z when ε Ñ 0. The ST-regularization is defined by

Zε(x) =
1 + ϕε � f (x)

2
F+(x) +

1� ϕε � f (x)
2

F�(x), being ϕε(s) := ϕ(s/ε),
(1.8)

where ϕ : R Ñ R is a Cr, r ¥ 0, function which is C1 for s P (�1, 1) satisfying
ϕ(s) = sign(s) for |s| ¥ 1 and ϕ1(s) ¡ 0 for s P (�1, 1). We call ϕ a monotonic
transition function. In this paper we will always consider smooth monotonic
transition functions, i.e. r ¥ 1.

Remark 2. Originally, the ST-regularization was introduced for Filippov vector fields
defined on Euclidean spaces. In [50], the ST-regularization was extended to Filippov
vector fields defined on a smooth manifold M with a 1-dimensional non-smoothness
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manifold N � M, by considering oriented 1-foliations on MzN (see [50, Section 3.1]).
We shall call such an extension, global ST-regularization. Roughly speaking, a global
ST-regularization of the Filippov vector field Z given by (1.1) is a 1-parameter family Zε

of smooth vector fields defined on M for which there exists an atlas A = t(Uα, Φα) : αu
satisfying that if Uα X N � H, then the pushforward (Φα)�Zε can be written as in
(1.8).

In the sequel, we state the main result of this section that provides the
invariance of Definition 3 under ST- regularization.

Theorem 3. Let Z be the Filippov vector field given by (1.3), Zε its ST-regularization
as in (1.8), and B � D a closed ball such that BB does not contain any singularities of
Z. Then, for ε ¡ 0 sufficiently small, BB does not contain any singularities of Zε and
IBB(Z) = IBB(Zε).

Theorem 3 is proven in Section 1.6.

Remark 4. Theorem 3 asserts that the index of Zε, the ST-regularization of Z along
BB is invariant under the choice of the function f that describes Σ as in (1.2) and the
transition function ϕ.

Now, we define the index of an isolated singularity of a Filippov
vector field (see Definition 1).

Definition 4. Let Z be the Filippov vector field given by (1.3), x0 an isolated singularity
of Z, and r ¡ 0 such that x0 is the unique singularity in B = Br(x0) � D. The index of
Z at x0 is defined as Ix0(Z) := IBB(Z).

The following lemma, together with Theorem 3, will prove that the
above index of an isolated singularity, of a Filippov vector field is well defined.

Lemma 5 ([55, Proposition 6]). Let Z be a Filippov vector field given by (1.3), Zε its ST-
regularization as in (1.8), and x0 a regular point of Z. Then, there exist a neighborhood
Vx0 of x0 and εx0 ¡ 0 such that 0 R Zε(Vx0) for every ε P (0, εx0).
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Lemma 5 will also be a key result in Section 1.4 to establish some
properties of the index of Filippov vector fields.

The next result shows that the index Ix0(Z) does not depend on the
radius r of the ball Br(x0) � D, as long as x0 is the unique singularity in Br(x0).
This ensures that the index of a Filippov vector field at a singularity is well
defined.

Proposition 6. Let Z be a Filippov vector field given by (1.3), x0 an isolated singularity
of Z, and r1 ¡ r0 ¡ 0 such that x0 is the unique singularity of Z inside B1 = Br1(x0) �
D. Then, IBB0(Z) = IBB1(Z), where B0 = Br0(x0).

Proof. From Theorem 3, there exists ε ¡ 0 such that IBB0(Z) = IBB0(Zε) and
IBB1(Z) = IBB1(Zε) for every ε P (0, ε). We claim that there exists ε� P (0, ε) and
a continuous deformation Bs � D, s P [0, 1], of B0 into B1 such that 0 R Zε�(BBs)

for every s P [0, 1]. Indeed, let K = tx P R2 : r0 ¤ }x� x0} ¤ r1u � D. Notice
that Bs can be chosen in such a way that BBs � K for every s P [0, 1]. By taking
into account that K is compact and that Z

��
K has only regular points, Lemma 5

provides ε� P (0, ε) such that 0 R Zε�(K) and the claim follows. Hence, since Zε�

is a smooth vector field, it follows that IBB0(Zε�) = IBB1(Zε�) (see Proposition 18
in the Appendix), which implies that IBB1(Z) = IBB0(Z).

In what follows, we extend Definition 4 to singularities of Filippov
vector fields defined on a 2-dimensional manifold compact M (see Definition 2).

Definition 5. Let Z be a Filippov vector field (defined on a 2-dimensional compact
manifold M) given by (1.1). Let p0 P M be an isolated singularity of Z and (U, Φ) a
chart of M around p0 such that Φ�Z is given by (1.3). The index of Z at p0 is defined
as Ip0(Z) := IΦ(p0)(Φ�Z).

The next result shows that the index Ip0(Z) does not depend on the
chart (U, Φ). This insures that the index of a Filippov vector field (defined on a
2-dimensional compact manifold M) at a singularity is well defined.

Proposition 7. Let Z be a Filippov vector field given by (1.1). Let p0 P M be an
isolated singularity of Z and let (U, Φ) and (V, Ψ) be charts of M around p0 such that
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Φ(p0) = Ψ(p0) = x0 and the pushforward vector fields Φ�Z and Ψ�Z as in (1.3).
Then, Ix0(Φ�Z) = Ix0(Ψ�Z).

Proof. Denote D1 = Φ(U X V) and D2 = Ψ � Φ�1(D1) and consider Filippov
vector fields

Z = (F+, F�) f =: Φ�Z : D1 Ñ R2 and W = (G+, G�)g := (Ψ�Z)|D2 : D2 Ñ R2.

Define the diffeomorphism α := Ψ �Φ�1 : D1 Ñ D2 and notice that W = α�Z,
G+ = α�F+ and G� = α�F�. It will be convenient to take g = f � α�1 which,
from Remark 1, can be done without loss of generality.

Also, let r0 ¡ r̄ ¡ r1 ¡ 0 be such that x0 is the unique singularity
of Z and W inside B0 = Br0(x0) � D1, α(B) � B0 where B = Br(x0), and
B1 = Br1(x0) � B. By Definition 4,

Ix0(Φ�Z) = IBB(Z) and Ix0(Ψ�Z) = IBB(W). (1.9)

Now, let Zε and Wε be ST-regularizations, of Z and W, respectively,
given by (1.8). From Theorem 3, and taking Remark 4 into account, there exists
ε̄ ¡ 0 such that Zε and Wε do not vanish on BB and

IBB(Z) = IBB(Zε) and IBB(W) = IBB(Wε) (1.10)

for every ε P (0, ε̄]. We claim that Wε = α�Zε. Indeed, for y P D2

α�Zε(y) =
1 + ϕε � f (α�1(y))

2
α�F+(y) +

1� ϕε � f (α�1(y))
2

α�F�(y)

=
1 + ϕε � g(y)

2
G+(y) +

1� ϕε � g(y)
2

G�(y)

=Wε(y).

Finally, since Zε and Wε are smooth vector fields, we have that IBB(Zε) =

Iα(BB)(Wε), for ε P (0, ε̄] (see Proposition 17 in the Appendix). From Lemma 5
and taking into account the compactness of K = tx P B : r1 ¤ ||x� x0|| ¤ r0u,
we can choose ε� P (0, ε̄) for which Zε� and Wε� do not vanish on K. From
choice of r0, r̄, and r1, we have that BB � K and α(BB) � K, thus they can be
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continuously deformed into each other without passing through a singularity.
Therefore, Iα(BB)(Wε) = IBB(Wε) (see Proposition 18 in the Appendix), which
implies that IBB(Zε) = IBB(Wε). Hence, from (1.9) and (1.10), it follows that
Ix0(Φ�Z) = Ix0(Ψ�Z).

1.4 Properties of the index for Filippov vector fields
In this section, we apply Theorem 3 together with Lemma 5 to extend

the index properties of smooth vector fields (see the Appendix) to the index for
Filippov vector fields established in Section 1.3.

Proposition 8. Let Z be a Filippov vector field given by (1.3) and B � D a closed ball.
If Z has no singularities on BB, then IBB(Z) P Z.

Proof. Let Zε be a ST-regularization (1.8) of Z. Theorem 3 implies that there
exists ε ¡ 0 such that IBB(Z) = IBB(Zε) for every ε P (0, ε). Since Zε is a smooth
vector field, it follows that IBB(Zε) P Z (see the Appendix), which implies that
IBB(Z) P Z.

Proposition 9. Let Z be a Filippov vector field given by (1.3) and B � D a closed ball.
If Z has no singularities on B, then IBB(Z) = 0.

Proof. Let Zε be the ST-regularization (1.8) of Z. Theorem 3 implies that there
exists ε ¡ 0 such that IBB(Z) = IBB(Zε) for every ε P (0, ε). By taking into account
the compactness of B and that Z

��
B has only regular points, Lemma 5 implies

that there exists ε� P (0, ε) such that Zε�
��
B has only regular points. Since Zε�

is a smooth vector field, it follows that IBB(Zε�) = 0 (see Proposition 20 in the
Appendix), which implies that IBB(Z) = 0.

Proposition 10. Let Z be a Filippov vector field given by (1.3) and B � D a closed ball.
Assume that Z has no singularities on BB. Then,

min
λP[0,1]

}(1� λ)F+(x) + λF�(x)} ¡ 0, for every x P BBX Σ.

In addition, assume that the Filippov vector field rZ = (rF+, rF�) (defined on D and given
as in (1.3)), satisfies
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• }Z(x)� rZ(x)}   }Z(x)}, for every x P BBzΣ,

• |F� f (x)� rF� f (x)|   |F� f (x)|, for every x P BBX Σ,

• |Zs(x)� rZs(x)|   |Zs(x)|, for every x P BBX Σs, and

• }F�(x)� rF�(x)}   1
2

min
λP[0,1]

}(1� λ)F+(x) + λF�(x)}, for every x P BBX Σ.

Then, rZ has no singularities on BB and IBB(Z) = IBB(rZ).
Proof. First, let us verify that

min
λP[0,1]

}(1� λ)F+(x) + λF�(x)} ¡ 0, for every x P BBX Σ.

Suppose that there exist x̄ P BB X Σ and λ̄ P [0, 1] such that }(1 � λ̄)F+(x̄) +
λ̄F�(x̄)} = 0, i.e. (1� λ̄)F+(x̄) = �λ̄F�(x̄). Since F�(x̄) � 0, then λ̄ R t0, 1u.
Therefore,

F�(x̄) = �
(

1� λ̄

λ̄

)
F+(x̄) ñ F� f (x̄)

F+ f (x̄)
= �

(
1� λ̄

λ̄

)
  0,

This implies that x̄ P Σs and, consequently, x̄ is a pseudo-equilibrium, i.e. Zs(x̄) =
0 which contradicts the hypothesis.

Now notice that, by hypothesis, }rZ(x)} ¡ 0 for x P BBzΣ, |rF� f (x)| ¡ 0
for x P BB X Σ, and |rZs(x)| ¡ 0 for x P BB X Σs. This implies that rZ has no
singularities on BB.

Finally, let Zε and rZε be ST-regularizations of Z and rZ, respectively.
Theorem 3 implies that there exists ε ¡ 0 such that IBB(Z) = IBB(Zε) and
IBB(rZ) = IBB(rZε) for every ε P (0, ε). In addition, from the hypothesis and



Chapter 1. Poincaré-Hopf Theorem for Filippov vector fields on 2-dimensional compact manifolds 29

taking into account that ϕ(R) � [�1, 1], we get

}Zε(x)� rZε(x)} =

����1 + ϕε( f (x))
2

(
F+(x)� rF+(x)

)

+
1� ϕε( f (x))

2

(
F�(x)� rF�(x))����

¤ }F+(x)� rF+(x)}+ }F�(x)� rF�(x)}
  min

λP[0,1]
}(1� λ)F+(x) + λF�(x)}   }Zε(x)},

for every x P BB and ε P (0, ε̄]. Thus, since Zε and rZε are smooth vector fields, it
follows that IBB(rZε) = IBB(Zε) for ε P (0, ε̄] (see Proposition 21 in the Appendix),
which implies that IBB(rZ) = IBB(Z).

Proposition 11. Let Z be a Filippov vector field given by (1.3), B � D a closed ball, and
Z1(�; δ) = (F+

1 (�; δ), F�1 (�; δ)) f be a continuous 1-parameter family of Filippov vector
fields (defined on D and given as in (1.3)) such that Z1(�; 0) vanishes, is identically
zero, that is F�1 (�; 0) = (0, 0). Consider the Filippov vector field rZ(�; δ) = Z + Z1(�; δ).
Then, there exists δ̄ ¡ 0 such that IBB(Z) = IBB(rZ(�; δ)) for every δ P (0, δ̄).

Proof. First, notice that rZ(�, δ) = (rF+(�, δ), rF�(�, δ)) f , where rF�(�, δ) = F� +

F�1 (�, δ). Since, F�1 (x; δ) Ñ (0, 0), uniformly for x P B, as δ Ñ 0 we obtain that:
}Z(x)� rZ(x; δ)} Ñ 0, uniformly for x P BBzΣ, as δ Ñ 0; |F� f (x)� rF� f (x; δ)| Ñ 0
and }F�(x)� rF�(x; δ)} Ñ 0, for x P BBX Σ, as δ Ñ 0; and |Zs(x)� rZs(x; δ)| Ñ 0,
for x P BBXΣs, as δ Ñ 0. Thus, taking into account that Z has no singularities on
BB, we conclude that there exists δ̄ ¡ 0 for which the hypotheses of Proposition
10 hold for rZ(�; δ), for δ P (0, δ̄), which implies that IBB(Z) = IBB(rZ(�; δ)) for
every δ P (0, δ̄).

Proposition 12. Let Z(�; λ), λ P [0, 1], be a continuous homotopy between Filippov
vector fields given as (1.3) and B � D a closed ball such that Z(�; λ) has no singularities
on BB, for every λ P [0, 1]. Then, IBB(Z(�; λ)) is constant on λ P [0, 1].

Proof. For each λ0 P [0, 1], by taking Z = Z(�; λ0) and Z1(�; δ) = Z(�; λ0 + δ)�
Z(�; λ0), Proposition 11 provides a neighborhood Jλ0 � [0, 1] of λ0 such that
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IBB(Z(�; λ)) = IBB(Z(�; λ0)) for every λ P Jλ0 , which implies that the map λ P
[0, 1] ÞÑ IBB(Z(�, λ)) is continuous. Since, from Proposition 8, it is an integer-
valued map, we conclude that IBB(Z(�, λ)) is constant on λ P [0, 1].

Proposition 13. Let Z be the Filippov vector field given by (1.3) and B � D a closed ball
such that Z has no singularities on BB. Assume that Z has finitely many singularities
inside B, x1, x2, . . . , xn. Then,

IBB(Z) =
ņ

i=1

Ixi(Z).

Proof. Since each singularity xi, i P t1, . . . , nu, is isolated, there exist ri, i P
t1, . . . , nu, small enough, such that xi is the unique singularity inside Bi = Bri(xi)

for i P t1, . . . , nu, and BjXBi = H, for every i � j. From Theorem 3 and Definition
4, there exists ε̄ ¡ 0 such that

IBB(Z) = IBB(Zε) and Ixi(Z) = IBBi(Z) = IBBi(Zε) for i P t1, . . . , nu and ε P (0, ε̄].

Since Zε is a smooth vector field and B = Bz Yi Bi Y (YiBi), Proposition 19 in the
Appendix provides

IBB(Z) = IBB(Zε) = IB(BzYiBi)
(Zε) +

ņ

i=1

IBBi(Zε) = IB(BzYiBi)
(Zε) +

ņ

i=1

Ixi(Z),

for ε P (0, ε̄]. Now, Lemma 5 asserts the existence of ε� P (0, ε̄] such that Zε� has
no singularities in Bz Yi Bi. Thus, from Proposition 20 in the Appendix, we have
that IB(BzYiBi)

(Z�
ε ) = 0 which implies that

IBB(Z) =
ņ

i=1

Ixi(Z).

1.5 Poincaré–Hopf Theorem for Filippov vector fields
In this section, we state and prove the main result of this chapter.

Namely, we show that, by considering the generalization of index for singulari-
ties of Filippov vector fields provided in Section 1.3, the Poincaré–Hopf Theorem
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remains true for Filippov vector fields defined on 2-dimensional compact mani-
folds.

Theorem 14. Let Z be the Filippov vector field (defined on a 2-dimensional compact
manifold M) given by (1.1). Denote the set of the singularities of Z by S and assume
that they are all isolated. Then, ¸

pPS
Ip(Z) = χ(M),

where χ(M) is the Euler Characteristic of M.

Proof. Let pi P M, i P t1, . . . , nu, be the singularities of the Filippov vector field
Z . Consider an atlas A = t(Uα, Φα) : αu of M satisfying:

1. for each i P t1, . . . , nu, there exists αi such that pi is the unique singularity
of Z inside Uαi , and

2. Uαi XUαj = H, for i � j.

Denote Ui = Uαi and Φi = Φαi . From Definition 5, Ipi(Z) = IΦi(pi)
(Φi

�Z). Take
ri ¡ 0, for i P t1, . . . , nu, such that Bi = Bri(Φ

i(pi)) � Di := Φi(Ui). Thus, from
Definition 4, we have that Ipi(Z) = IBBi(Φ

i
�Z).

Now, let Zε be a global ST-regularization of Z . Taking Remark 2 into
account, that atlas A can be chosen in such a way that Φi

�Zε : Di Ñ R2 as in
(1.8). From Theorem 3, there exists ε̄ ¡ 0 such that IBBi(Φ

i
�Z) = IBBi(Φ

i
�Zε), for

i P t1, . . . , nu and ε P (0, ε̄]. So far, we have obtained that

Ipi(Z) = IBBi(Φ
i
�Zε), (1.11)

for i P t1, . . . , nu and ε P (0, ε̄].

Now, fix ε� P (0, ε̄]. Recall that the set G � Cr(M) of the vector fields
defined on M having only hyperbolic singularities is open and dense in Cr(M)

(see [49, Theorem 3.4]). Since Zε� P Cr(M), there exists a perturbation X P G of
Zε� (as close to Zε� as we want) satisfying that X has finitely many singularities
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and none of them are contained in Mz
n¤

i=1

(Φi)�1(Bi). Thus, for each i P t1, . . . , nu,

let pj
i , j P t1, . . . , miu, be the singularities of X in (Φi)�1(Bi). Hence,

mi̧

j=1

I
pj

i
(X ) =

mi̧

j=1

I
Φi(pj

i)
(Φi

�X ) = IBBi(Φ
i
�X ). (1.12)

Notice that X can be taken sufficiently close to Z in order that ||Φi
�X (x) �

Φi
�Zε�(x)||   ||Φi

�Zε�(x)|| for every x P BBi and i P t1, . . . , nu. Thus, Proposition
21 from Appendix implies that

IBBi(Φ
i
�X ) = IBBi(Φ

i
�Zε�),

which, together with the equations in (1.11) and (1.12), provide

mi̧

j=1

I
pj

i
(X ) = Ipi(Z). (1.13)

Finally, applying the Poincaré-Hopf Theorem to the smooth vector
field X (see Theorem 22 from the Appendix), it follows that

ņ

i=1

mi̧

j=1

I
pj

i
(X ) = χ(M). (1.14)

Therefore, from (1.13) and (1.14), we conclude that

ņ

i=1

Ipi(Z) =
ņ

i=1

mi̧

j=1

I
pj

i
(X ) = χ(M).

Taking into account that the Euler Characteristic of a sphere is 2, we
obtain, as a direct consequence of Theorem 14, the following version of the Hairy
Ball Theorem for Filippov vector fields.

Corollary 15. Assume that M is a smooth sphere and let Z be the Filippov vector field
given by (1.1) defined on M. Then, Z has at least one singularity.
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1.6 Invariance under regularization process: proof of Theorem
3

This section is devoted to the proof of Theorem 3. Consider the Filip-
pov vector field Z given by (1.3) and let Zε be its ST-regularization given by (1.8).
Notice that Zε(x) = (Xε(x), Yε(x)), where

Xε(x) =
F+

1 (x) + F�1 (x) + ϕε(y)(F+
1 (x)� F�1 (x))

2
,

Yε(x) =
F+

2 (x) + F�2 (x) + ϕε(y)(F+
2 (x)� F�2 (x))

2
.

(1.15)

Let B = Br(x0) � D and consider the following parametrization of its
boundary BB,

σ(t) = (u(t), v(t)) =
(
r cos(t + π/2), rsin(t + π/2)

)
, t P [0, 2π]

Lemma 5 implies that Zε does not vanish on BB for ε ¡ 0 sufficiently small. Since
Zε is a smooth vector field, we know that

IBB(Zε) =
1

2π

»
Γε

ωW =
1

2π

» 2π

0

(
pZε(σ(t)) + qZε(σ(t))

)
dt, (1.16)

where Γε = tZε � σ(t), t P [0, 2π]u and, for a vector field A(x), the functions pA

and qA are given by expressions in (1.34) of the Appendix.

Since 0 is a regular value of f , one can apply the Implicit Function
Theorem to ensure that, for ε ¡ 0 sufficiently small, the curve BB intersects the
boundaries of the regularization band, L+

ε = t(x, y) P D : f (x, y) = εu and
L�ε = t(x, y) P D : f (x, y) = �εu, at points σ(wε

i ), for i P t1, . . . , 4u in such a
way that

wε
1, wε

2 Ñ π/2 and wε
3, wε

4 Ñ 3π/2 as ε Ñ 0. (1.17)

Also, let BB = BB1
ε Y BB2

ε Y BB3
ε Y BB4

ε Y BB5
ε , where, for each i P t1, 2, 3, 4, 5u,

BBi
ε = tσ(t) : t P (wε

i�1, wε
i )u (see Figure 3).
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σ(wε
0)

σ(wε
1)

σ(wε
2) σ(wε

3)

σ(wε
4)

BB1
ε

BB2
ε

BB3
ε

BB4
ε

BB5
ε

L+
ε = f�1(ε)

Σ = f�1(0)

L�ε = f�1(�ε)

Figure 3 – Illustration of the curve BB and its intersection with the boundaries of
the regularization band, L+

ε and L�ε .

The index (1.16) can be split into several integrals as follows

IBB(Zε) =
1

2π

(»
Γ1

ε

ωW +

»
Γ2

ε

ωW +

»
Γ3

ε

ωW +

»
Γ4

ε

ωW +

»
Γ5

ε

ωW

)
, (1.18)

where Γi
ε = tZε(x), x P BBi

εu for i P t1, 2, 3, 4, 5u. Notice that, for x P Γ1
ε Y

Γ5
ε , Zε(x) = F+(x); for x P Γ3

ε , Zε(x) = F�(x); and for x P Γ2
ε Y Γ4

ε , Zε(x) =

(Xε(x), Yε(x)) is given by (1.15).

In order to prove that IBB(Z) = IBB(Zε) for ε ¡ 0 small enough, it is
sufficient to show that

lim
εÑ0

IBB(Zε) = IBB(Z), (1.19)

because, since the index is a discrete function, we know that lim
εÑ0

IBB(Zε) =

IBB(Zε) for ε ¡ 0 sufficiently small.

First, along Γ1
ε , Γ3

ε , and Γ5
ε , we are outside the regularization band,

where the integrand does not depend on ε. In this cases, taking into account the
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limits in (1.17), we get

lim
εÑ0

»
Γ1

ε

ωW = lim
εÑ0

» wε
1

wε
0

(
pF+(σ(t)) + qF+(σ(t))

)
dt

=

» π/2

0

(
pF+(σ(t)) + qF+(σ(t))

)
dt,

lim
εÑ0

»
Γ3

ε

ωW = lim
εÑ0

» wε
3

wε
2

(
pF�(σ(t)) + qF�(σ(t))

)
dt

=

» 3π/2

π/2

(
pF�(σ(t)) + qF�(σ(t))

)
dt,

lim
εÑ0

»
Γ5

ε

ωW = lim
εÑ0

» wε
5

wε
4

(
pF+(σ(t)) + qF+(σ(t))

)
dt

=

» 2π

3π/2

(
pF+(σ(t)) + qF+(σ(t))

)
dt,

Therefore, adding up the integrals above, we obtain

lim
εÑ0

(»
Γ1

ε

ωW +

»
Γ3

ε

ωW +

»
Γ5

ε

ωW

)
=

»
Γ+

ωW +

»
Γ�

ωW ,

where Γ� = tZ(x), x P BBX Σ�u.
Now, for the integral along Γ2

ε in (1.18), we proceed with the following
change of integration variable

t = τε
1(s) = (1� s)wε

1 + s wε
2,

which provides»
Γ2

ε

ωW =

» wε
2

wε
1

(
pZε(σ(t)) + qZε(σ(t))

)
dt

=

» 1

0

(
pZε(σ � τε

1(s)) + qZε(σ � τε
1(s))

)dτε
1

ds
(s)ds.

(1.20)

Notice that the integrand of the equation (1.20) is uniformly convergent as ε goes
to 0. Then, by switching the limit with the integral and taking into account the
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limits in (1.17), we get

lim
εÑ0

»
Γ2

ε

ωW =

» 1

0
lim
εÑ0

(
pZε(σ � τε

1(s)) + qZε(σ � τε
1(s))

)dτε
1

ds
(s)ds

=

» 1

0

4ϕ1(1� 2s)(F+
1 (�r, 0)F�2 (�r, 0)� F+

2 (�r, 0)F�1 (�r, 0))
G1(s)

ds,

(1.21)
where

G1(s) = �2
(

ϕ(1� 2s)2 � 1
)

F+
1 (�r, 0)F�1 (�r, 0) + (ϕ(1� 2s) + 1)2F+

1 (�r, 0)2

�2
(

ϕ(1� 2s)2 � 1
)

F+
2 (�r, 0)F�2 (�r, 0) + (ϕ(1� 2s) + 1)2F+

2 (�r, 0)2

+(ϕ(1� 2s)� 1)2
(

F�1 (�r, 0)2 + F�2 (�r, 0)2
)

.

By taking u = ϕ(1� 2s)� 1, i.e. s = σ1(u) := (1� ϕ�1(u + 1))/2, the integral
(1.21) becomes

lim
εÑ0

»
Γ2

ε

ωW =

» �2

0

α1

β1(u + 2)2 � 2ψ1(u + 2)u + η1u2 du, (1.22)

where α1 = α(�r, 0), β1 = β(�r, 0), ψ1 = ψ(�r, 0), and η1 = η(�r, 0) with

α(x) := 2F+
2 (x)F�1 x� 2F+

1 (x)F�2 (x),
β(x) := F+

1 (x)2 + F+
2 (x)2,

ψ(x) := F+
1 (x)F�1 (x) + F+

2 (x)F�2 (x),
η(x) := F�1 (x)2 + F�2 (x)2.

(1.23)

Notice that the discriminant of the denominator of (1.22), given by ψ2
1 � β1η1,

is less than or equal to zero. One can see that the discriminant is zero if and
only if det(F+(�r, 0)|F�(�r, 0)) = 0. In this cases, α1 = 0 which implies that the
integral is zero. Now assume that ψ2

1 � β1η1   0. Hence,

lim
εÑ0

»
Γ2

ε

ωW =

» �2

0

α1

β1(u + 2)2 � 2ψ1(u + 2)u + η1u2 du

=

α1

(
tg�1

(
ψ1�β1b
β1η1�ψ2

1

)
+ tg�1

(
ψ1�η1b
β1η1�ψ2

1

))
2
b

β1η1 � ψ2
1

.

(1.24)
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Substituting (1.23) into (1.24), we get

lim
εÑ0

»
Γ2

ε

ωW =tg�1

(
F�1 (�r, 0)2 + F�2 (�r, 0)2 � F+

1 (�r, 0)F�1 (�r, 0)
F+

1 (�r, 0)F�2 (�r, 0)� F+
2 (�r, 0)F�1 (�r, 0)

� F+
2 (�r, 0)F�2 (�r, 0)

F+
1 (�r, 0)F�2 (�r, 0)� F+

2 (�r, 0)F�1 (�r, 0)

)

+ tg�1

(
F+

1 (�r, 0)2 + F+
2 (�r, 0)2 � F+

1 (�r, 0)F�1 (�r, 0)
F+

1 (�r, 0)F�2 (�r, 0)� F+
2 (�r, 0)F�1 (�r, 0)

� F+
2 (�r, 0)F�2 (�r, 0)

F+
1 (�r, 0)F�2 (�r, 0)� F+

2 (�r, 0)F�1 (�r, 0)

)
.

(1.25)

Notice that the argument of the arctangent in (1.25) is of the form

A1(x)2 + A2(x)2 � A1(x)B1x� A2(x)B2(x)
B1(x)A2x� B2(x)A1(x)

, (1.26)

where A(x) = (A1(x), A2(x)) and B(x) = (B1(x), B2(x)) are general vector
fields. Note that (1.26) becomes H(A,B)(x), defined in (1.6), that is

}A(x)}2 � xA(x), B(x)y
det

(
B(x)|A(x)

) = H(A,B)(x).

Then,

lim
εÑ0

»
Γ2

ε

ωW = tg�1
(

H(F�,F+)(�r, 0)
)
� tg�1

(
H(F+,F�)(�r, 0)

)
.

Hence, we have obtained that

lim
εÑ0

»
Γ2

ε

ωW =

$&%tg�1
(

H(F�,F+)(�r, 0)
)
� tg�1

(
H(F+,F�)(�r, 0)

)
, D(�r) � 0,

0, D(�r) = 0,

with D(�r) = det(F+(�r, 0)|F�(�r, 0)), which coincides with �J�(Z).

Analogously, for the integral along Γ4
ε in (1.18) we proceed with the

following change of integration variable

τε
2(s) = (1� s)wε

4 + swε
3,
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which provides»
Γ4

ε

ωW =

» wε
4

wε
3

(
pZε(σ(t)) + qZε(σ(t))

)
dt

=

» 1

0

(
pZε(σ � τε

2(s)) + qZε(σ � τε
2(s))

)dτε
2

ds
(s)ds,

(1.27)

Again, as the integrand of the equation (1.27) is uniformly convergent as ε goes
to 0, by switching the limit with the integral and taking into account the limits in
(1.17), we get

lim
εÑ0

»
Γ4

ε

ωW =

» 1

0
lim
εÑ0

(
pZε(σ � τε

2(s)) + qZε(σ � τε
2(s))

)dτε
2

ds
(s)ds

=

» 1

0

4ϕ1(2s� 1)(F+
2 (r, 0)F�1 (r, 0)� F+

1 (r, 0)F�2 (r, 0))
G2(s)

ds,

(1.28)
where

G2(s) = ϕ(2s� 1)2
(
(F+

1 (r, 0)� F�1 (r, 0))2 + (F+
2 (r, 0)� F�2 (r, 0))2

)
+2ϕ(2s� 1)

(
F+

1 (r, 0)2 + F+
2 (r, 0)2 � F�1 (r, 0)2 � F�2 (r, 0)2

)
+(F+

1 (r, 0) + F�1 (r, 0))2 + (F+
2 (r, 0) + F�2 (r, 0))2.

By taking u = �1 + ϕ(�1 + 2s), i.e. s = σ2(u) := (ϕ(�1)(u + 1) + 1)/2, the
integral (1.28) becomes

lim
εÑ0

»
Γ4

ε

ωW =

» 0

�2

α2

β2(u + 2)2 � 2ψ2(u + 2)u + η2u2 du, (1.29)

where α2 = α(r, 0), β2 = β(r, 0), ψ2 = ψ(r, 0), and η2 = η(r, 0) are given
in (1.23). Notice that the discriminant of the denominator of (1.29), given by
ψ2

2 � β2η2, is less than or equal to zero. One can see that the discriminant is zero
if and only if det(F+(r, 0)|F�(r, 0)) = 0. In this cases, α2 = 0 which implies that
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the integral is zero. Now, assume that ψ2
1 � β1η1   0. Hence,

lim
εÑ0

»
Γ4

ε

ωW =

» 0

�2

α2

β2(u + 2)2 � 2ψ2(u + 2)u + η2u2 du

= �
α2

(
tg�1

(
ψ2�β2?
β2η2�ψ2

2

)
+ tg�1

(
ψ2�η2?
β2η2�ψ2

))
2
b

β2η2 � ψ2
2

.

(1.30)

Substituting (1.23) into (1.30), we get

lim
εÑ0

»
Γ4

ε

ωW = tg�1
(

H(F+,F�)(r, 0)
)
� tg�1

(
H(F�,F+)(r, 0)

)
.

Accordingly, we have concluded that

lim
εÑ0

»
Γ4

ε

ωW =

$&%tg�1
(

H(F+,F�)(r, 0)
)
� tg�1

(
H(F�,F+)(r, 0)

)
, D(r) � 0,

0, D(r) = 0,

with D(r) = det(F+(r, 0)|F�(r, 0)), which coincides with J+(Z).

Therefore, for ε ¡ 0 small enough, we get that

IBB(Zε) = lim
εÑ0

IBB(Zε) = J(Z) +
1

2π

(»
Γ+

ωW +

»
Γ�

ωW

)
= IBB(Z),

which concludes the proof of Theorem 3.

1.7 Appendix
This appendix provides some concepts and results from the index

theory for smooth vector fields. We are following the references [11, 18, 58].

Let ω be a differential 1-form defined on R2, i.e. ω = p(x)dx + q(x)dy
where p and q are smooth real functions on R2. Let γ be a curve on R2 with
smooth parametrization α : [a, b] Ñ R2, α(t) = (u(t), v(t)). The integral of ω

along γ is defined as»
γ

ω :=
» b

a

(
p(α(t))u1(t) + q(α(t))v1(t)

)
dt. (1.31)
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The above definition does not depend on the parametrization α. Accordingly, the
winding number of γ around the origin W(γ) is an integer defined by

W(γ) =
1

2π

»
γ

ωW ,

where ωW is the following differential 1-form

ωW :=
�y

x2 + y2 dx +
x

x2 + y2 dy. (1.32)

The next result is a useful tool for computing the winding number.

Proposition 16 ([18, Corollary 3.8]). If two smooth oriented closed curves, γ and δ,
are homotopic in R2zt(0, 0)u, then W(γ) = W(δ).

Now, consider a smooth vector field A(x) defined on an open subset
D � R2. Let γ � D be a smooth oriented closed curve. Assume that A(x) is
nonsingular on γ. When a point x moves one cycle around γ in the counterclock-
wise direction, the vector A(x) winds around the origin an integral number of
revolutions. The total number of revolutions Iγ(A) is called the rotation number
of the vector field A(x) around γ [58]. Following the notation above,

Iγ(A) := W(Γ) =
1

2π

»
Γ

ωW , (1.33)

where Γ := tA(x), x P γu. Define the auxiliary functions pA, qA : D � R2 Ñ R

such that

pA(α(t)) :=
�A2(α(t))

A2
1(α(t)) + A2

2(α(t))
∇A1(α(t)) � α1(t),

qA(α(t)) :=
A1(α(t))

A2
1(α(t)) + A2

2(α(t))
∇A2(α(t)) � α1(t).

(1.34)



Chapter 1. Poincaré-Hopf Theorem for Filippov vector fields on 2-dimensional compact manifolds 41

Then (1.33) becomes

Iγ(A) =
1

2π

(» b

a

�A2(α(t))
A2

1(α(t)) + A2
2(α(t))

∇A1(α(t)) � α1(t)dt

+

» b

a

A1(α(t))
A2

1(α(t)) + A2
2(α(t))

∇A2(α(t)) � α1(t)dt

)

=
1

2π

» b

a
pA(α(t))dt + qA(α(t))dt.

(1.35)

The next result provides the invariance of Iγ(A) under change of
coordinates by diffeomorphism. Although very intuitive, we were not able to
find any reference for a proof of such a result, thus we shall provide it.

Proposition 17. Let A : D � R2 Ñ R2 be a vector field, γ � D a smooth oriented
closed curve, and α : D Ñ D� a diffeomorphism. Assume that A does not vanish on γ.
Then,

Iα(γ)(α�A) = Iγ(A).

Proof. From (1.33), Iγ(A) = W(Γ) and Iα(γ)(α�A) = W(Γ�), where Γ = tA(x) :
x P γu and

Γ� := tα�A(α(x)) : x P γu = tdα(x)A(x) : x P γu.

We claim that Γ� is homotopic in Dzt(0, 0)u either to Γ or �Γ. In what
follows we shall construct such a homotopy.

Let θ : [0, 1] Ñ D be a parametrization of γ. Thus Γ and Γ� are
parametrized, respectively, by Θ(t) = A(θ(t)) and Θ�(t) = dα(θ(t))A(θ(t)).
We know that the set of invertible 2� 2 real matrices has two path-connected
components, one of them containing the identity matrix I2 and the other one
containing �I2. Thus, since dα(θ(0)) is invertible, there exists a path M(s) of
invertible matrices satisfying M(0) = [dα(θ(0))]�1 and either (a) M(1) = I2 or
(b) M(1) = �I2. In both cases, consider the homotopy H(s, t) = M(s)dα(θ(s �
t))A(θ(t)). Notice that H(0, t) = A(θ(t)) = Θ(t) and, in case (a) H(1, t) =
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dα(θ(s � t))A(θ(t)) = Θ�(t); and in case (b) H(1, t) = �dα(θ(s � t))A(θ(t)) =

�Θ�(t). Furthermore, since A does not vanish on γ and M(s)dα(θ(s � t)) is
invertible for every (s, t) P [0, 1] � [0, 1], we conclude that H(s, t) � (0, 0) for
every (s, t) P [0, 1]� [0, 1].

Hence, Proposition 16 implies that either W(Γ�) = W(Γ) or W(Γ�) =
W(�Γ). Taking into account (1.31) and (1.32), we see that W(�Γ) = W(Γ). There-
fore, Iα(γ)(α�A) = W(Γ�) = W(Γ) = Iγ(A).

If x0 P D is an isolated critical point of A(x), then there exists r ¡ 0
such that the closed ball B = Br(x0) � D does not contain any critical point other
than x0. Accordingly, the index Ix0(A) of the vector field A at the critical point x0 is
defined as

Ix0(A) := IBB(A) =
1

2π

»
Γ

ωW ,

where now Γ = tA(x), x P BBu. It is well known that if γ is a closed curve on D
enclosing a finite number of isolated singularities, x1, x2, . . . , xn, then

Iγ(A) =
ņ

i=1

Ixi(A).

The next results, taken from [11] and [58] are classical properties of
the index for smooth vector fields that have been used throughout the paper.

Proposition 18 ([11, Lemma 6.19]). Suppose that γ � D can be continuously de-
formed into γ1 without passing through a singularity. Then

Iγ(A) = Iγ1(A).

Proposition 19 ([58, Property 1]). Let C1, C2 � D be two closed connected regions.
Suppose that the intersection of the interiors of C1 and C2 is empty and let C = C1 YC2.
Then

IBC(A) = IBC1(A) + IBC2(A).

Proposition 20 ([58, Property 2]). Assume that A has no singularities in a bounded
closed connected region C � D. Then, IBC(A) = 0.
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Proposition 21 ([58, Theorem 1.3]). Let C � D be a closed bounded region. Suppose
that A0 and A1 are smooth vector fields on D such that A0 is nonsingular on BC and
||A1(x)� A0(x)||   ||A0(x)|| for every x P BC. Then, A1(x) is nonsingular on BD
and IBD(A0) = IBD(A1).

Finally, let F : M Ñ TM be a smooth vector field defined on a two
dimensional smooth manifold M. Assume that p0 P M is an isolated singularity
of F . Let (U, Φ) be a chart of M around p0. Then, the index of Z at p0 is defined
as Ip0(F ) := IΦ(p0)(Φ�F ). The next result is the famous Poincaré–Euler Theorem
(see [23]) which relates the indices of the singularities of a vector field F defined
on a compact manifold M with the Euler characteristic of M, χ(M). Details about
the Euler characteristic of a compact manifold can be found in [18].

Theorem 22 (Poincaré-Hopf Theorem). Let F be a smooth vector field defined on a
2-dimensional compact manifold M. Denote the set of the singularities of F by S and
assume that they are all isolated. Then,¸

pPS
Ip(F ) = χ(M),

where χ(M) is the Euler Characteristic of M.
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2 Classification of singularities with low
codimension by the index for Filippov
vector fields

2.1 Introduction
In [7], a generalization of the Poincaré index for singularities in con-

tinuous vector fields was conducted, extending this concept to Filippov systems.
It was demonstrated that the essential properties for a robust index definition
remain valid, culminating in the validation of the Poincaré-Hopf Theorem for
Filippov vector fields.

Understanding the singularity index, without the need for complex
integral calculations, is of utmost importance to deepen our comprehension
of the system’s dynamics. In many cases, the direct calculation of the integral
defining the index can be challenging and, in some instances, even impractical.

In Filippov systems, in addition to singularities representing critical
points of the vector field, we encounter the so-called pseudo-singularities, where
the sliding vector field vanishes. Examples of these singularities in Filippov
vector fields include pseudo-saddles, pseudo-nodes, tangency points, fold-fold,
and cusps.

The main objective of this chapter is to classify the indices of low
codimension Filippov singularities, specifically those of codimension zero and
one. Thus, by obtaining information about the existence of these singularities
or even about parameters of the vector field, we can determine the values of
the indices associated with these singularities. Furthermore, the application of
the Poincaré-Hopf Theorem will provide additional insights into the system’s
dynamics and the existence of singularities, utilizing the topological information
of the manifold in which the vector field is defined. This study contributes
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significantly to the comprehensive understanding of dynamic and topological
properties in Filippov systems, providing a deeper insight into the behavior of
these complex systems.

2.2 Indices of low codimension singularities
In the realm of continuous vector fields, we possess established knowl-

edge; for instance, the index of a saddle is consistently minus one, while the
index of a node is consistently one, irrespective of its stability. Thus, merely
by identifying the singularity, we can provide insights into its index without
the need for calculating the integral (1.7) that defines it. In this chapter, we
aim to achieve a parallel approach by classifying the Filippov singularities of
codimension zero and one.

2.2.1 Indices of generic Σ-singularities

Recall that the generic singularities of a planar Filippov vector field
are the regular-fold, the hyperbolic pseudo-node, and the hyperbolic pseudo-
saddle [22]. In what follows, we define these singularities.

Definition 6. A point p P Σ is called a pseudo-equilibrium of Z if Zs(p) = 0. If we
have d(det(F+, F�)|Σ)(p) � 0, then p is called a hyperbolic pseudo-equilibrium of Z.
Let p P Σ be a hyperbolic pseudo-equilibrium of Z.

• The point p is called a pseudo-saddle if p P Σs and d(det(F+, F�)|Σ)(p) ¡ 0 or
p P Σe and d(det(F+, F�)|Σ)(p)   0.

• The point p is called a pseudo-node if p P Σs and d(det(F+, F�)|Σ)(p)   0 or if
p P Σe and d(det(F+, F�)|Σ)(p) ¡ 0.

Definition 7. A regular-fold point is a point p P Σ satisfying one of the following
properties:

• F+ f (p) = 0 and (F+)2 f (p) � 0 and F� f (p) � 0. In this case, we say that the
regular-fold point is visible if (F+)2 f (p) ¡ 0 and invisible if (F+)2 f (p)   0.
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• F� f (p) = 0 and (F�)2 f (p) � 0 and F+ f (p) � 0. In this case, it is visible
provided (F�)2 f (p)   0 and invisible provided (F�)2 f (p) ¡ 0.

Proposition 23 ([55, Proposition 8]). Let p be a hyperbolic pseudo-equilibrium of Z as
given in (1.3). There exists a neighbourhood V of p and ε0 ¡ 0 such that for 0   ε ¤ ε0,
Zε has a unique critical point pε in V. If p is a pseudo-saddle than pε is a saddle. If p is
a pseudo-node than pε is a node.

Proposition 24 ([55, Proposition 9]). Let Z be a Filippov vector field, as given in (1.3),
Zε its regularization, and p a regular-fold point of Z. Then, there exist a neighborhood
Vp of p and εp ¡ 0 such that 0 R Zε(Vp) for every ε P (0, εp).

Theorem 25. Let p be a generic Σ�singularity of a Filippov vector field Z. Then
Ip(Z) = 0 provided p is a regular-fold; Ip(Z) = 1 provided p is a hyperbolic pseudo-
node and Ip(Z) = �1 provided p is a hyperbolic pseudo-saddle.

Proof. Let p P Σ be a regular-fold. Then by Proposition 24, there is a neighbor-
hood V of p and ε0 ¡ 0 such that for 0   ε ¤ ε0, Zε has no critical points in V.
Take a neighborhood B � V of p, by Theorem 3, IBB(Z) = IBB(Zε) = 0 since Zε

has no singularities. Then IBB(Z) = Ip(Z) = 0, see Figure 5.

Now let p P Σ be a hyperbolic pseudo-equilibrium. By Proposition 23,
there exists a neighborhood V of p and ε0 ¡ 0 such that for 0   ε ¤ ε0, Zε has
a unique critical point pε near p which is a hyperbolic saddle if p is a pseudo-
saddle for Zs, or a hyperbolic node if p is a pseudo-node for Zs. By Theorem 3, if
p is a pseudo-node, then the index is 1 whereas if p is a pseudo-saddle the index
is �1, see Figure 4.

2.2.2 Indices of codimension-1 Σ-singularities

Recall that the codimension-1 Σ-singularities are the fold-fold, regular-cusp,
pseudo-equilibrium, saddle-node and the boundary equilibrium.
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(a) Index equal to �1 (b) Index equal to 1

Figure 4 – Indices of generic singularities, saddle and node.

(a) Indices equal to 0 (b) Index equal to 0

Figure 5 – Indices of generic fold singularities. The index does not depend on
the direction of the flow.

Proposition 26. Let p P Σ be a fold-fold of a Filippov vector field Z = (F+, F�) and
denote

k = sign(F�1 (0, 0))
1

|F+
1 (0, 0)|

B
Bx

F+
2 (0, 0)� sign(F+

1 (0, 0))
1

|F�1 (0, 0)|
B
Bx

F�2 (0, 0).

Then, the following statements hold:

• If F+
1 (0, 0)F�1 (0, 0) ¡ 0 or k = 0, then Ip(Z) = 0.

• If F+
1 (0, 0)F�1 (0, 0)   0 and k ¡ 0, then Ip(Z) = 1.

• If F+
1 (0, 0)F�1 (0, 0)   0 and k   0, then Ip(Z) = �1.
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Proof. The simplified form of the fold-fold, which is obtained after rescaling the
time variable (see [48]), is given by

Z(x, y) =

#
F+(x, y) = (δ+, a+x + x2 f+(x) + yg+(x, y)),
F�(x, y) = (δ�, a�x + x2 f�(x) + yg�(x, y)),

(2.1)

where
δ� = sign(F�1 (0, 0)) and a� =

1
|F�1 (0, 0)|

B
Bx

F�2 (0, 0).

Notice that p = (0, 0) is a fold-fold of (2.1). Let B = Br(p) such that BB does not
contain any singularities of Z. Table 1 represents the behavior of the fold-fold p
for different combinations of parameters.

δ+ 1 �1

a+
H

HHH
HHa�
δ� 1 �1 1 �1 a+a�

¡ 0 ¡ 0 ¡ 0

  0   0

  0 ¡ 0   0

  0 ¡ 0
δ+δ� 1 �1 �1 1

Table 1 – All possible behaviours near a fold-fold point of the vector field (2.1).

The approach to the demonstration is based on perturbing the vector
field (2.1) to unfold the singularity. Applying Proposition 11 the index within
a ball remains invariant under small perturbations. Our goal is to analyse the
index of the singularities that arise within the ball B after the perturbation. Just
to illustrate, Figure 6 shows the first row of Table 1 after the perturbation of the
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Figure 6 – First row of Table 1 after the perturbation of the vector field (2.1).

vector field. On the right, we have the representation of the perturbed field, and
by analyzing each of them, we can determine in which of these four situations
there is a singularity in the perturbed vector field. In Figure 6, for the second
and third fold-fold, there is a singularity and in the first and fourth, there is no
singularity in the perturbed field, so the index is zero.

Now, consider the following 1-parameter family of Filippov vector
fields

Z(x, y; λ) =

#
F+(x, y),
F�(x� λ, y).

(2.2)

for λ   r, small enough. Notice that for λ = 0 we have Z(x, y; 0) = Z(x, y).
Working out the crossing, sliding and escaping regions of the vector field (2.2),
with λ � 0, and performing the change of variables x = λu, we obtain

(F+h)(λu, 0) � (F�h)(λu, 0)
λ2 = a�a+(�1 + u)u + O(λ).

To distinguish between the escaping and sliding region we must take into account
that

F+h(λu, 0)
λu

= a+ + O(λ). (2.3)
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a+ a� u   0 0   u   1 1   u
+ + crossing escaping crossing
� � crossing sliding crossing
+ � sliding crossing escaping
� + escaping crossing sliding

Table 2 – Crossing, escaping and sliding regions of the vector field (2.2) for λ � 0.

The outcome of this analysis is summarized on Table 2.

We need to determine the existence of singularities of the sliding
vector field associated to (2.2). Let A(λ, u) be an auxiliary function given by
the numerator of the sliding vector field Zs of (2.2) considering the change of
coordinates x = λu.

A(λ, u) = sign(∆(λ, u))
(

a�(�1 + u)δ+ + (�1 + u)2δ+λ f�((�1 + u)λ)

�uδ� (a+ + uλ f+(uλ))
)

,
(2.4)

where ∆(λ, u) = (F+h)(λu, 0) � (F�h)(λu, 0). Notice that ∆(λ, u) ¡ 0 in the
sliding region, ∆(λ, u)   0 in the escaping region. We apply the implicit function
theorem to A(λ, u). Notice that

A(0, u) = 0 ô u� =
a�δ+

�a+δ� + a�δ+
=

1

1 + �a+δ�

a�δ+

, (2.5)

that is, A(0, u�) = 0. Moreover,

Du A(0, u�) = sign(∆(0, u�))(�a+δ� + a�δ+) = �sign(∆(0, u�))k, (2.6)

where k := a+δ� � a�δ+.

When the derivative of the sliding vector field at λ = 0 is non-zero,
by the Implicit Function Theorem, there exists neighbourhoods U of 0, V of u�

and a smooth function η : U Ñ V such that

η(0) = u� =
a�δ+

�a+δ� + a�δ+
, (2.7)

and A(λ, η(λ)) = 0 for every λ P U. In addition, Dλ A(λ, η(λ)) � 0. Since the
zeros of the sliding vector field Zs are the same as those of A, then we conclude



Chapter 2. Classification of singularities with low codimension by the index for Filippov vector fields 51

that we will have only one singularity η(λ) bifurcating from a fold-fold p, and
the index is

Ip(Z) = IBB(Z) = Iη(λ)(Z). (2.8)

Now we will determine what are the conditions for the existence of a pseudo-
singularity in the perturbed vector field and what type of singularity appears for
each condition. The existence of pseudo-singularities only makes sense in the
escape and sliding region, see Table 2. If there is a singularity, for a+a� ¡ 0, we
know that it will be between zero and one, and for a+a�   0, the singularity will
be less than zero, or greater than one. Therefore, suppose that a+a� ¡ 0:

0   a�δ+

�a+δ� + a�δ+
  1 ô �a+δ�

a�δ+
¡ 0 ô a+a�δ+δ�   0 (2.9)

inequality (2.9) only makes sense when δ+δ� = �1. Now, assume that a+a�   0.
We have to study the two possible cases:

u�   0 ô 1

1 + �a+δ�

a�δ+

  0 ô �a+δ�

a�δ+
  �1, (2.10)

u� ¡ 1 ô 1

1 + �a+δ�

a�δ+

¡ 1 ô �1   �a+δ�

a�δ+
  0. (2.11)

Note that inequalities (2.10) and (2.11) only make sense when δ+δ� = �1. Thus,
singularities only exist for δ+δ� = �1. Hence, for δ+δ� = 1 or k = 0 there is no
pseudo-equilibrium inside B. By Proposition 9, Ip(Z) = IBB(Z) = 0. We assume
now that δ+δ� = �1. For the sliding region

Du A(0, u�) = �k � 0,

and for the escape region

Du A(0, u�) = k � 0,

by Definition 6, we obtained that η(λ) given in (2.7) is a hyperbolic pseudo-
equilibrium. If k ¡ 0, η(λ) is a pseudo-node then by (2.8) and Proposition 25
Ip(Z) = 1. And η(λ) is a pseudo-saddle if k   0 then Ip(Z) = �1.
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From all possible cases, it follows that Ip(Z) = 0 if F+
1 (0, 0)F�1 (0, 0) ¡

0 or k = 0, Ip(Z) = 1 if F+
1 (0, 0)F�1 (0, 0)   0 and k ¡ 0 and Ip(Z) = �1 if

F+
1 (0, 0)F�1 (0, 0)   0 and k   0.

Topologically, we have the following possibilities represented in Fig-
ure 7.

(a) Index equal to �1 (b) Index equal to 0 (c) Index equal to 0 (d) Index equal to �1

(e) Index equal to 1 (f) Index equal to 0 (g) Index equal to 1

Figure 7 – Fold-fold

Proposition 27. If p P Σ is a regular-cusp or a pseudo-saddle-node of the Filippov
vector field Z = (F+, F�), then Ip(Z) = 0.

Proof. Let p a pseudo-saddle-node of the vector field Z. Unfolding the vector
field, it results in a saddle pseudo-equilibrium and a node pseudo-equilibrium,
that we will denote by p1 and p2, respectively. By Proposition 13, we have that
Ip(Z) = Ip1(Z) + Ip2(Z), and by Proposition 25, we have Ip1(Z) = �1 and
Ip2(Z) = 1 then Ip(Z) = 0.

Now let p a regular-cusp. We have two options to perturb the vector
field: one with two fold points and the other with no equilibrium point. In both
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Figure 8 – Pseudo-saddle-node.

cases we have Ip(Z) = 0, because the index of a regular-fold is zero and if there
is no equilibrium point, by Proposition 13, the index is zero.

The next result gives the indices of the boundary equilibrium points.
Bifurcations of the boundary equilibrium were studied in [20].

Proposition 28. Let p P Σ be a boundary equilibrium point of a Filippov vector field

Z(x, y) =

#
F+(x, y) = (ax + by, cx + dy) + O(|(x, y|)2,
F�(x, y) = (u1, u2) + O(|(x, y)|), (2.12)

satisfying F+(0, 0) = 0, F�(0, 0) = (u1, u2), u2 � 0. The index of p is given by

• Ip(Z) = 1 if det(J) ¡ 0 and �cu1 + au2   0;

• Ip(Z) = �1 if det(J)   0 and �cu1 + au2   0;

• Ip(Z) = 0 if det(J)(cu1 � au2)   0;

where, J is the Jacobian matrix of F+ of the vector field Z.

Proof. Consider the perturbed Fillipov vector field, where the perturbation is
just the translation of the vector field F+(x, y), that is

Z(x, y; λ) =

#
F+(x, y) = (ax + b(y + λ), cx + d(y + λ)) + O(|(x, y, λ)|)2,
F�(x, y) = (u1, u2) + O(|(x, y, λ)|),

(2.13)
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(a) Index equal to 0 (b) Index equal to 0 (c) Index equal to 0 (d) Index equal to 0

(e) Index equal to �1. (f) Index equal to �1.(g) Index equal to �1.(h) Index equal to �1.

Figure 9 – Boundary equilibria saddle and their respective indices.

for λ ¡ 0. Note that u2 � 0 and c � 0, otherwise the codimension of the
singularity would increase. For λ = 0 in (2.13) we have the unperturbed vector
field. Let p a boundary equilibrium of Z. The product of the Lie derivative over
the discontinuity manifold is given by

F� f (x, 0) � F+ f (x, 0) = u2(cx + dλ) + O(|(x, λ)|).

We have that the point p̄ = �d/c is a fold point. Since the zeros of the sliding
vector field vary with λ, we have a sliding or escaping region in the following
cases:

u2c ¡ 0 and x   �d
c

,

u2c   0 and x ¡ �d
c

.
(2.14)

The sliding vector field of Z is given by

Zs(x, 0) =
�au2x� bλu2 + cu1x + dλu1

cx + dλ� u2
.
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Note that Zs(x, 0) = 0 if and only if x = 0. And the derivative of Zs is

(Zs)1(x, 0) =
au2 � cu1

u2
,

where au2 � cu1 � 0 because the singularity has codimension 1. When the
derivative of the sliding vector field at λ = 0 is non zero, by the Implicit Function
Theorem, there exists η(λ) such that η(0) = 0,

η1(0) =
du1 � bu2

�cu1 + au2
. (2.15)

By (2.14) we have that η(λ) is a pseudo-singularity just in these two cases

u2c ¡ 0 and
du1 � bu2

�cu1 + au2
  �d

c
,

u2c   0 and
du1 � bu2

�cu1 + au2
¡ �d

c
.

(2.16)

Since for this following conditions

u2c ¡ 0 and
du1 � bu2

�cu1 + au2
¡ �d

c
,

u2c   0 and
du1 � bu2

�cu1 + au2
  �d

c
,

(2.17)

there are no sliding or escaping region, and thus η(λ) is not a pseudo-singularity.

Then by (2.17) if

(bc� ad)u2
2

cu1 � au2
¡ 0,

we do not have a pseudo-singularity, then by Proposition 25, the index is zero.
Now under the conditions of (2.16) we have that if

(bc� ad)u2
2

cu1 � au2
  0 and � cu1 + au2   0,

then η(λ) is a pseudo-node. Equivalently, if ad� bc ¡ 0 and �cu1 + au2   0 then
η(λ) is also a pseudo-node, then by Proposition 25 the index of the boundary
equilibrium p is equal to 1. On the other hand, if

(bc� ad)u2
2

cu1 � au2
  0 and � cu1 + au2 ¡ 0,
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then η(λ) is also a pseudo-saddle. Equivalently if ad� bc   0 and�cu1 + au2 ¡ 0
then η(λ) is also a pseudo-saddle then by Proposition 25 the index is equal to
�1. Table 3 relates the conditions of the boundary-equilibrium p with its indices
and its figures.

u2c
du1 � bu2

�cu1 + au2
u2

au2 � cu1

u2
EP Index Figure

¡ 0   �d
c

¡ 0   0 stable node 1 Fig. 10(e)
  0 ¡ 0 unstable node 1 Fig. 10(f)
¡ 0 ¡ 0 saddle �1 Fig. 9(e)
  0   0 saddle �1 Fig. 9(h)

  0 ¡ �d
c

¡ 0   0 stable node 1 Fig. 10(g)
  0 ¡ 0 unstable node 1 Fig. 10(h)
¡ 0 ¡ 0 saddle �1 Fig. 9(f)
  0   0 saddle �1 Fig. 9(g)

Table 3 – Conditions for each index of the boundaries equilibrium.

Notice that, for J the Jacobian matrix of F+ of the vector field Z,
det(J) = �bc+ ad. Then Ip(Z) = 1 if det(J) ¡ 0 and�cu1 + au2   0, Ip(Z) = �1
if det(J)   0 and �cu1 + au2   0. Finally Ip(Z) = 0 if det(J)(cu1 � au2)   0.
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Node or focus

(a) Index equal to 0

Node or focus

(b) Index equal to 0

Node or focus

(c) Index equal to 0

Node or focus

(d) Index equal to 0

Node or focus

(e) Index equal to 1

Node or focus

(f) Index equal to 1

Node or focus

(g) Index equal to 1

Node or focus

(h) Index equal to 1

Figure 10 – Boundary equilibria of the type node or focus and their respective
indices.

2.3 A vector field on S2 with only tangential singularities
In this application we will calculate the index of a Filippov vector

field defined in the sphere given in [4]. Here we will not put the calculations
already done in [4].

We will consider the following vector field defined in the sphere, for
which there are no equilibrium points, only Fillippov singularities see [4].

We will apply Theorem 14 to this example. Consider the planar vector
field

Z(x, y) =

#
F+(x, y) = (2, y(x3 � 3x)),
F�(x, y) = (�1, 0).

(2.18)

Project the trajectories of (2.18) in the sphere, by the stereographic
projection fixed at point (1, 0, 0) for the vector field F+(x, y) and in the point
(�1, 0, 0) for the vector field F�(x, y). We have the vector field defined in the
sphere (see [4]). After a coordinate change, we have
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Z1(u, v) =

#
F+(u, v) = (F+

1 (u, v), F+
2 (u, v)),

F�(u, v) = (F�1 (u, v), F�2 (u, v)),
(2.19)

where, F+
1 (u, v) = �1/c, for c P R,

F+
2 (u, v) =

u
c(v +

?
u2 + v2 + 1)

,

F�1 (u, v) = (
a

u2 + v2 + 1� v)
(

2� u4

(
?

u2 + v2 + 1� v)4
+

3u2

(
?

u2 + v2 + 1� v)2

)
,

F�2 (u, v) =
u(�1 + 2u4 + v2 + 4v4 + v

?
u2 + v2 + 1� 4v3

?
u2 + v2 + 1)

v�
?

u2 + v2 + 1

+
u2(2 + 8v2� 6v

?
u2 + v2 + 1)

v�
?

u2 + v2 + 1
.

As shown in the paper, the vector field only has Fillipov singularities,
so the sum of the indices outside the region of discontinuity is zero. In the
discontinuity manifold we have the symmetric vector field (2.19), as shown in
figure 11.

Figure 11 – Vector field (2.19).
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By Proposition 25 the indices of the regular folds, p and r, see Figure
11, are zero. The index of fold-fold point q, by Proposition 26, is 1. Since the vector
field is symmetric, on the other side of the sphere we have the same singularities.
So the sum of the Poincaré-Hopf indices of the discontinuous vector field is 2.
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3 Limit cycles of continuous piecewise
smooth differential systems

The content within this chapter corresponds to paper [5].

3.1 Introduction and statement of the main results
Around the 1920’s, the interest for studying piecewise differential

systems started mainly in the works of Andronov, Vitt and Khaikin, see the
book [51]. Nowadays this interest is increasing due to the fact that piecewise
differential systems model many processes appearing in mechanics, electronics,
economy, etc. For more details see the books of Simpson [52], di Bernardo et al.
[9] and, the survey of Makarenkov and Lamb [44], and the vast of references
which appear there in.

The easiest continuous piecewise differential systems are the ones
separated by a straight line in the plane R2 and formed by two linear differential
systems. Lum and Chua in 1990 conjectured in [42, 43] that such piecewise
differential systems have at most one limit cycle. We recall that a limit cycle is an
isolated periodic orbit in the set of all periodic orbits of a differential system. The
previous conjecture was proved in 1990 by Freire et al. [14]. Later on a distinct and
shorter proof was given in 2013 by Llibre, Ordóñez and E. Ponce [35], and more
recently in 2021 a new proof has been given by Carmona, Fernández-Sánchez
and Novaes [3].

In the paper [33] the authors studied the discontinuous piecewise
differential systems separated by a circle and formed by two linear differential
systems, and proved that those systems can have at most 3 limit cycles, and
that there are systems of this type having 3 limit cycles. But the same kind of
piecewise differential systems being continuous on the circle has no limit cycles.

In this chapter before studying the limit cycles of the discontinuous
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piecewise differential systems separated by a circle and formed by one linear
differential system and a quadratic differential system, we shall study the limit
cycles of the easier continuous piecewise differential systems separated by a
circle and formed by one linear differential system and a quadratic differential
system.

In [32] it was proved, (see Theorem 1.1) that a continuous piecewise
differential system separated by a parabola, and formed by a linear differential
center and a quadratic differential center, has at most one limit cycle, and that
there exist such kind of piecewise differential systems with one limit cycle.

In this chapter we study the continuous piecewise differential systems
separated by the circle S1 = t(x, y) P R2 : x2 + y2 = 1u and given by

Z =

#
Z1(x, y), if x2 + y2 ¤ 1,
Z2(x, y), if x2 + y2 ¥ 1,

(3.1)

where Z1, Z2 are centers, one is linear and the other is quadratic. To ensure
that we have a linear and a quadratic center we shall use the following two
propositions.

Proposition 29 ([39, Lemma 1]). A linear differential system having a center can be
written as

ẋ = �Bx� 4B2 + ω2

4A
y + D, ẏ = Ax + By + C, (3.2)

with A ¡ 0 and ω ¡ 0.

Proposition 30 is taken from book [10], but can also be found in the
original works of Kapteyn and Bautin [2, 28, 29].

Proposition 30 ([10, Theorem 8.15]). A quadratic differential system that has a center
at the origin can be written in the form

ẋ = �y� bx2 � cxy� dy2, ẏ = x + ax2 + exy� ay2. (3.3)

This system has a center at the origin if and only if at least one of the four following
conditions hold:
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(i) e� 2b = c + 2a = 0,

(ii) b + d = 0,

(iii) c + 2a = e + 3b + 5d = a2 + bd + 2d2 = 0,

(iv) c = a = 0.

The main result of this chapter is the following theorem.

Theorem 31. Consider the differential system (3.1) formed by a linear differential center
(3.2) and a quadratic differential center (3.3) after the change of variables x = kX + α

and y = MY + β, with k, M � 0. Then the following statements hold.

(a) There are no continuous piecewise differential systems (3.1) with quadratic differ-
ential center of type (i), (ii), (iii), with d � 0. When d = 0 system (iii) becomes
system (iv).

(b) The continuous piecewise differential system (3.1) with a quadratic differential
center of type (iv) has at most three limit cycles.

Theorem 31 is proved in Section 3.3.

The reason for considering in the statement of Theorem 31 quadratic
differential centers with the mentioned change of variables, is that we increase
the classes of quadratic differential centers described in Proposition 30 with four
additional parameters. Unfortunately at this moment we cannot increases that
class of quadratic differential centers by doing a general affine transformation
which will increase in six the number of parameters, but the computations
necessary for studying this class cannot be done for now.

In summary, for the class of continuous piecewise differentials sys-
tems studied here in, we provide the upper bound of three for their maximum
number of limit cycles. So we arrive at have solved the extension of the 16th
Hilbert problem for this class of piecewise differential systems. For the moment is
unknown if this upper bound is reached. The only known examples of piecewise
differential systems have one limit cycle.
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In order to simplify the terminology, in what follows instead of linear
differential center and quadratic differential center we shall write linear center
and quadratic center, respectively.

3.2 Preliminaries
Let I � R be an open interval and let f0, f1, ..., fn : I Ñ R. We say that

f0, f1, ..., fn are linearly independent functions if and only if when
ņ

i=0

λi fi(x) = 0, @ x P I ùñ λ0 = ... = λn = 0. (3.4)

The following result, which can be found in [37], will be used in the proof of
statement (b) of Theorem 31.

Proposition 32. Let f0, f1, ..., fn : I Ñ R be analytic functions. If f0, f1, ..., fn are
linearly independent then there exist s1, ..., sn P I and λ0, ..., λn P R such that for every

j P t1, ..., nu we have
ņ

i=0

λi fi(sj) = 0.

Let I be an open interval and f0, ..., fn functions defined on I. We say
that ( f0, ..., fn) forms an Extended Chebyshev system (ET-system) on I, if and
only if, any non-trivial linear combination of these functions has at most n zeros
counting their multiplicities and this number is reached. The functions ( f0, ..., fn)

are an Extended Complete Chebyshev system (ECT-system) on I if and only if
for any j P t0, 1, ..., nu, ( f0, ..., f j) form an ET-system.

The next result can be found in [30].

Proposition 33. Let f0, ..., fn be analytic functions defined on an open interval I � R.
Then ( f0, ..., fn) is an ECT-system on I if and only if for each j P t0, 1, ..., nu and all
y P I the Wronskian

W( f0, ..., f j)(y) =


f0(y) f1(y) � � � f j(y)
f 10(y) f 11(y) � � � f 1j (y)

...
... . . . ...

f (j)
0 (y) f (j)

1 (y) � � � f (j)
j (y)

 (3.5)
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is different from zero.

3.3 Proof of Theorem 31
Proof of statement (a) of Theorem 31. Under the assumptions of statement (a) of
Theorem 31 there are no continuous piecewise differential systems (3.1) such
that one of the differential systems (3.3) satisfying (i), (ii) and (iii) with d � 0 has
a quadratic center. We will prove statement (a) for the quadratic centers (i),(ii)
and (iii) for d � 0, separately.

Indeed, in case (i) we have that e� 2b = c + 2a = 0, then system (3.3)
after the change of variables x = kX + α, y = MY + β, can be written as

ẋ = �(β + My)(�2a(α + kx) + d(β + My) + 1) + b(α + kx)2

k
,

ẏ = x
(

k(2aα + 2bβ + 1)
M

+ 2bky
)
+

aα2 � aβ2 + α + 2αbβ

M

+2y(αb� aβ) +
ak2x2

M
� aMy2.

(3.6)

In order for this piecewise differential system to be continuous on the
circle x2 + y2 = 1, the differential systems (3.2) and (3.6) must coincide on this
circle. This implies that

a = 0, A =
k
M

, b = 0, B = 0, C =
α

M
, d = 0, D =

�β

k
, ω = 2.

Under these conditions system (3.6) becomes

ẋ = �β

k
� My

k
, ẏ =

kx
M

+
α

M
. (3.7)

Since (3.7) is not a quadratic system we do not have a continuous piecewise
differential system with a quadratic center of type (i).
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In case (ii) we have b = �d, then system (3.3) after the change of
variables x = kX + α, y = MY + β, can be written as

ẋ = �b(α + kx)2 + (β + My)(c(α + kx) + βd + dMy + 1)
k

,

ẏ =
kx(2aα + e(β + My) + 1)� a(�α + β + My)(α + β + My)

M

+
ak2x2 + α + αe(β + My)

M
.

(3.8)

In order that this piecewise differential system be continuous on the circle x2 +

y2 = 1, the differential systems (3.2) and (3.8) must coincide on this circle. This
implies that

a = 0, A =
k
M

, b = 0, B = 0, c = 0, C =
α

M
, D = 0, e = 0, ω =

2
?

k?
M

.

Under these conditions the systems (3.6) and (3.8) are the same and are given in
(3.7). We do not have a continuous piecewise differential system with a quadratic
center of type (ii).

In case (iii) we have that c + 2a = e + 3b + 5d = a2 + bd + 2d2 = 0, so
system (3.3) after applying the change of variables x = kX + α, y = MY + β, is

ẋ =
�d
(

β + d
(�2α2 + β2 � 2k2x2 � 4αkx + M2y2 + 2βMy

)
+ My

)
dk

+
2ad(α + kx)(β + My) + a2(α + kx)2

dk
,

ẏ =
d
(
ak2x2 + k(2aαx + x)� a(�α + β + My)(α + β + My) + α

)
dM

+
3a2(α + kx)(β + My) + d2(α + kx)(β + My)

dM
.

(3.9)

However in order that this system be continuous on the circle x2 + y2 = 1, the
solutions obtained, that are not complex, are such that either d = 0 or k = M = 0.
As this contradicts the hypotheses, we have that there is no continuos piecewise
differential system in this case.
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Proof of statement (b) of Theorem 31. Now we will work with the quadratic center
of type (iv), that is, c = a = 0. Under this condition system (3.3) is

ẋ = �dy2 � bx2 � y, ẏ = exy + x. (3.10)

Doing a rescaling of the time we can, without loss of generality, work with two
subcases b = 0 and b = 1. In the first case, that is, b = 0, there is no continuous
piecewise differential system on the circle x2 + y2 = 1. Indeed, with the change
of variables x = kX + α, y = MY + β, we can writte system (3.10) as

ẋ = �β(βd + 1)
k

� dM2y2

k
� My(2βd + 1)

k
,

ẏ = x
(

k(βe + 1)
M

+ eky
)
+

α(βe + 1)
M

+ αey.

(3.11)

In order for this piecewise differential system to be continuous on the
circle x2 + y2 = 1, the differential system (3.11) and (3.2) must coincide on the
circle. This implies that

A =
k
M

, B = 0, C =
α

M
, d = 0, D =

�β

k
, e = 0, ω = 2. (3.12)

But this solution is such that system (3.11) becomes non quadratic, because by
rewriting (3.11) under these conditions, we get the system

ẋ = �β

k
� My

k
, ẏ =

kx
M

+
α

M
. (3.13)

It remains to study the case b = 1. Then with the change of variables
x = kX + α, y = MY + β and b = 1, we can write system (3.10) as

ẋ = �α2 + β + β2d
k

� dM2y2

k
� My(2βd + 1)

k
� kx2 � 2αx,

ẏ = x
(

k(βe + 1)
M

+ eky
)
+

α(βe + 1)
M

+ αey.

(3.14)

In order for this piecewise differential system to be continuous on the
circle x2 + y2 = 1, the differential system (3.14) and (3.2) must coincide on this
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circle. This implies that

A =
k
M

, B = C = 0, D =
�β2k2 � k2M2 � βM2

kM2 ,

d =
k2

M2 , e = α = 0, ω =
2
a

2βk2 + M2

M
.

(3.15)

Under these conditions system (3.2) becomes

ẋ =
�β2k2 � k2M2 � βM2

kM2 � y
(
2βk2 + M2)

kM
,

ẏ =
kx
M

.

(3.16)

with the first integral

H1(x, y) = 4k2x2M + 4y2M
(

2βk2 + M2
)
� 8y

(
�β2k2 � k2M2 � βM2

)
, (3.17)

and system (3.14) becomes

ẋ = �k
(

β2 + M2 (x2 + y2)+ 2βMy
)

M2 � β + My
k

,

ẏ =
kx
M

.

(3.18)

System (3.18) has the first integral H2(x, y) given by

H2(x, y) =
exp(2My)

(
2β2k2 � 2βk2 + 4βk2My� 2k2My + k2 + 2M3y+

)
2k2M2

+
exp(2My)M2(2k2x2 + 2k2y2 + 2β� 1)

2k2M2 .
(3.19)

Assume that the continuous piecewise differential system has a limit
cycle which intersects the circle x2 + y2 = 1 in the two points (x1, y1) and (x2, y2).
In order to determine how many limit cycles exist for this continuous piecewise
differential system formed by systems (3.16) and (3.18) we will analyse how
many solutions the system below admits:

e1(x, y) := H1(x1, y1)� H1(x2, y2) = 0,
e2(x, y) := H2(x1, y1)� H2(x2, y2) = 0.

(3.20)
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Consider the change of variables given by

xi = sinti yi = cos ti. (3.21)

With the change variable (3.21), system (3.20) becomes

e1(t1, t2) =
4(sint1 � sint2)

(
2
(
k2 (β2 + M2)+ βM2))
M3

+
4(sint1 � sint2)2M

(
(2β� 1)k2 + M2) (sint1 + sint2)

M3 ,

e2(t1, t2) =
k2 (2(β� 1)β + 2M2 + 1

)
(exp(2Msint1)� exp(2Msint2))

2k2M2

+
(2β� 1)M2 (exp(2Msint1)� exp(2Msint2))

2k2M2

+
2M(2β� 1)k2 (sint1 exp(2Msint1)� sint2 exp(2Msint2))

2k2M2

+
2M3 (sint1 exp(2Msint1)� sint2 exp(2Msint2))

2k2M2 .
(3.22)

Notice that e1 = 0 when sint1 = sint2, or

2
(

k2
(

β2 + M2
)
+ βM2

)
+ M

(
(2β� 1)k2 + M2

)
(sint1 + sint2) = 0. (3.23)

If sint1 = sint2 then e2 is identically zero. Therefore, if there are periodic orbits,
we will have a continuum of periodic orbits for system (3.22), that is, no limit
cycles.

Now we consider the second case, when (3.23) holds. We obtain two
solutions for the variable t1 given by

t1
1 = π � sin�1

(
k2(Msint2 � 2β2 � 2M2 � 2βMsint2)� M3sint2 � 2βM2

M (2βk2 � k2 + M2)

)
,

t2
1 = sin�1

(
k2(Msint2 � 2β2 � 2M2 � 2βMsint2) + M3(�sint2)� 2βM2

M (2βk2 � k2 + M2)

)
.

(3.24)
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Substituting t1
1 in e2, we obtain the equation

e2(t1
1, t2) =

3̧

i=0

ai fi(t2) = 0, (3.25)

where the coefficients are given by

a0 =
2M

(
(2β� 1)k2 + M2) (�2

(
k2 (β2 + M2)+ βM2))

(2β� 1)k2M + M3 ,

a1 =
2M

(
(2β� 1)k2 + M2) (�M

(
(2β� 1)k2 + M2))

(2β� 1)k2M + M3 ,

a2 = k2
(

2(β� 1)β + 2M2 + 1
)
+ (2β� 1)M2,

a3 = 2M
(
(2β� 1)k2 + M2

)
,

(3.26)

and the functions are

f0(t2) = exp

(
�4
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2 � 2Msint2

)
,

f1(t2) = sint2 exp

(
�4
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2 � 2Msint2

)
,

f2(t2) = exp

(
�4
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2 � 2Msint2

)
� exp(2Msint2),

f3(t2) = sint2 (� exp(2Msint2)) .
(3.27)

We compute the following Wronskians

W( f0)(t2) = exp

(
�4
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2 � 2Msint2

)
, (3.28)

W( f0, f1)(t2) = cos t2 exp

(
�8
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2 � 4Msint2

)
,

(3.29)
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W( f0, f1, f2)(t2) = �16M2 cos3 t2 exp

(
�8
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2 � 2Msint2

)
,

(3.30)

W( f0, f1, f2, f3)(t2) = 256M4 cos6 t2 exp

(
�8
(
k2 (β2 + M2)+ βM2)
(2β� 1)k2 + M2

)
.

(3.31)

In the interval (�π/2, π/2) the Wronskians (3.28), (3.29), (3.30) and
(3.31) are non zero. Then ( f0, f1, f2, f3) is an Extended Chebyshev system that
have at most three solutions. This means that we can has at most three limit
cycles.

Since the rank of the 4� 3 matrix

Ba0

Bk
Ba0

BM
Ba0

Bβ
Ba1

Bk
Ba1

BM
Ba1

Bβ
Ba2

Bk
Ba2

BM
Ba2

Bβ
Ba3

Bk
Ba3

BM
Ba3

Bβ


(3.32)

cannot be four, the four coefficients are not independent, and consequently we
cannot guarantee that the system has three solutions, we only can say that it has
at most three solutions.

3.4 Examples
We will present two examples, both with only one limit cycle. The

first one is defined by a quadratic center inside the circle x2 + y2 = 1 and a
linear center outside the circle. In the second example, we obtain the limit cycle
regardless of which system is defined inside (or outside) the circle x2 + y2 = 1.

As we saw in the proof of Theorem 31, the existence of limit cycles is
possible for quadratic centers of type ((iv)). So in the examples we will be under
the condition c = a = 0.
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Example 1. Consider the continuous piecewise differential system separated by
the unit circle centered at the origin of coordinates

Z =

$''''&''''%
Z1(x, y) =

(
�2x2

3
� 2y2

3
� 77y

60
� 61

150
,

4x
3

)
, if x2 + y2 ¤ 1,

Z2(x, y) =
(
�77y

60
� 161

150
,

4x
3

)
, if x2 + y2 ¥ 1.

(3.33)

Note that Z1(x, y) is the quadratic center (3.18), and Z2(x, y) is the linear center
(3.16), both with β = 1/5, k = 2/3, and M = 1/2. The first integrals of Z1 and
Z2 are respectively

H1(x, y) =
64x2

9
+

308y2

45
+

2576y
225

,

H2(x, y) =
9
2

exp(y)
(

2x2

9
+

2y2

9
� y

60
+

137
900

)
.

(3.34)

This continuous piecewise differential system (3.33) has exactly one limit cycle,
because the unique real solution (x1, y1, x2, y2) of the system

H1(x1, y1)� H1(x2, y2) = 0,
H2(x1, y1)� H2(x2, y2) = 0,
x2

1 + y2
1 = 1,

x2
2 + y2

2 = 1,

(3.35)

is

(x1, y1, x2, y2) = (0.886447.., 0.462831..,�0.886447.., 0.462831..). (3.36)

See this limit cycle in Figure 12.

Example 2. Consider the linear center

ẋ = �49y
30

� 97
150

, ẏ =
2x
3

, (3.37)

with first integral

H1(x, y) =
16x2

9
+

196y2

45
+

776y
225

. (3.38)
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p2 p1

0

Figure 12 – System (3.33) with its limit cycle, which looks like the big circle in
the figure, passing through the points p1 = (x1, y1) and p2 = (x2, y2)
given by the solution (3.36). The small circle of the figure is the circle
x2 + y2 = 1.

Consider the quadratic center

ẋ = �x2

3
� y2

3
� 49y

30
� 47

150
, ẏ =

2x
3

, (3.39)

with first integral

H2(x, y) =
81
8

exp(y)
(

8x2

81
+

8y2

81
+

116y
405

� 392
2025

)
. (3.40)

This continuous piecewise differential system (3.33) has exactly one limit cycle,
because the unique real solution (x1, y1, x2, y2) of the system

H1(x1, y1)� H1(x2, y2) = 0,
H2(x1, y1)� H2(x2, y2) = 0,
x2

1 + y2
1 = 1,

x2
2 + y2

2 = 1,

(3.41)

is
(x1, y1, x2, y2) = (1, 0,�1, 0). (3.42)
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Note that we have two possible configurations, one for the linear center inside
the circle x2 + y2 = 1 and the quadratic center outside this circle, and vice versa.
In both cases we have one unique limit cycle passing through the solution (3.42).
See these two possibilities in Figure 13 and Figure 14.

0

Figure 13 – The limit cycle of the continuous piecewise differential system
formed by the linear center (3.37) outside the circle x2 + y2 = 1,
and the quadratic center (3.39) inside the circle.
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0

Figure 14 – The limit cycle of the continuous piecewise differential system
formed by the linear center (3.37) inside the circle x2 + y2 = 1, and
the quadratic center (3.39) outside the circle.
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4 Limit cycles of discontinuous piecewise
differential Hamiltonian systems sepa-
rated by a straight line

The content within this chapter corresponds to paper [6].

4.1 Introduction and statement of the main results
Discontinuous dynamical systems are prevalent in real-world appli-

cations, ranging from electrical circuits and mechanical systems to biological
processes. These systems often exhibit abrupt changes or discontinuities due to
switching phenomena, impacts, or sudden state transitions, see for more details
the books of Simpson [52], di Bernardo et al. [9] and, the survey of Makarenkov
and Lamb [44]. The Filippov convention provides a powerful framework for
modeling and analyzing such systems, enabling a more accurate representation
of their dynamics.

The investigation of the existence or absence of limit cycles in the
analysis of differential systems holds significant importance in unraveling their
dynamic behavior. Consequently, numerous researchers have delved into the
exploration of limit cycles in discontinuous piecewise linear differential systems,
particularly those characterized by a separation through a straight line. This
exploration has been extensively examined by various authors, exemplified in
the works of, for instance, [1, 8, 12, 15, 16, 19, 21, 24, 25, 26, 31, 34, 36, 38, 40, 41].

In this chapter we study the limit cycles for the class of discontinuous
piecewise differential systems separated by a straight line and formed by two
Hamiltonian systems of degree either one, or two, or three. Without loss of
generality we can consider that the straight line of discontinuity is x = 0, and
that the vector field associated to these discontinuous piecewise differential
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systems is

Z(x, y) =

#
Z1(x, y), if x ¤ 0,
Z2(x, y), if x ¥ 0,

(4.1)

where Zi is the vector field of the Hamiltonian system

ẋ =
B
By

Hi(x, y), ẏ = � B
Bx

Hi(x, y),

with Hamiltonian Hi(x, y) for i P t1, 2u.
The behaviour of the piecewise differential system on the line of

discontinuity x = 0 is defined following Filippov’s rules, see [13].

The main result of this chapter is the following one.

Theorem 34. Consider the discontinuous piecewise differential system (4.1) formed by
two arbitrary Hamiltonians H1(x, y) and H2(x, y) of degree

(a) 2, then system (4.1) has no limit cycles.

(b) 3, then system (4.1) has at most one limit cycle.

(c) 4, then system (4.1) has at most three limit cycles.

Moreover, there are differential systems (4.1) formed by two convenient Hamiltonians
H1(x, y) and H2(x, y) of the corresponding degree realizing the upper bounds on the
number of limit cycles of statements (b) and (c).

Theorem 34 is proved in section 4.2.

4.2 Proof of Theorem 34
Proof of statement (a) of Theorem 34. Consider two arbitrary Hamiltonians of de-
gree two as follows

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2,
H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2.
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These Hamiltonians generate the next Hamiltonian systems of degree one

ẋ = a2 + a4x + 2a5y, ẏ = �a1 � 2a3x� a4y, (4.2)

ẋ = b2 + b4x + 2b5y, ẏ = �b1 � 2b3x� b4y. (4.3)

Of course H1(x, y) and H2(x, y) are first integrals of systems (4.2) and (4.3),
respectively. Now we look for the limit cycles that intersect the straight line
x = 0 at the points (0, y1) and (0, y2) with y1 � y2. To do this we analyse how
many solutions the following polynomial system has:

e1(y1, y2) := H1(0, y1)� H1(0, y2) = 0,
e2(y1, y2) := H2(0, y1)� H2(0, y2) = 0.

(4.4)

To solve system (4.4) is equivalent to find the solutions of the system

E1(y1, y2) :=
e1(y1, y2)

(y1 � y2)
= 0 ñ a2 + a5y1 + a5y2 = 0,

E2(y1, y2) :=
e2(y1, y2)

(y1 � y2)
= 0 ñ b2 + b5y1 + b5y2 = 0.

(4.5)

Since the straight lines E1(y1, y2) = 0 and E2(y1, y2) = 0 are parallel, it follows
that system (4.5) has either no solutions with respect to the variables y1 and y2, or
infinitely many solutions. In both cases the discontinuous piecewise differential
system cannot have limit cycles.

For the proof of statement (b) of Theorem 34 we shall use the next
well-known result. For a proof see for instance [17].

Theorem 35 (Bézout Theorem). Let f and g be two polynomials in R[x, y] of degrees
n and m respectively. Then if the set V( f , g) := t(x, y) P R2 : f (x, y) = g(x, y) = 0u
has finitely many solutions, then it has at most nm points.

Proof of statement (b) of Theorem 34. Consider the following two arbitrary Hamil-
tonians of degree three

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y + a8xy2 + a9y3,
H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2 + b6x3 + b7x2y + b8xy2 + b9y3.
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These Hamiltonians generate the Hamiltonian systems

ẋ = a2 + a4x + 2a5y + a7x2 + 2a8xy + 3a9y2,
ẏ = �a1 � 2a3x� a4y� 3a6x2 � 2a7xy� a8y2,

(4.6)

ẋ = b2 + b4x + 2b5y + b7x2 + 2b8xy + 3b9y2,
ẏ = �b1 � 2b3x� b4y� 3b6x2 � 2b7xy� b8y2,

(4.7)

Again H1(x, y) and H2(x, y) are first integrals of systems (4.6) and
(4.7), respectively. Now we look for the limit cycles that intersect the straight
line x = 0 at the points (0, y1) and (0, y2), with y1 � y2. So we must analyse how
many solutions the system has

e1(y1, y2) := H1(0, y1)� H1(0, y2) = 0,
e2(y1, y2) := H2(0, y1)� H2(0, y2) = 0.

(4.8)

Solving system (4.8) is equivalent to finding the solutions of the system

E1(y1, y2) := a2 + a5(y1 + y2) + a9(y2
1 + y1y2 + y2

2) = 0,
E2(y1, y2) := b2 + b5(y1 + y2) + b9(y2

1 + y1y2 + y2
2) = 0,

where Ei(y1, y2) = ei(y1, y2)/(y1 � y2). Notice that

E12(y1, y2) = b9E1(y1, y2)� a9E2(y1, y2)

= b9a2 � a9b2 + (b9a5 � a9b5)(y1 + y2).

By Bézout’s Theorem the upper bound for the maximum number of solutions of
system E1(y1, y2) = 0 and E12(y1, y2) = 0 is 2, whenever this system has finitely
many solutions. Note that by the symmetry of these polynomial equations, if
(y1, y2) is a solution then (y2, y1) is also a solution, but these two solutions
determine the same periodic orbit. Hence this family of discontinuous piecewise
differential systems has at most one limit cycle. This upper bound is reached as
can be seen in Example 1 of section 4.3.

Proof of statement (c) of Theorem 34. Consider two arbitrary Hamiltonians of de-
gree four,

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2 + a6x3 + a7x2y + a8xy2

+a9y3 + a10x4 + a11x3y + a12x2y2 + a13xy3 + a14y4,
H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2 + b6x3 + b7x2y + b8xy2

+b9y3a10x4 + b11x3y + b12x2y2 + b13xy3 + b14y4.
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These Hamiltonians generate the following two Hamiltonian systems

ẋ = a2 + a4x + 2a5y + a7x2 + 2a8xy + 3a9y2 + a11x3 + 2a12x2y
+3a13xy2 + 4a14y3,

ẏ = 4a10x3 � a1 � 2a3x� a4y� 3a6x2 � 2a7xy� a8y2 + 3a11x2y
+2a12xy2 + a13y3,

(4.9)

and

ẋ = b2 + b4x + 2b5y + b7x2 + 2b8xy + 3b9y2 + b11x3 + 2b12x2y
+3b13xy2 + 4b14y3,

ẏ = 4b10x3 � b1 � 2b3x� b4y� 3b6x2 � 2b7xy� b8y2 + 3b11x2y
+2b12xy2 + b13y3,

(4.10)

respectively. The Hamiltonians H1(x, y) and H2(x, y) are first integrals of systems
(4.9) and (4.10), respectively. Now we look for the limit cycles that intersect the
straight line x = 0 at the points (0, y1) and (0, y2), with y1 � y2. To do that we
analyse how many solutions the system

e1(y1, y2) := H1(0, y1)� H1(0, y2) = 0,
e2(y1, y2) := H2(0, y1)� H2(0, y2) = 0,

(4.11)

can have. Define

E1(y1, y2) := e1(y1, y2)/(y1 � y2) and E2(y1, y2) := e2(y1, y2)/(y1 � y2).

Since we are interested in the solutions with y1 � y2, system (4.11) is equivalent
to system E1(y1, y2) = E2(y1, y2) = 0, i.e.

a2 + a5(y1 + y2) + a9(y2
1 + y1y2 + y2

2) + a14(y3
1 + y2

1y2 + y1y2
2 + y3

2) = 0,
b2 + b5(y1 + y2) + b9(y2

1 + y1y2 + y2
2) + b14(y3

1 + y2
1y2 + y1y2

2 + y3
2) = 0.

Notice that

E12(y1, y2) = b14E1(y1, y2)� a14E2(y1, y2)

= (b14a5 � a14b5)(y1 + y2) + (b14a9 � a14b9)(y2
1 + y1y2 + y2

2)

+b14a2 � a14b2,

is a polynomial of degree two. By the Bézout Theorem the upper bound for the
maximum number of solutions of system E1(y1, y2) = 0 and E12(y1, y2) = 0
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is 6, whenever this system has finitely many solutions. Again note that by the
symmetry of these polynomial equations, if (y1, y2) is a solution then (y2, y1) is
also a solution, but these two solutions determine the same periodic orbit. This
implies that the discontinuous piecewise differential system has at most three
limit cycles. This upper bound is reached, see Example 2 of section 4.3.

4.3 Examples
In this section we provide in example 1 a discontinuous piecewise

differential system separated by the straight line x = 0 and formed by two
Hamiltonians systems of degree 2 having one limit cycle. And in example 2 a
discontinuous piecewise differential system separated by the straight line x = 0
and formed by two Hamiltonians systems of degree 3 having three limit cycles.
Hence these two examples complete the proof of Theorem 34.

Example 1. Consider the following two Hamiltonians of degree three,

H1(x, y) = x3 � y3 � y2 + y,

H2(x, y) = �x3 � xy� 8y3 � y2 +
7y
2

.
(4.12)

These Hamiltonians generate the Hamiltonian systems

ẋ = 1� 2y� 3y2, ẏ = �3x2, (4.13)

ẋ = �x� 24y2 � 2y +
7
2

, ẏ = 3x2 + y, (4.14)

respectively. Of course H1(x, y) and H2(x, y) are first integrals of systems (4.13)
and (4.14), respectively. For this discontinuous piecewise differential system the
system (4.11) determines the system

E1(y1, y2) = 1� y1 � y2
1 � y2 � y1y2 � y2

2 = 0,

E2(y1, y2) =
1
2

(
7� 2y1 � 16y2

1 � 2y2 � 16y1y2 � 16y2
2

)
= 0.

(4.15)

System (4.15) has the unique real solution

(ȳ1, ȳ2) =

(
1

28

(
9�

?
37
)

,
1

28

(?
37 + 9

))
. (4.16)
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Then the two points of intersection with x = 0 of the limit cycle are (0, ȳ1) and
(0, ȳ2). See this limit cycle in Figure 15.

Z1(x, y) Z2(x, y)

0 x

y

Figure 15 – The limit cycle of the discontinuous piecewise differential system
generated by Hamiltonians (4.12) passing through the points (0, ȳ1),
and (0, ȳ2), where ȳ1, ȳ2 are given in (4.16). H1(x, y) defines system
in x ¤ 0, and H2(x, y) defines system in x ¥ 0.

Example 2. Consider the following two Hamiltonians of degree four

H1(x, y) = 2x3y + 2x2 � 4xy
3

+ y4 � 4y3 +
51y2

10
� 19y

10
,

H2(x, y) = 3x4 + 2x3 + xy2 � 2xy + y4 � 31y3

12
+

5y2

4
� y

6
.

(4.17)

These Hamiltonians generate the Hamiltonian systems

ẋ = 2x3 � 4x
3

+ 4y3 � 12y2 +
51y

5
� 19

10
, ẏ = �6x2y + 4x +

4y
3

, (4.18)

ẋ = 2xy� 2x + 4y3 � 31y2

4
+

5y
2
� 1

6
, ẏ = �12x3 � 6x2 � y2 + 2y, (4.19)

and H1(x, y) and H2(x, y) are first integrals for systems (4.18) and (4.19), respec-
tively. For this discontinuous piecewise differential system, system (4.11) has
only the following three real solutions

(ȳ1
1, ȳ1

2) = (�0.206887, 2.01873),
(ȳ2

1, ȳ2
2) = (0.141455, 0.393626),

(ȳ3
1, ȳ3

2) = (1.41754, 1.67084).

(4.20)

Then the two points of intersection with x = 0 of each limit cycle are (0, ȳi
1) and

(0, ȳi
2) for i P t1, 2, 3u, see these three limit cycles in Figure 16.
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Z1(x, y) Z2(x, y)

0 x

y

Figure 16 – The three limit cycles of the discontinuous piecewise differential
system generated by Hamiltonians (4.17) passing through the points
(0, ȳi

i), i P t1, 2, 3u where ȳi
i are given in (4.20).
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5 Limit cycles of discontinuous piecewise
differential Hamiltonian systems sepa-
rated by a circle, or a parabola, or a
hyperbola

5.1 Introduction and statement of the main results
The importance of Hamiltonian systems in dynamical systems lies in

their ability to provide a comprehensive and insightful framework for studying
the evolution of physical systems. From the conservation of energy to their
applications in physics, engineering, and beyond, Hamiltonian systems continue
to be a cornerstone in the exploration of dynamic behaviours in diverse scientific
domains.

We are interested in studying the limit cycles of discontinuous piece-
wise smooth differential systems. A limit cycle of a system is a periodic orbit of
that system for which there is no other periodic orbit in some sufficiently small
neighbourhood containing it. In this work, we study the limit cycles for a class
of discontinuous piecewise differential linear Hamiltonian systems separated by
conics.

The discontinuous piecewise differential systems studied here in are
particular Filippov systems, so the properties that we know for differential
systems cannot be directly used. Therefore, to shed light on the study of these
systems we introduce some important notions used in this work.

We make use of the Filippov’s convention for discontinuous piecewise
smooth vector fields defined on a open set U � R2. We also assume that the
discontinuities appear on a differentiable submanifold Σ which can be given as
Σ = f�1(0)XU, being zero a regular value of the Ck function f : U Ñ R with
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k ¡ 0. Then the curve Σ splits the open set U in two open sets

Σ+ := t(x, y) P U : f (x, y) ¥ 0u and Σ� := t(x, y) P U : f (x, y) ¤ 0u,
In this chapter the piecewise smooth differential system is given by the vector
fields

Z(x, y) =

#
Z1(x, y), if f (x, y) ¤ 0,
Z2(x, y), if f (x, y) ¥ 0.

(5.1)

There exist two types of limit cycles for piecewise smooth differential
equations. Those of the first type are called sliding limit cycles and are such that
some part of the cycle is contained in the sliding region. On the other hand, those
of the second type are called crossing limit cycles and correspond to the ones
that touch the discontinuity line only on points of the crossing region.

In this chapter we provide an upper bound for the maximum number
of crossing limit cycles, simple limit cycles in what follows, for the discontinuous
system (5.1), where Zi for i P t1, 2u are given by,

ẋ =
B
By

Hi(x, y),

ẏ = � B
Bx

Hi(x, y).

and H1, H2 are Hamiltonians of degree two,

H1(x, y) = a0 + a1x + a2y + a3x2 + a4xy + a5y2,

H2(x, y) = b0 + b1x + b2y + b3x2 + b4xy + b5y2.
(5.2)

So the Hamiltonians vector fields Z1 and Z2 of the discontinuous piecewise
differential systems (5.1) that we shall work with in this chapter are

Z1(x, y) = (a2 + a4x + 2a5y,�a1 � 2a3x� a4y),
Z2(x, y) = (b2 + b4x + 2b5y,�b1 � 2b3x� b4y).

(5.3)

We consider three distinct discontinuous lines f (x, y) = 0, the circle, the parabola
and the hyperbola, which uo to an affine change of variables can be written
without loss of generality as

f (x, y) = x2 + y2 � 1,
f (x, y) = x2 � y,
f (x, y) = 1� xy,
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respectively. See Figure 17.

Z1

Z2

(a) x2 + y2 = 1

Z1

Z2

(b) y = x2

Z1

Z2

Z2

(c) xy = 1

Figure 17 – Lines of discontinuities

Theorem 36. The maximum number of limit cycles of the piecewise differential systems
(5.1) with Z1 and Z2 given by (5.3), intersecting the line of discontinuity f (x, y) = 0
in two points is

(i) 3, for f (x, y) = x2 + y2 � 1,

(ii) 3, for f (x, y) = x2 � y,

(iii) 2, for f (x, y) = 1� xy.

These upper bounds are reached.

Theorem 36 is proved in Section 5.2.

5.2 Proof of Theorem 36
Proof of statement (i) of Theorem 36. Notice that H1(x, y) and H2(x, y) given in
(5.2) are first integrals of the vectors fields Z1(x, y) and Z2(x, y) given in (5.3),
respectively. If the discontinuous piecewise differential system (5.1) has a limit
cycle which intersects the unit circle at the two points

p1 =

(
2t1

t2
1 + 1

,
1� t2

1
t2
1 + 1

)
, p2 =

(
2t2

t2
2 + 1

,
1� t2

2
t2
2 + 1

)
,
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with t1 � t2 then t1 and t2 must satisfy the equations

e1 = H1(p1)� H1(p2) =
2(t1 � t2)(

t2
1 + 1

)2 (t2
2 + 1

)2 E1 = 0,

e2 = H2(p1)� H2(p2) =
2(t1 � t2)(

t2
1 + 1

)2 (t2
2 + 1

)2 E2 = 0,
(5.4)

where

E1 = a1t3
1t3

2 + a1t3
1t2 � a1t2

1t2
2 � a1t2

1 + a1t1t3
2 + a1t1t2 � a1t2

2 � a1 + a2t3
1t2

2 + a2t3
1

+a2t2
1t3

2 + a2t2
1t2 + a2t1t2

2 + a2t1 + a2t3
2 + a2t2 + 2a3t3

1t2
2 + 2a3t2

1t3
2 � 2a3t1

�2a3t2 � a4t3
1t3

2 + a4t3
1t2 + 3a4t2

1t2
2 + a4t2

1 + a4t1t3
2 + 3a4t1t2 + a4t2

2 � a4

�2a5t3
1t2

2 � 2a5t2
1t3

2 + 2a5t1 + 2a5t2

and E2 has the same expression of E1 replacing (a1, a2, a3, a4, a5) by (b1, b2, b3, b4, b5).

Note that if (s1, s2) is also a solution of (5.4), then (s2, s1) is a solution,
and we call this property the symmetric property. Of course both solutions give
rise to the same possible limit cycle.

On the other hand, we know that if (s1, s2) is a solution of E1 = E2 = 0
then s1 must be a root of the resultant polynomial R(t1) of E1 and E2 with respect
to the variable t2. Similarly s2 must be a root of the resultant polynomial R(t2)

of E1 and E2 with respect to the variable t1. These resultants R(t1) and R(t2) are
equal to each other by replacing t1 by t2. We have that for

R(t1) = �4
(

t2
1 + 1

)6
R̃(t1),

the real solutions of R(t1) are the real zeros of R̃(t1), and the degree of the
polynomial R̃(t1) is six. By the symmetric property, the discontinuous piecewise
differential system (5.1) can have at most three limit limit cycles.

The expression of R̃(t1) is huge, so we chose not to write it here, but
it can be computed easily using same algebraic manipulators.

Proof of statement (ii) of Theorem 36. Notice that H1(x, y) and H2(x, y) given in
(5.2) are first integrals of the vector fields Z1(x, y) and Z2(x, y) given by (5.3),
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respectively. If the discontinuous piecewise differential systems (5.1) has a limit
cycle which intersects the parabola at the two points

p1 =
(

t1, t2
1

)
, p2 =

(
t2, t2

2

)
,

with t1 � t2, then these two points must satisfy the equations

e1 = H1(p1)� H1(p2) = (t1 � t2)E1 = 0,
e2 = H2(p1)� H2(p2) = (t1 � t2)E2 = 0,

(5.5)

where E1 = a1 + t2(a2 + a3 + t1(a4 + a5t1)) + t1(a2 + a3 + t1(a4 + a5t1)) + t2
2(a4 +

a5t1) + a5t3
2 and E2 has the same expression of E1 replacing (a1, a2, a3, a4, a5) by

(b1, b2, b3, b4, b5). Note that if (s1, s2) is a solution of system (5.5) then (s2, s1) is
a solution as well, by the symmetric property. Then both give rise to the same
possible limit cycle.

On the other hand, we know that if (s1, s2) is a solution of E1 = E2 = 0
then s1 must be a root of the resultant polynomial R(t1) of E1 and E2 with respect
to the variable t2. Similarly s2 must be a root of the resultant polynomial R(t2)

of E1 and E2 with respect to the variable t1. These resultants R(t1) and R(t2) are
equal to each other by replacing t1 by t2.

By the symmetric property the discontinuous piecewise differential
systems (5.1) can have at most three limit limit cycles.

Once again, expression of R̃(t1) is huge, so we do not write it here,
but it can be computed easily using algebraic manipulators.

Proof of statement (iii) of Theorem 36. Suppose that there exists three limit cycles
for the discontinuity piecewise differential system generated by the Hamiltonians
(5.2). At least two of these limit cycles intersect the same branch of the hyperbola.
Assume without loss of generality that these two limit cycles intersect the branch
of the hyperbola contained in the first quadrant of the plane R2. Consider that
the points of intersection of these limit cycles with the hyperbola are given by
the points

p1 =

(
t1,

1
t1

)
, p2 =

(
t2,

1
t2

)
, p3 =

(
t3,

1
t3

)
and p4 =

(
t4,

1
t4

)
.
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Without loss of generality, assume that 0   t1   t2   t3   t4. So one of the limit
cycles passes through p1, p4, and the other limit cycle passes through points p2

and p3. These points must satisfy the equations

H1(p1)� H1(p4) = 0 ô a5(t1 + t4)� t1t4(t1t4(a1 + a3(t1 + t4))� a2) = 0,

H2(p1)� H2(p4) = 0 ô t2
1t2

4b1 � t1t4b2 + t3
1t2

4b3 + t2
1t3

4b3 � t1b5 � t4b5 = 0,

H1(p2)� H1(p3) = 0 ô a5(t2 + t3)� t2t3(t2t3(a1 + a3(t2 + t3))� a2) = 0,

H2(p2)� H2(p3) = 0 ô t2
2t2

3b1 � t2t3b2 + t3
2t2

3b3 + t2
2t3

3b3 � t2b5 � t3b5 = 0,
(5.6)

Solving system (5.6) in terms of the coefficients of the polynomials H1(x, y) and
H2(x, y) we obtain

a3 =
t1t2t3(a2 � a1t2t3)� (a1t2

2t2
3 � a2t2t3 + a2t1(t2 + t3))t4 + a1t2

1(t2 + t3)t2
4

(t2 + t3)(t1 + t4)(t2
2t2

3 � t2
1t2

4)
,

a5 =
t1t2t3t4(a1t1t2t3(t2 � t1 + t3 � t4)t4 + a2(�t2

2t3 � t2t2
3 + t1t4(t1 + t4)))

(t2 + t3)(t1 + t4)(t2
2t2

3 � t2
1t2

4)
,

b1 =
b5(t1t2(t3 � t4)� t1t3t4 + t2t3t4) + b3t1t2t3t4(t2

2t3 + t2t2
3 � t1t4(t1 + t4))

t1t2t3t4(�t2t3 + t1t4)
,

b2 =
b3t2

1t2
2t2

3(t2 � t1 + t3 � t4)t2
4 + b5(t1t2

2t2
3 + t2

2t2
3t4 � t2

1(t2 + t3)t2
4)

t1t2t3t4(�t2t3 + t1t4)
.

Replacing a3, a5, b1, b2 in H1(x, y) we obtain the following expression for H1(x, y)

(t1t2t3(a2 � a1t2t3)� (a1t2
2t2

3 � a2t2t3 + a2t1(t2 + t3))t4 + a1t2
1(t2 + t3)t2

4)x2

(t2 + t3)(t1 + t4)(t2t3 � t1t4)(t2t3 + t1t4)

+
t1t2t3t4(a1t1t2t3(t2 � t1 + t3 � t4)t4 � a2t2t3(t2 + t3) + a2t1t4(t1 + t4))y2

(t2 + t3)(t1 + t4)(t2t3 � t1t4)(t2t3 + t1t4)

+a1x + a2y + a4xy,
(5.7)

and for H2(x, y)

(b5(t1t2(t3 � t4)� t1t3t4 + t2t3t4) + b3t1t2t3t4(t2
2t3 + t2t2

3 � t1t4(t1 + t4)))x
t1t2t3t4(�t2t3 + t1t4)

+
(b3t2

1t2
2t2

3(�t1 + t2 + t3 � t4)t2
4 + b5(t1t2

2t2
3 + t2

2t2
3t4 � t2

1(t2 + t3)t2
4))y

t1t2t3t4(�t2t3 + t1t4)

+b4xy + b5y2 + b3x2.
(5.8)
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The possible limit cycles intersects the hyperbola xy = 1 at the points (x, 1/x)
and (X, 1/X), their coordinates x, X must satisfy the system

e1(x, X) := H1(x, 1/x)� H1(X, 1/X) = 0,
e2(x, X) := H2(x, 1/x)� H2(X, 1/X) = 0,

where H1 and H2 are given by (5.7) and (5.8). This system has three solutions of
the form (x, X)

(t1, t4), (t2, t3), (α, β).

Therefore if the three solutions gave rise to a limit cycle, these limit cycles must
pass through the points

p1 =

(
t1,

1
t1

)
and p4 =

(
t4,

1
t4

)
,

p2 =

(
t2,

1
t2

)
and p3 =

(
t3,

1
t3

)
,

α =

(
α,

1
α

)
and β =

(
β,

1
β

)
.

Here

α =
A�?B

C
, β =

A +
?

B
C

,

where

A = (t2 + t3 � t1 � t4)(t2t3 + t1t4)(t2t3(t1 + t4)� t1t4(t2 + t3)),
B = (t1 + t4 � t2 � t3)(t2t3(t1 + t4)� t1t4(t2 + t3))

(
4t1t2t3t4(t2t3 � t1t4)

2

+(t1 + t4 � t2 � t3)(t2t3 + t1t4)
2(t2t3(t1 + t4)� t1t4(t2 + t3))

)
,

C = 2(t2t3 � t1t4)(t2t3(t1 + t4)� t1t4(t2 + t3)).

As we are assuming that 0   t1   t2   t3   t4, then the possible distribution for
the coordinates t1, t2, t3, t4, α and β are

0   α   t1   t2   t3   t4   β,
0   β   t1   t2   t3   t4   α,
0   t1   α   t2   t3   β   t4,
0   t1   β   t2   t3   α   t4,
0   t1   t2   α   β   t3   t4,
0   t1   t2   β   α   t3   t4,
α   β   0   t1   t2   t3   t4,
β   α   0   t1   t2   t3   t4.

(5.9)
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In the first six cases of (5.9) we have that

α + β =
(t1 + t4 � t2 � t3)(t2t3 + t1t4)

t1t4 � t2t3
¡ 0,

αβ =
t1t2t3t4(t2 + t3 � t1 � t4)

t2t3(t1 + t4)� t1t4(t2 + t3)
¡ 0.

Therefore B ¡ 0 and C   0. Since β ¡ 0 and C   0 it follows that A +
?

B   0, or
equivalently 0  

?
B   �A. Hence B   A2 and B� A2   0. But from αβ ¡ 0 we

obtain the contradiction

B�A2 = 4t1t2t3t4(t2 + t3� t1� t4)
2(t1 + t4� t2� t3)(t2t3(t1 + t4)� t1t4(t2 + t3)) ¡ 0.

In summary, the first six cases of (5.9) cannot occur. Assume that the two last
cases of (5.9) hold. Then we have that

α + β =
(t1 + t4 � t2 � t3)(t2t3 + t1t4)

t1t4 � t2t3
  0,

αβ =
t1t2t3t4(t2 + t3 � t1 � t4)

t2t3(t1 + t4)� t1t4(t2 + t3)
¡ 0.

Therefore

t1 + t4 � t2 � t3

t1t4 � t2t3
  0 and

t2 + t3 � t1 � t4

t2t3(t1 + t4)� t1t4(t2 + t3)
¡ 0. (5.10)

Assume that t1 + t4 � t2 � t3   0, then from the second inequality of (5.10) we
get that t2t3(t1 + t4) � t1t4(t2 + t3) ¡ 0. But from the first inequality of (5.10)
we obtain that t1t4 ¡ t2t3 and since t2 + t3 ¡ t1 + t4, we get that t1t4(t2 + t3) ¡
t2t3(t1 + t4) in contradiction with t2t3(t1 + t4)� t1t4(t2 + t3) ¡ 0. Therefore the
last two cases of (5.9) cannot occur. In summary, the maximum number of limit
cycles for the discontinuous piecewise differential system (5.1) with the line of
discontinuity xy = 1 is two.

5.3 Examples
To prove that the upper bound is reached we show some examples

for Theorem 36.
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Example 1. Consider the following two Hamiltonians of degree two, separated
by the line of discontinuity x2 + y2 = 1

H1(x, y) = x2 � 137xy
30

� 211x
100

� 11y2

10
+

421y
100

,

H2(x, y) = x2 � 275xy
303

� 55x
101

+ y2 +
55y
101

.

(5.11)

These Hamiltonians generate the Hamiltonian vector fields

Z1(x, y) =
(
�137x

30
� 11y

5
+

421
100

,�2x +
137y

30
+

211
100

)
, (5.12)

Z2(x, y) =
(
�275x

303
+ 2y +

55
101

,�2x +
275y
303

+
55

101

)
, (5.13)

respectively. Of course H1(x, y) and H2(x, y) are first integrals of the vector fields
(5.12) and (5.13), respectively. Notice that the limit cycles intersecting the circle
at the points (x, y) and (X, Y) must satisfy the system

H1(x, y) = H1(X, Y),
H2(x, y) = H2(X, Y),
x2 + y2 = 1,
X2 + Y2 = 1.

(5.14)

System (5.14) has the three pairs of solutions formed by the points

p1 =

(
�4

5
,�3

5

)
, P1 =

(
3
5

,�4
5

)
,

p2 =

(
4
5

,
3
5

)
, P2 = (1, 0) ,

p3 = (�1, 0), P3 = (0, 1).

(5.15)

Then the two points of intersection for each limit cycle are pi and Pi for i P t1, 2, 3u
as we can see in Figure 18.

Example 2. This example provided three limits cycles for the discontinuous
piecewise differential system

Z(x, y) =

#
Z1(x, y), if y ¤ x2,
Z2(x, y), if y ¥ x2,

(5.16)
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Z1(x, y)

Z2(x, y)

0 x

y

Figure 18 – The three limit cycles of the discontinuous piecewise differential
system generated by Hamiltonians (5.11) passing through the points
pi and Pi, i P t1, 2, 3u given in (5.15).

where

Z1(x, y) =
(
� 577x

15637
+

103y
15637

� 1,�30931x
15637

+
577y
15637

� 1
)

, (5.17)

Z2(x, y) =
(

103y
15637

� 577x
15637

,
343x
15637

+
577y
15637

� 1
)

. (5.18)

The Hamiltonians vector fields Z1 and Z2 have, respectively, the Hamiltonians

H1(x, y) =
30931x2

31274
� 577xy

15637
+ x +

103y2

31274
� y,

H2(x, y) = �343x2

31274
� 577xy

15637
+ x +

103y2

31274
.

(5.19)

Of course H1(x, y) and H2(x, y) are first integrals of systems (5.17) and (5.18),
respectively. Notice that the limit cycles passing through the points (x, y) and
(X, Y) of the parabola must satisfy the system

H1(x, y) = H1(X, Y),
H2(x, y) = H2(X, Y),
x2 = y,
X2 = Y.

(5.20)
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System (5.20) has the three pair of solutions formed by the points

p1 = (2, 4) , P1 =

(
1

206

(
227�

?
1628665

)
,

840097� 227
?

1628665
21218

)
,

p2 = (3, 9) , P2 =

(
1

103

(
165�

?
493609

)
,

2
(
260417� 165

?
493609

)
10609

)
,

p3 = (�1, 1), P3 = (�4, 16).
(5.21)

Then the two points of intersection for each limit cycle are pi and Pi for i P t1, 2, 3u
as we can see in Figure 12.

Z1(x, y)

Z2(x, y)

0 x

y

Figure 19 – The three limit cycles of the discontinuous piecewise differential
system generated by Hamiltonians (5.19) passing through the points
pi and Pi, i P t1, 2, 3u given in (5.21).

Example 3. Consider the following two Hamiltonians by degree two,

H1(x, y) =

(
x� 5

4

)2

+

(
y� 4

5

)2

,

H2(x, y) = �
(
�x2 + 1.25507x� 0.335138y2 � 1.40792y

)
.

(5.22)

These Hamiltonians generate the Hamiltonian systems

Z1(x, y) =
(

2
(

y� 4
5

)
,�2

(
x� 5

4

))
, (5.23)

Z2(x, y) = (0.670277y + 1.40792, 1.25507 � 2x) , (5.24)



Chapter 5. Limit cycles of discontinuous piecewise differential Hamiltonian systems separated by a circle,
or a parabola, or a hyperbola 94

respectively. Of course H1(x, y) and H2(x, y) are first integrals of the vector fields
(5.23) and (5.24), respectively. Notice that the limit cycles passing through the
points (x, y) and (X, Y) of the hyperbola must satisfy the system

H1(x, y) = H1(X, Y),
H2(x, y) = H2(X, Y),
xy = 1,
XY = 1.

(5.25)

System (5.25) has the two pairs of solutions formed of the points

p1 = (0.9923, 1.007) , P1 = (1.546, 0.6467) ,
p2 = (1.053, 0.9517) , P2 = (1.47, 0.6803) .

(5.26)

Then the two points of intersection for each limit cycle are pi and Pi for i P t1, 2u
as we can see in Figure 20.

Z1(x, y)

Z2(x, y)

0 x

y

Figure 20 – The two limit cycles of the discontinuous piecewise differential sys-
tem generated by Hamiltonians (5.22) passing through the points pi
and Pi, i P t1, 2u given in (5.26).
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6 Final remarks

This thesis addressed two fundamental themes, each contributing
significantly to the understanding and analysis of dynamic systems. Firstly, we
dedicated ourselves to the study of singularity indices in vector fields, introduc-
ing an innovative index that generalizes the Poincaré index of singularities in
continuous vector fields extending its applicability to Filippov vector fields. It
is important to note that the properties of the Poincaré index remain valid for
this generalization, preserving the values of -1 for saddles, 1 for nodes and foci,
and 0 for regular points. This result extends analogously to pseudo-singularities,
demonstrating that the characteristics of singularities in continuous fields are
shared by pseudo-singularities in Filippov systems specifically, the pseudo-
saddle exhibits an index of -1, while the pseudo-node has an index of 1, and
regular points in Filippov systems maintain an index of 0.

Besides the contributions presented in this thesis, an interesting av-
enue for future work would be a deeper investigation into the index of periodic
orbits in Filippov vector fields. The aim would be to demonstrate that the index
is equals to 1, as in the smooth case. To do so, the idea is to consider the index,
similar to Definition 3, as follows:

Iγ(Z) :=
1

2π

(
J(Z) +

»
γ+

ωW +

»
γ�

ωW

)
,

where γ is the parametrization of the periodic solution and γ� represents the
intersection with the F� field. It would follow that the sum of the indices of
Filippov singularities inside γ will also be one.

Additionally, we devoted significant attention to investigating the
existence of limit cycles in specific vector fields and determining the maximum
number of possible limit cycles in these contexts. Our analysis encompassed a
variety of vector fields, starting with a case where the vector field is defined by
parts but remains continuous. In this configuration, the transition region of the
vector field is delineated by a circle, within which we have a distinct vector field
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compared to the field outside the circle. We explored scenarios where one of the
fields has a linear center, and the other has a quadratic center. In this context,
we were unable to demonstrate the attainment of the upper bound of three limit
cycles, leaving it open to finding an example for this case. Another challenge
arose when attempting to consider a general affine transformation in the vector
field with a quadratic center. Due to the substantial increase in parameters,
specifically six, we encountered limitations in the calculations required for this
specific case.

Subsequently, we turned our attention to Filippov vector fields, where
the region of discontinuity took various forms, such as a circle, line, parabola,
and hyperbola. Considering Hamiltonian vector fields, we determined the maxi-
mum number of limit cycles in each scenario, presenting concrete examples that
achieve these maximum bounds.

In summary, this thesis represents a substantial contribution to un-
derstanding singularity indices in vector fields and exploring the presence of
limit cycles in specific configurations. The results obtained, both in the general-
ization of Poincaré-Hopf indices and the analysis of limit cycles, provide a solid
foundation for future research in this domain, offering valuable insights for the
understanding and enhancement of fundamental properties of these dynamic
systems. I extend my gratitude to all those involved in this academic process,
and I hope this work contributes to the continuous advancement of the theory of
dynamic systems.
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