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Resumo

O foco dessa dissertacao é o estudo de bifurcagoes de ciclos limites em perturbagoes
descontinuas de centros lineares. A obtencao e demonstracao desses resultados baseia-
se nos métodos desenvolvidos pela Teoria da Média — ou Teoria Averaging — mais
especificamente no método de averaging peridédico de primeira ordem, razao pela qual
foi necessario dedicar parte de nossos estudos ao entendimento dessa teoria. No entanto,
para que isso pudesse ser atingido, foi necessario antes criar um embasamento de teoria
de sistemas dinamicos suaves e nao-suaves, que sera apresentado brevemente nos dois
primeiros capitulos, como requisito para compreensao do que sera desenvolvido nos dos

dois ultimos capitulos.

Palavras-chave: sistemas dinamicos. sistemas de Filippov. sistemas de Liénard. ciclos

limites. teoria da média. averaging periédico.



Abstract

The focus of this dissertation is the study of bifurcations of limit cycles on discontinuous
perturbations of linear centers. To get to these results and prove them, we based ourselves
on the methods developed in the Averaging Theory — more specifically on the first order
periodic averaging — which is why it was necessary to dedicate a part of our study on
understanding this theory. However, for this to be achieved, it was first necessary to build
a foundation on the theory of smooth and non-smooth dynamical systems, which will be
briefly presented in the first two chapters as a requirement for understanding what will be

developed in the last two chapters.

Keywords: dynamical systems. Filippov systems. Liénard systems. limit cycles. averaging

theory. periodic averaging.
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Introduction

In 1900, the German mathematician David Hilbert proposed a list of math-
ematical problems for which there was no solution at the time, they became known as
the Hilbert’s Problems. The 16th problem, which is actually two similar problems from
different branches, is one of those that still remain unsolved; what we are interested is on
the second part of it: given a certain n € IN, find an upper bound for the number of limit

cycles in the system of differential equations

where F' and G are polynomials of degree n on x and y. This problem still drive the
attention of many mathematicians to the task of determining the number of limit cycles in
dynamical systems. Besides that, there are many applications of studying the properties
of limit cycles to real life problems, such as in branches of engineering, physics, biology,
and many others — see, for instance, references (MAKARENKOV; LAMB, 2012) and
(BERNARDO et al., 2008). More recently, the existence and properties of limit cycles in
non-smooth dynamical systems, in particular in piecewise smooth cases, have also been

extensively studied.

In our study, we mostly restrain Hilbert’s 16th problem to a family of differential
equations known as the generalized polynomial Liénard differential equations, which are

presented in the form
I+ f(z)t+g(r) =0 (1)

where f(x) and g(x) are polynomials of degrees m and n and the dot denotes the derivative
with respect to the time t. As we will point out further in this work, specially in Chapter
4, the work of many contemporaneous mathematicians gave rise to various results on the

number of limit cycles for different derivations from system (1).

This dissertation is organized as it follows. The first two chapters are dedicated
to introducing the foundations of smooth and non-smooth dynamical systems. In them,
we focused on outlining definitions and theorems that play an important role on the
understanding of the topics that will further be discussed. The general purpose of these
chapters is not to provide complete proofs of the theorems, but presenting insights from
the proofs, as well as examples that we believe would benefit the understanding of the
ideas behind the mathematical objects with which we are dealing and the path we are

tracing towards the main goal of our work. However, within the text we point out some

references — such as (PERKO, 2012), (HIRSCH; SMALE, 1974), (GUARDIA; SEARA;
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TEIXEIRA, 2011) and (FILIPPOV, 1988) — where the rigorous reader can find a more

satisfying proof for some theorems.

The third chapter is a more technical one, it is all dedicated to build a complete
proof for two theorems: the First Order Periodic Averaging for Smooth Systems and the
First Order Periodic Averaging for Non-smooth Systems. The proofs of these theorems are
therein discussed with detail, relying on renowned works such as (SANDERS; VERHULST;
MURDOCK, 2007) and (VERHULST, 1990) — for the first theorem — and (LLIBRE;
NOVAES; TEIXEIRA, 2015) — for the latter.

The fourth chapter is why we are here for and what gives the title to this
dissertation. In this, we presented some of the most recent results obtained by applying
the Averaging Method to the context of finding lower bounds to the maximum number
of limit cycles in various types of systems — in particular, in Liénard-like perturbations.
Specifically in the last section, we summarize our study of piecewise smooth Liénard-like
systems and generalize the following result of (MARTINS; MEREU, 2014): consider the

system

T =y,
y=—x—e(f(x) y+sgn(y)(kiz + ks)),

where f is a polynomial of degree n € IN and kq, ko € R; then, for every n > 1 and |¢|
sufficiently small, the maximum number of limit cycles bifurcating from the periodic
orbits of the linear center & =y, y = —x is [n/2] + 1. Moreover, the parameters of the

polynomials can be chosen such that this number is actually achieved.
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1 Smooth Dynamical Systems

In this chapter, we briefly present some fundamentals of smooth dynamical
systems, which will give us a basis to our further study of discontinuous dynamical systems.
We start with some thoughts on linear systems, then we head to nonlinear systems, stability
and bifurcations. Some results will be stated without further proof, for a more detailed
approach we recommend checking out the references (PERKO, 2012) and (HIRSCH;
SMALE, 1974).

1.1 Linear Systems

Consider the linear system of ordinary differential equations:

T = Ax (1.1)

. dx
where z € R", t = — and A is an n x n matrix.

dt
The Fundamental Theorem for Linear Systems (PERKO, 2012) states that

systems such as (1.1), together with an initial condition x(0) = z, have a unique solution
given by

z(t) = ey,

where e! denotes the matrix exponential, which is defined by applying the Taylor expansion

series of e” to A, i.e.:

A2t2 0 Aktk
+o=> = At
2! k!

k=0

I, + At +

It is shown that this series converges to an n x n matrix, so ! is well defined.

The solutions of (1.1) for different initial points describe the trajectories of
the points as the time varies; the set of all these solutions form the phase portrait of the

system, which is an important geometrical tool in our study.

If B is a matrix similar to A — i.e. B = P~'AP for some matrix P — then we
can obtain solutions of the system (1.1) by applying the change of variables z = Py to a
solution y(t) of the system

y = By. (1.2)

It follows that the phase portrait of (1.1) can be obtained from the phase portrait of
(1.2) under a linear transformation, in other words, they’re said to be linearly equivalent.
Furthermore, it’s reasonable to infer that the Jordan canonical form of a matrix can give

us some insight into the form of the solutions of such systems.
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Example 1. Let A € My(R), we wish to analyze the possible forms of the phase portrait
of system (1.1). In order to do that, we consider the nature of the matrix’s eigenvalues,

denoted by p and A, and how this reflects on the Jordan canonical form of A.

o Case 1: u,\ € R. In this case, the Jordan form of A exists and can either be

A0 Al
J = or J = ; we then split this case into the following:
0 u 0 A

— Case 1.1: A < 0 < p. The phase portrait of the system x = Jz, with J =
A0

(0 ) , is a saddle at the origin, so the original phase portrait will be a saddle
1

as well.

——~—

0.0F

Figure 1 — Saddle at the origin

— Case 1.2: A < u < 0. The phase portrait of the system (1.2) will be a stable
node as in Figure 2. If the eigenvalues are rather positive, the arrows will be

reversed, giving rise to a unstable node.

1.0

NN\ 777
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A xx\\&%} N

-1.0F

Figure 2 — Stable node at the origin

— Case 1.3: A = p < 0. This gives us two cases based on the possible dimensions
of the eigenspace. If the eigenspace is 2-dimensional - i.e. there are two linearly
independents eigenvectors - then the phase portrait of the system will appear as
in Figure 3. Conversely, if the eigenspace has dimension one, the phase portrait

is a stable degenerated node, as given by Figure 4. In both cases, like the above,
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changing the signal of the eigenvalue reverse the arrows, resulting on a unstable

(proper or degenerated) node.

N\ T
N\\\rss SR \

) 3\\\5\\\\\\\\317;4%4/////,%; | ’ i:\%\:f*%\\\)ﬁ\,
= = == e
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7 /AN AN

IE 7/ PEN S

Figure 3 — Proper stable node Figure 4 — Degenerated stable node

o Case 2: u, A ¢ R. In this case, ;4 and A are complex conjugates. We write A = a + @b

—b
and u = a — b, b # 0, then A is similar to a matrix of the form B = (Z ) ; this
a

gives us two possibilities:

— Case 2.1: a # 0. The origin in the equivalent system is said to be a focus, which
can be stable or unstable according to the sign of a. If a < 0, the orbits will
spiral into the origin, which is called a stable focus and is represented on Figure
6. Otherwise, if a > 0, the trajectories will spiral away from the origin, hence

we have an unstable focus (Figure 5).

: «:;s\‘x\\\k“ ‘ W =
S M W 2=
’-::::3\\;\\\ W/ ‘Hiitf %///5/2:« rrrrrr

05 5://::\\\\\\\ i ;/f/ i T i ((//ﬁf{*i

o /“/’t—':\ 7 _;‘?;\\\

o0 ;//////T/?f\i////}/ %‘j 1 oo \\S\\\\\\\I\\L\{ \\:‘@‘Q J
.
RN ===, . \13?57/// JIRN, |
/] ”W\\\‘\\X\\\\\t:fl === i\

% e /] I

ERARMANNNS==== E====2"J/(/!I}

Figure 5 — Unstable Focus Figure 6 — Stable Focus

— Case 2.2: a = 0. Last of all, whenever the eigenvalues of A are purely imaginary,
the phase portrait of the system will be linearly equivalent to a center at the
origin (Figure 7). In this case, the trajectories will be closed orbit around the

origin.

Since the real numbers don’t form an algebraically closed field, the eigenvalues

of a real matrix A need not to be real numbers, as one can observe on the previous
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o

P

PPN
@
=/

Figure 7 — Center at the origin

example. Let \; = a; +ib; be an eigenvalue of a matrix A, we will denote by w; = u; + iv;,
uj,v; € R", a corresponding generalized eigenvector of A on R" over the complex field.

Note that if A; is real, then w; = u;.

Theorem 1. Let \; = a; € R, 1 < j <k, be the real eigenvalues of A€ M, (R), counting
multiplicity, and \; = a; +1ib; for j = k+1,...,n the complex eigenvalues of A. Then there

n
exists Wi, ..., Wrym, with w; = u; +1iv;, uj,v; € R" and m = 5 such that
B = {ula ooy Uk Uk+1, Vk+1, “'7uk+mﬂvk+m}

s a basis for R".

Proof: Set E¢ := E ®gr C as the complexification of the real vector space £ = R"; if
T € L(F), then Te € L(E¢) is the complexification of T. Let A be the matrix of both
T and Tg, and n = dim(E) = dim(FE¢); since C is algebraically closed, there exists a
basis of F¢ formed by generalized eigenvectors in which T¢ assumes the Jordan Form. Let

B = {ws,...,w,} be such basis.

If wy, ..., w, are generalized eigenvectors associated to real eigenvalues, then
we can choose w; such that it coincides with the real generalized eigenvector, we write
w; = u; € R". It follows that E¢ can be written as E; @ E,, where £y = span{uy, ..., ux}

and Fy = span{wyy1, ..., Wy}

Note that, if X is an eigenvalue and v is a corresponding eigenvector, then the
complex conjugate \ is an eigenvalue along with the eigenvector ¥. In fact, since the matrix

A only has real entries:

Te(v) = Av = Av = Av = T¢(v)

but Te(v) = A = Te(v) = A = \v, therefore Te(v) = AU, as we intended to show.

Analogously, suppose vy is a generalized eigenvector of A such that (A—\)vy = v
and note that

(A—/\)UQZA’UQ—)\UQ ZAUQ—TUQZAFQ—XQTQZ (A—X)ZTQ
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so (A — \)vy = T, hence vy € ker(A— )\)2, i.e. U5 is a generalized eigenvector corresponding
to A and ©.

One can easily see, by induction on (A — A", that W is a generalized eigenvector
whenever w is a generalized eigenvector. Furthermore, we also conclude that, whenever
there’s a Jordan block Jy of size p, there’s also a J5 of size p, as well that there are the

same number of Jordan blocks corresponding to A and .

With that in mind, we can rearrange the basis of Fy as the following:

Wi, Wi, vory Witm, Wi4m

where k + 2m = n.

Since w; = u; + v;, W; = uj — tv;; hence u; and v; span {w;,w;}. Moreover, if
J # 1, then {u;,v;,w, v} are linearly independent. Indeed, suppose there are a,b,c,d € C
such that au; + bv; + cu; + dv; = 0 then

Wi+ W w;— W w AW W — W
J L ip—2 J —id =0

+c
2 2 2 2
a—1b a+1b\ ___ c—1d c+id\

Unless a = b = ¢ = d = 0, the above equation yields a contradiction with

a

the fact that § is a basis. Therefore, one can replace {w;, w;, w;, w;} with {u;, v, w;, v}
More generally, we have that {ugy1, Vi1, -, Ugtm, Ukem} 1S & basis for Fy, thus B =
{Un, ooy Uy Uk 15 Vg 1y +vy Uy Ve § 18 & basis of E¢. As E¢ has the same dimension of

R™ and B is only formed by real vectors, it follows that B is a basis for R".
O

Using the same notation as above, we set

E® = spanfuj,vjla; < 0}
E" = spanfu;,v;la; > 0}

E® = span{u;, vjla; = 0}

E°, E* and E° are, respectively, the stable, unstable and center subspaces of
R".

Theorem 2. R" = E*® E"® E°, and E°, E* and E° are invariant with respect to the

flow et

Proof: It’s easy to see that R" = E° ® E" @ E° is actually a corollary from Theorem 1,
together with the definition of £*, E* and E°.



Chapter 1. Smooth Dynamical Systems 19

For the second statement, it’s enough to prove it for E°. Let v € E*, then for

some [ € Z,l <n:

!
U=chVj, with V; = v; or V; = u;.

7j=1

By linearity:

l !
At At 1. _ ALY
ety =c¢e ZC]‘/j —Ecje 1%
j=1

Jj=1

and for each j

At . AR
eV =kh_>rg) ([n—l—At+...~|—k!) V.
Note that if E()) is the generalized eigenspace corresponding to the eigenvalue
A, then it follows from the definition of E*, E* and E° that E(\) ¢ E® or E(\) < E* or
E()\) € E°. Since V; € E();) for some j and E();) is A-invariant, then A*V; € E()\;) c E*
for every k. Hence
Akth
(Vj + AtV + ... + le}) ek’

!
so the limit eAth is a vector of E°, therefore Z cjeAth € F* ie. E® is e-invariant.

j=1

1.2 Nonlinear Systems

From now on, we shall focus our study on systems of nonlinear differential

equations, that is to say systems of the type

T = f(x), (1.3)

where f: U — R" and U < R" is an open set. In order to do so, we first introduce some
basic definitions, then some results of the local theory of nonlinear systems and, finally,

we present concepts and results regarding the global theory.

1.2.1 Local Theory

Let f: U — R" be a function from an open set of R" to R". If f is differentiable,
0fi
6mj

order derivatives of f, we shall write the k-order derivative of f as D*f : U x ... x U — R".

we denote it’s derivative by Df = [ ], i.e. the Jacobian matrix. If there exist higher
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If D* f exists and it happens to be continuous, then f is said to be a function
of class C*. If f is infinitely differentiable, i.e. D*f exists for every k, then we say that f
is of class C, or a smooth function; the system (1.3) is a smooth system if f(z) is smooth.
Moreover, the Fundamental Existence-Uniqueness Theorem guarantees that, if f is at least

of class C', then for some interval [—a, a], with a > 0, the initial value problem

T = f(x), z(0)=x, (1.4)

has a unique solution z(t). We may also denote this solution by ¢:(xo) = ¢(t, zo), where
¢i(z) is called the flow defined by the differential system = = f(z).

A point 2y € R™ such that f(zg) = 0 is said to be a critical point or a equilibrium

point of the system (1.3). Taking a look at the Taylor expansion series of f

f(x) = Df(xo)(x — xo) + ;(aj —20) T D?f (z0)(z — 20) + ...

one may note that the linear function D f(xq)z is a potential approximation of f near x.

With that in mind, it will be useful to consider the associated linear system
T = Az, (1.5)

where A = D f(xg), on our study of nonlinear systems. Such linear system may be referred

to as the linearization of the system (1.3).

A critical point x is said to be hyperbolic if the real parts of all eigenvalues of
D f(xq) are not zero; otherwise, xg is a nonhyperbolic equilibrium point. One important
result for hyperbolic points in the local theory of nonlinear systems is the Stable Manifold
Theorem, which shows that the system (1.3) has stable and unstable manifolds, W* and
W*, that are tangent at the critical point to the stable and unstable subspaces E° and E“
from the linearized system. Moreover, when a point is nonhyperbolic, the Center Manifold
Theorem guarantees the existence of a center manifold W* tangent to the center subspace
E°. These results are discussed in detail throughout the sections 2.7 of (PERKO, 2012).

Another important result in the local theory is the Hartman-Grobman Theorem.
This theorem shows that, near a hyperbolic critical point, the system (1.3) has the same
qualitative structure as the linear system (1.5), as long as f is at least of class C'. The
“same qualitative structure”, in this case, refers to the existence of a homeomorphism
H :U — V — where U and V are neighborhoods of the critical point — which maps the
trajectories of (1.3) onto the trajectories of (1.5), preserving their orientation by time; we
may also refer to this propriety as being locally topologically equivalent. More precisely,

the theorem can be stated as it follows:

Theorem 3. (Hartman-Grobman) Let E < R" be an open set containing the origin,
feCYE) and let ¢, be the flow of the system (1.3). Suppose that f(0) = 0 and that no
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eigenvalue of the matriz A of the linearized system has zero real part. Then there exists a
homeomorphism H : U — V — where U and V' are open subsets containing the origin —

such that for each Xo € U there is an open interval 0 € Iy € R such that for all t € Iy:

H o ¢y(wo) = e H (x0).

Note that the Hartman-Grobman Theorem allows us to determine the local
behavior of a system, but only in the neighborhood of hyperbolic equilibrium points. On
the other hand, the Local Center Manifold Theorem shows that, in case of dealing with a
nonhyperbolic critical point, the problem of determining the qualitative structure on its
surroundings can be reduced to the study of the system restricted to the center manifold.
As this may still be a complicated task, one may wish to simplify the nonlinear part of

(1.3), i.e. rewriting the equation as
r=Jxr+ F(z), (1.6)

where J is the jacobian of f, it may be possible to simplify F'. The procedure of reducing
the equation (1.6) by annihilating lower nonlinear terms is known as Normal Form Theory,
and was first done by Poincaré. In the following example, we illustrate a method to find

the normal form of a system.

Example 2. Consider the following system
&=+ 32 + 4,
=3y +y>.

Our goal is to annihilate the quadratic terms to reduce the expression of the
vector field in a neighborhood of the origin, which is a equilibrium of the system. In order
to achieve this, we introduce a polynomial change of coordinates (x,y) = (7,7) + h(Z, 7).
To determine the function h of the change of coordinates, note that one can obtain the

following relation between the derivatives:

(#,9) = (1 + Dh(z,7))(T, 7).
: 2, .3 2 L0
Denoting by f(z,y) = (3z° + y°,y°) and A = 0 3) we have that

(z,9) = (1 + Dh(z,9))"'(&,9)

= (14 Dh(z, 7)) (A - <

X

Y

+ f(2,y))

N——

S

= (1+ Dh(z,7))"" (A : ( > +A-MzY) + f(7,Y) + h(smy))) :

<
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Q0
Knowing that the identity Z(—Dh(m,y))k = (1 — Dh(x,3))"" holds and

k=0
0

e¢]
writing f = Z frand h = Z hy as the Taylor expansion of f and h, we obtain the
k=0 k=0
following expression for (Z,7):

A- <I> + | A-he(z,9) + fo(z,7) — Dha(Z,7) - A - (x>> +

Y
+ i (A hie(Z,9) + 9x(T,y) — Dhi(T,7) - A - <x>> :

k=3

(@.9)

Where g, only depends on fs, ..., fr_1 and hao, ..., hy_1. Since we want to elimi-

nate the quadratic term, the following condition must hold:

A - hyo(Z,9) + f2(T,y) — Dhe(T,7) - A - (;) = 0.

in other words, we wish to find some h(zx,y) such that

fo(Z,5) = A- hao(Z,y) — Dho(T,7) - A- (z) .

Define the operator LZ’Q by the following expression

k2 xr x?; 3 %U a
Ly (h(z,y)) = Dhy - A- —A-(ry) = | 4 aqy ;
Y r— +3y=— — 3¢
0 oy

where h(x,y) = (p(x,y),q(x,y)), and notice that it is linear. Hence we can calculate the
matrix of LiQ just by applying the transformation to a basis of the linear space of the
quadratic polynomials with two entries, which we denote by HZ. In order to do that, we

consider the following basis of Hj
{(0,2%),(0,2y), (0,5%), (2*,0), (zy,0), (y*, 0)}.

Then:
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which allows us to build the following matrix:

-1

Since the matrix is invertible, it’s possible to find a coordinate change by solving
the homological equation L2A’2h2 = f5. Indeed, multiplying the vector fo = (0,0,1,3,0,0)
by (L%*)™!, we obtain:

2
h2(x7y> = (31’2, ?)
and so the coordinate change will be given by (z,y) = (Z,7) + h2(T,7); hence:
o T+ 37° 7
(@,5) = (I + Dha(@, 7)) ™" - | A g |+ <x+3x2,y+ )
y+ 3 3

and then, by doing the calculations, we obtain

T =7+ 187 + 7 — 817* — 677° + 7' + O(|7]")
3 4

NN _

y=3y+2§—§+0(1y|5).

Therefore, the normal form of the original system is:

{f =z + O(z?),
=3y +0(y’).

Notice that if we wished to annihilate higher order terms from the system, i.e.
find higher order normal forms, we must then solve the other homological equations that

can be obtained by making the expressions from the summation in (1.7) be equal to zero.

1.2.2 Global Theory

In order to approach the main goal of our work, we shall take a closer look into
the global theory of nonlinear systems. First of all, we generalize the previous definition of

topological equivalence.

Definition 1. (Topological Equivalence) Let f € C'(E}) and g € C*(E,), where E, Ey

R™ are open and consider the two autonomous systems:
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These systems are said to be topologically equivalent if there’s a homeomorphism H :
FE, — E5 which maps the trajectories from the first system onto the trajectories of the

latter and preserves the orientation by time.

Definition 2. Let ¢(¢, ) be a trajectory of the system (1.3). The w-limit set of ¢ is the

set of all points p for which there is a sequence t,, — oo such that

A @(tn, ) = p.
Analogously, we define the a-limit set as the set of all points ¢ for which there is a sequence
t,, — —oo such that

Jim p(t, x) = g.

If the « or the w-limit set are periodic orbits, then we might as well call them limit cycles.

By periodic orbits, we mean closed solution curves that are not equilibrium
points. Moreover, a periodic orbit I' is said to be stable if for each ¢ > 0 there is a
neighborhood U of the orbit such that, for all x € U and ¢t > 0, d(¢(t,2)),I') < ¢

otherwise, I' is said to be unstable.

An important tool to study the stability of periodic orbits is the Poincaré map,
which will be defined as follows:

Definition 3. (Poincaré Map) Let I' = ¢(t, 29) denote a periodic orbit of the system

and let ¥ be a hyperplane perpendicular to I' at xy. For a neighborhood U of x, define

P:UnY -3,
x — P(x),

with P(x) = ¢(t1, ), where t; is the time when the trajectory ¢(t,z), z € U n X, cross X
again for the first time. The function P is called the Poincaré Map.

Moreover, it can be shown, through the implicit function theorem, that the
Poincaré map is well-defined, continuous and that ¢; is in fact the period T' of the periodic

solution.

Theorem 4. (Poincaré-Bendixson) Let & = f(z) be a planar dynamical system, where
f e CYE), E c R? is open. Suppose that T is a trajectory of such system, and that
I'" ¢ K, where K < E is compact and T'" is the trajectory for t > 0. If the system admits
only a finite number of critical point in K, then w(I') can be: (1) a critical point of the
system; (2) a periodic orbit of the system; (3) a finite number of critical points p1, ..., Dm

and a countable number of limit orbits whose o and w limit sets belong to p1, ..., Pm-
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If on one hand it is possible to study the existence of limit cycles for some
planar systems using Theorem 4, on the other hand it does not help us much to determine
the exact number of limit cycles for a certain class of systems - this is, in fact, a much more
complicated task, and there are many different approaches to this topic. In particular, we
are interested in finding upper bounds to the number of limit cycles of certain systems,
which is a version of the Hilbert’s 16th problem, and we will focus on this task for

Liénard-like Systems.

The classical Liénard System is a dynamical system of the form

T =y— F(r),

Y= —g(l‘), (1.8)

which was first studied by Liénard in 1928. Under certain conditions for F' and g, Liénard

proved the uniqueness of the limit cycle of system (1.8).

An interesting theorem is given by Perko in (PERKO, 2012) providing a
necessary and sufficient condition to construct systems like (1.8) that have a desired

number m of limit cycles.

Theorem 5. (Perko) For e # 0 sufficiently small, the system (1.8) with g(x) = x and

F((L’) = 5[@11‘ + CLQI’Q +... .+ a2m+1x2m+1]

has at most m local limit cycles. Furthermore, this
system has exactly m limit cycles which are asymptotic to circles of radiusrj, j = 1,...,m,

centered at the origin as € — 0 if, and only if, the mth degree equation

a 3a 5a 2m 4+ 2\ a9
1—1—3p+5p2—|—...—|-< ) 2+1pm=0,

2 8 16 m1 | 22m+2

has m positive roots p = 7"]2-, j=1..m.

In section 4.1, we provide a proof for the first part of this theorem using
averaging theory for smooth systems. Despite being an useful tool to construct nice
examples, proving the second part of Perko’s theorem will not be our goal here; however,
the whole proof of this theorem is given in (PERKO, 2012) using Melnikov’s Method.

1.3 Bifurcations

The last topic of this chapter aims to introduce the idea of what may happen to
a dynamical system when we make perturbations on it. These perturbations are basically
variations of the function f of the system (1.3), which we obtain by varying a parameter &
— i.e. we replace f(x) by f(z,¢); what we want to study is how these changes impact the
qualitative behavior of the system. If a system is “stable enough", a small variation of ¢

shall not cause a big change on the system’s phase portrait; however, if the structure of
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the system is rather unstable, a small variation of the parameter will change the whole
structure, yielding a completely different system that is not topologically equivalent to
the original one. Let us draw a more formal mathematical approach by presenting some

definitions.

Definition 4. (Structural Stability) Let £ c R™ be an open set. A vector field f € C*(E)
is said to be structurally stable if there is a ¢ > 0 for which all vector fields g € C*(E) such
that

Hf_ng <eg,

are topologically equivalent to f on F.

In other words, a vector field is structurally stable if it’s topologically equivalent
to all the vector fields that are close to it. However, if a vector field is not structurally
stable, then it’s qualitative structure will change when it passes through a bifurcation

point in the space of the parameters.

Example 3. The linear center
T = Y,
y = -7,

is not structurally stable in any compact set containing the origin. In fact, let K be a

compact containing the origin and define the vector fields

x,y) = Y and g(x,y) = y+uw>’
fz,y) <_$> 9(z,y) (_:Huy

then, taking ||.||; as the C'' norm:

I|f —gllr =sup|f —g| +sup||[D(f — g)||,
K K

where ||D(f — g)]] =

max
i,j€{1,2}

{a(f_g)’}‘ = |p|. Let d be the diameter of K, then

(%j
— U
<“>‘=!ul-d-
—[y

Hence ||f — g|l1 = |p|(d + 1). So given ¢ > 0, consider |u| = dL—FQ’ then

sup|f — g| = sup
K K

I|f —gll1 < e, i.e. we may take g as close to f as we desire.

However, f and g are not topologically equivalent! Indeed, let ¢, and 1); denote
the flows from the vector fields f and g, respectively, and take u < 0. If f and g were

topologically equivalent, then there must exist a homeomorphism H : R? — R? and a time
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reparametrization 7 : R — R preserving orientation, i.e. a strictly increasing continuous
function, such that

¢t = Hil Ow’r(t) oH.

Since f has a center at the origin, thrg) ¢¢(1,0) # (0,0). However, analyzing the
trajectory of the same point through the flow of the vector field g, we have:

wo—1 T _ : .
g(x,y) = ; = \ = u £ i are the eigenvalues of the matrix
n)\y

= wt(JEOv yO) - (€(M+i)t'x07 e(#ii)ty(ﬁ

= y(1,0) = (eIt Q).

But

lim e® 9t = lim e (cost — isint) = 0
t—00 t—0o0

= lim ¢(1,0) = (0,0).
which yields a contradiction, since a homeomorphism must map the origin onto itself.

Therefore the system is structurally unstable and 1 = 0 is a point of bifurcation.

The concept of structural stability can also be extended and applied on a
compact differentiable manifold. The next theorem gives a complete characterization of a

structurally stable C' vector field on a compact, two dimensional, differentiable manifold:

Theorem 6. (Peixoto, (PERKO, 2012)) Let f be a C* wector field on a compact, two
dimensional, differentiable manifold M. Then f is structurally stable on M if, and only if:

1. the number of critical points and cycles is finite and each one is hyperbolic;
2. there are no trajectories connecting saddle points, and

3. the nonwandering set £ consists only of critical points and limit cycles.

By nonwandering set ) we mean that, for every neighborhood U of any point
x € and any T > 0, there is a ¢t > T such that

th(U)ﬂU?éQ

where ¢, is the flow defined by (1.3). From this theorem, one can conclude that saddles,
nodes and foci are structurally stable, while linear centers are not, as we showed in the
previous example. We shall focus on the cases where the system is structurally unstable,
i.e. when bifurcations do occur; furthermore, a certain type of bifurcation is particularly

of our interest in this study.
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Definition 5. A Hopf bifurcation is a critical point in the parameter space where a

structural unstable system changes its behavior and a limit cycle arises.

Theorem 7. (Generic Hopf) Consider the system given by

z = f(z,y,p),
y = g(x7y7,u>a

where p is a parameter. Let (x,y) = (xo,yo) denote a equilibrium point of the system and
Aa2(p) = alp) £ i6(p) be the eigenvalues of the Jacobian at (x,yo).Forpu = o, suppose
that the following conditions hold:

1. a(me) = 0 and B(pe) # 0, i.e. the equilibrium is nonhyperbolic;

2. &) = d # 0, i.e. the eigenvalues cross the imaginary axis transversely;

1 1
16( vy Y yyy) 166(,“0) ( y( yy) y( yy)
fyyGyy) # 0

Then a Hopf bifurcation occurs at the fized point of the system (xq, o) at the

value | = .

Moreover, if ad < 0, then a unique stable limit cycle bifurcates from the
equilibrium as > o and, if ad > 0, then a unique unstable limit cycle bifurcates from

the equilibrium as p < po.

Condition 3 is derived by calculating the normal form of the original system;
for more details of the proof, check out (GUCKENHEIMER, 2002).

Example 4. Consider the following differential equation

i—(a—aHi+z=0. (1.9)
Let & = y, then § = & = —x + (a — 2%)y; we can write the equation (1.9) as
the planar system
T =y,
Y (1.10)

y =—Tr+ (CY—I'Z)y,

which is a specific case of the Liénard system that we presented in the previous section.

Notice that the origin is the only equilibrium point of (1.10), so we compute the Jacobian

Ja) = ( ;)

of the system there:
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It follows that the eigenvalues of J(«) are given by

—A 1
=0=N-a\+1=0
-1 a—A
) a+ Va2 —4
-)\172— .

By Theorem 6, if Re(\) = 0, i.e. the origin is nonhyperbolic, then the system

will be structurally unstable. Since Re(\) = «, we have that a = 0 is a point of bifurcation.

d(Re(A
Moreover, notice that ( de( ) =1,Im(\)(0) = 1, f(z,9,0) = yand g(z,y,0) = —x—2?y,
a
then
1
a = 1_6<fac:cac + .fctyy + Gozy + gyyy)
1
+ W(fmy(fmm + fyy) - gzy(gx:v + gyy) — feaGzz + fyygyy>
1 1 1
= (=2) + —(—22(-2 o) = —= # 0.
Therefore the conditions of the theorem 7 hold and a Hopf bifurcation occurs
-1
at @« = 0. Since d =1 and a = 5 ad < 0, then the periodic solutions must occur for

a > 0. On the figures 8, 9 and 10, we illustrate the phase portrait and the trajectory of
the point (z¢,v0) = (3,3) through the flow in each case of a.

N
-

N
-———
- —

N
N >
1L

Figure 8 — Limit cycle when oo = 0.5
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—0.5

0  Figure 10 — System (1.9) with «

Figure 9 — System (1.9) with «
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2 Non-smooth Dynamical Systems

2.1 Foundations

The kind of non-smooth system we will focus are Filippov Systems, which are
systems discontinuous along a hypersurface in the phase space - in particular, we will
be restricting these to planar systems with a Liénard-like perturbation. Some concepts
developed for smooth systems need to be adapted to suit this new class of dynamical

systems; the formalization of those generalizations is the main goal of this section.

Let U be an open neighbourhood of 0 where the vector field we shall study is
defined, and let ¥ be the hypersurface along which the discontinuities occur. Since any
embedded hypersurface is locally the inverse image of a regular value, let ¥ = f~1(0) n U,
where f is the germ of a C" function with » > 1 and which has 0 as a regular value. Here
the germ of a function refers to the equivalence class of all functions which are locally

equal to one another.

Note that the hypersurface X splits U into the following open sets:

Yt ={(x,y) e U: f(z,y) >0} and ¥~ = {(z,y) € U : f(z,y) < 0}.

We may then define the germs of a discontinuous vector field as

Z(r.y) = X(z,y), if (z,y) e B* @2.1)
7 Y(x,y), if (z,y) e &~ 7 .

and we denote the vector field by Z = (X,Y).

On the regions X" and X7, the trajectories can be defined by the vector fields
X and Y in the same way as for smooth systems. Troubles may arise from what happens

along ¥, hence we must take a careful look into these possibilities.

Let Xf(p) = X(p) - Vf(p) denote the Lie derivative of f with respect to X at
the point p, and define:

Y={peX:Xf(p) - Yf(p) >0}
¥ ={peX: Xf(p) <0,Yf(p)>0}
Y ={peX:Xf(p)>0Yf(p) <0}

which we name crossing region, sliding region and escaping region, respectively. Figures
11, 12 and 13 illustrate each of these possibilities.
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/ V\

Figure 11 — Crossing
region

Figure 13 — Escaping
region

Figure 12 — Sliding region
If Xf(p) =0o0rYf(p) =0, then p is a tangency point; we assume that these

tangency points are isolated in X.

Note that if p € X¢ ie. p is in a crossing region, then we can define the
trajectory through p by simply matching the trajectories defined by X and Y. However,
if p e 3% or X¢, the trajectory can’t be defined so directly; in this case, we shall use the
Filippov convention We define the sliding vector field Z° as the linear convex combination
of X and Y tangent to X:

1
YY) - Xf(p)

Definition 6. Let ¢x(¢,p) denote the flow of a smooth autonomous vector field X such

Z*(p)

Yfp)X(p) - Xf(p)Y(p). (2.2)

that ¢x(0,p) = p. The trajectory of the vector field (2.1) through a point p is defined as

follows:

1. For pe X7 or pe X7, the trajectory is given by ¢z (¢, p) = px(t,p) and pz(t,p) =
vy (t,p), respectively, for te I ¢ R

2. For pe X if X f(p),Y f(p) > 0 the trajectory is defined as ¢(t,p) = vx(t,p) for
t =0 and @z(t,p) = py(t,p) for t < 0; if Xf(p),Y f(p) < 0, the definition is the

same but reversing time.

3. For p e X v ¥° if Z°(p) # 0, then wz(t,p) = @zs(t,p), where Z° is the sliding
vector field defined in (2.2).

4. For p e 0X° v 0X° U 0X°, if the defined trajectories for point in ¥ in both sides of p
can be extended to p and coincide, then this is the trajectory through p. These are

said to be the reqular tangency points.

5. For any other point, ¢z(t,p) = p for all ¢t € I. This is the case of the singular
tangency points, i.e. p € 0X° U 03¢ U 0X° which is not regular, as well as the critical
points of X, Y and Z® in ¥, ¥~ and X° U X¢, respectively.

Notice that the item 2 of the definition is the formalization of saying that
the trajectory through p in 3¢ is defined by joining the regular trajectories through p
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given by each vector field X and Y. The orbit of a point p is then defined as usually, i.e.
v(p) = {pz(t,p) : t € I'}. Another thing we must define is what are the singularities of a
Filippov vector field.

Definition 7. A point p is said to be a singularity of the system (2.1) if it fits in one of

the following conditions

1. pe ¥* and p is an equilibrium point of X or Y;
2. pe X°® U X° such that Z°(p) = 0, in this case we say that p is a pseudoequilibrium;
3. pe XU IXe U Y’

Definition 8. We define a regular orbit of Z as a piecewise smooth curve ¢ satisfying the

following criteria:

1. o X% and ¢ " X7 are (a union of) orbits of the smooth vector fields X and Y,

respectively.
2. ¢ N X consists only of crossing points (X¢) and regular tangency points (0%°).

3. ¢ is maximal with respect to the above criteria.

We define a sliding orbit of Z as smooth curve ¢ contained in 3% U ¢ such that it is

maximal in Z°.

Definition 9. A point p € ¥ is said to be a generic point of discontinuity if there exists a
neighborhood V,, € I x D containing p such that ¥, = £nV,, is a C* embedded hypersurface
in I xD.

The next Theorem — that was adapted from chapter 2, section 10, of reference
(FILIPPOV, 1988) — guarantees the existence and uniqueness of solutions passing through
a point in X Let p € ¥° be a generic point of discontinuity and V,, a neighborhood of p,
we write V; =V, nY" and Vo =V,n¥.

Theorem 8. For every point p € ¥ there’s a unique solution passing either from V7 into
Vp+ or from V;r into V.

Proof: From the Theorem of Existence and Uniqueness for smooth systems, the solutions
with initial points in VPJr or V,~ exist and are unique; then, extending continuously these
solutions for VT;F and VT;, and by item 2. of definition 6, the solution passing through p is
uniquely defined. m

To end this section we present two examples of planar Filippov Systems with
a line of discontinuity, showing how to handle the set ¥ and compute the sliding vector

field, when it exists.
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Example 5. Consider the following planar system

T =sgn(y) - v,
Y = x.

It’s easy to see that the smooth components of this system are

X(z,y) = (i) and Y (7,y) = (—;;) :

and that ¥ = {(z,0) : # € R}. Notice that in this case ¥ can be described as f~(0), where

f(z,y) = y; lets see what happens near the points of discontinuity.

If p e ¥ we write p = (29,0); computing the Lie derivatives:

X f(p) = X(20,0) - Vf(x0,0) = (0,20) - (0,1) = o,
Yf(p) = Y(20,0) - Vf(xg,0) = (0,20) - (0,1) = x.
hence X f(p)Y f(p) = 3 = 0. This indicates that all points in ¥ are crossing points, except

for the origin, which is a (singular) tangency point. Figure 14 shows the phase portrait of

this system.
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Figure 14 — System from Example 5; the red traced line is 3¢ and the green dot is the
origin, which is a point in 0%°
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1 1
Example 6. Let X (z,y) = (2 ) and Y (z,y) = <1> and define
T

X(z,y), ify >0,
Y(z,y), if y <0,

Z(X,Y) =

then ¥ = f71(0), where f is as in the previous example. For p = (z,0) € X, we compute

the Lie derivatives:

X f(p) = X(x0,0) - Vf(x0,0) = (1,2z0) - (0,1) = 20,
Y f(p) = Y (20,0) - ¥ f (0, 0) = (1,1)- (0.1) = 1.

This implies that X f(p)Y f(p) = 2x¢, which gives us the following cases:

e 1o > 0: In this case X f(p)Y f(p) > 0, hence p € X
e 129 = 0: When p is the origin, X f(p)Y f(p) = 0, thus it is tangency point;

e x5 < 0: In this case X f(p)Y f(p) < 0 yields that p is in 3° U £¢ more specifically,
since Y f(p) > 0 and X f(p) <0, pe X°.

Furthermore, we can compute the sliding vector field in p using the Filippov conven-

tion, explicitly given in (2.2):

Z*p) = 1—12x0 ' [1' <2:11:0> ~ 2% (1)]
1 (1-2\ [1
1 2x0 0 o/’

Thus Z°(p) doesn’t depend on p (except for the fact that we must have xg < 0), and

points towards the origin, as illustrated in Figure 15.

Remark 1. Note that if the system is non-autonomous we can always go up one dimension
and treat it like an autonomous system, hence the definitions regarding the discontinuity
region Y make sense in these cases. This should be clear in section 3.3, where we consider

the time variable to compute the Lie derivative.

2.2 Regularization Method

A method to study discontinuous systems through approximations of regular
systems was presented by Sotomayor and Teixeira in 1996 (see reference (SOTOMAYOR,;
TEIXEIRA, 1996)). This approach consists in defining a transition function, which will
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Figure 15 — Phase portrait of the system in Example 6

be used as a weigh in the combination of the vector fields X and Y to obtain a regular
approximation of Z = (X,Y). The regularization method was used in many papers in
order to apply the averaging theory to discontinuous systems, yielding nice results despite

the drawback of demanding extensive calculations.

Since a version of the averaging theorem for discontinuous systems was proven
in (LLIBRE; MEREU; NOVAES, 2015), it is now more convenient to apply it without the
need of regularizing the system. However, the regularization method is still an important
tool in the study of discontinuous systems, and was used in the early calculations of this

work; for this reason, we present briefly in this section the basis of this method.

Definition 10. A transition function ¢ : R — R is a smooth function such that ¢(t) = 0

ift<0,pt)=1ift>1and ¢'(t) >0 for t € (0,1).

Definition 11. A ps-regularization of Z = (X,Y) is the family of vector fields Zs given

by

Z5(q) = (1 —w5(f(0)Y (q) + ws(f(q)) X (),

t

= 90(5)-

where p;(t)
Let’s see how this works with an example:

Example 7. Consider the following Filippov system:

i‘:y,

2.3
g = —x +sgn(y) - (x* + 32° + 227 — 22 + 1). (2:3)
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Define

et if t>0,
0 if t<0,

g(t)

g(t) +g(1 —1)
¢'(t) > 0 for ¢t € (0,1); moreover o is smooth since g is smooth and the denominator

and let ¢(t) = . Notice that ¢(t) = 0 for t < 0, p(t) = 1 for ¢t = 1 and

doesn’t vanish at any point, hence ¢ is a transition function.

Then the regularization of system (2.3), considering that X is the vector field
when y > 0 and Y is when y < 0, will be

T=y+e-(2p5(y) — 1)p(x),

. (2.4)
= -,

t
where ps(t) = (p(g), and p(r) = z* + 32° + 227 — 22 + 1.

Note that 2ps(y) — 1 approximates the sign function when § — 0, since
205(y) — 1 = —1,¥§ if y < 0 and (I;H% %% —1=1 for y > 0. This is also illustrated on
the figures 16 and 17.

1.0 1.0

0.5 05

Figure 16 — 2¢s(y) — 1 for 6§ =1 Figure 17 — 2p5(y) — 1 for a small §

As expected, this approximation yields a regular phase portrait that approxi-

mates itself to the phase portrait of the discontinuous system; see figures 18a and 18b.

2.3 Limit cycles on piecewise smooth systems

The definition of limit cycles is one of the most important concepts of smooth
dynamical systems that we wish to generalize to the piecewise smooth case. The study
of bifurcations in general, and the existence of limit cycles in particular, on non-smooth
systems is very important in real life applications, such as models in engineering and
physics involving friction — check reference (MAKARENKOV; LAMB, 2012) for some
examples. Furthermore, determining the maximum number of the limit cycles of a planar
polynomial system is known to be part of Hilbert’s 16th problem, which — due to it’s
generality — has been a recurrent topic for several studies, focusing in more specific
families of systems. In this section we will comment some recent study in this field; but,

first, let’s define what cycle means in this new context.
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Figure 18 — Discontinuous system (a) and regularized system (b), the traced line shows
the interval (—4,4d), § = 0.3

Definition 12. We define three types of what we may call a Cycle:

1. A regular periodic orbit is a regular orbit a = (¢, p) : t € R that satisfies @ (t +
T,p) = pz(t,p) for some T > 0;

2. A sliding periodic orbit is a sliding orbit a = ¢z(t,p) : t € R that satisfies ¢z (t +
T,p) = ¢z(t,p) for some T" > 0, note that it only occurs when the whole ¥ is a

periodic orbit;

3. A periodic cycle is the closure of a finite set of pieces of orbits ay, ...a;,, combining
pieces of sliding orbits g and maximal regular orbits a1 such that the departing

and arriving points of a; belong to the closures of a; 1 and «;1, respectively.

On the cases presented in this section, as well as on chapters 3 and 4 of this
dissertation, when dealing with limit cycles, we will be referring specifically to regular
periodic orbits; this will be guaranteed by hypotheses on the local behavior of the system

that exclude the cases involving sliding dynamics.

There are many approaches to study the maximum number of limit cycles in
piecewise smooth differential equations; when regarding the family of studied systems,
it is expected that the simplest case is formed by piecewise linear systems. In (HUAN;
YANG, 2012), the authors studied the case of planar piecewise linear differential systems
with two regions sharing the same equilibrium. Using the Poincaré map induced by the
discontinuity, the authors make a very complete analysis of the cases where there are at
most 2 limit cycles by splitting the original problem in cases according to the parameters
yielded from the construction of what they call the full Poincaré map — which is obtained

by composing the right and left Poincaré map.
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Further in this paper, the authors introduce a specific system

ATX, ifx > 1,
A™X, ifr <1,
with
19 1
AT =500 0] Am = | 377 13 | and X = .
0 500 1000 10 Y

Using numerical methods, the authors show through this example that it is
possible to obtain a piecewise linear system with a straight line of discontinuity with 3
limit cycles — proving to be untrue a previous conjecture that established the maximum
number of limit cycles in such type of systems being 2. A formal proof of the existence
and respective stability of these 3 limit cycles was later presented in the paper (LLIBRE;
PONCE, 2012). As far as we know, the question of 3 being the maximum number of
limit cycles in piecewise linear systems with a straight line of discontinuity still remains
open; although the reference (LI; LLIBRE, 2019) provides us a very detailed description of
different configurations of such systems and their respective lower bounds for the maximum

number of limit cycles.

However, if we drop the assumption that the discontinuity is a straight line,
then three is not a maximum number of limit cycles for piecewise linear systems with
two regions; in (BRAGA; MELLO, 2014) the authors prove the existence of such systems
having four, five, six and seven limit cycles. From this, they conjectured that, for any n € IN,
there should exist a system with theses specifications having exactly n limit cycles. This
conjecture was proved to be true in the paper (NOVAES; PONCE, 2015) by introducing

perturbations to the discontinuity of the system:

Y

ATX, if H(X)

<
(2.5)
AX, if H(X) >

0
0,

where AT is given by the following normal form for some v > 0:
AF — +2y -1
2 )
v+1 0

x, if y <0,

and H is defined as

H(X) =
.’Ij‘—h(y), lfy>07

for a C'-function h(y) with h(0) = 0 fulfilling the following hypotheses for 3 > 0

L [h(y)] < y/v;
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2. h(y)(2y — (1 +)N (y)) < y;

3. h(y)(2y(1 + )N (y)) > —v.

Assuming all the above definitions and hypotheses, the authors proved that
for a positive real number y= there exists a periodic solution of system (2.5) passing
through (h(y+*),y*) if and only if h(y=) = 0, and, in this case, it would cut the y-axis at
the points (0,y=) and (0, —e ""y=). The proof of the Braga-Mello conjecture comes, then,
as a corollary taking 0 < v < \/3/713 and

2 1l—cosmy if0<y<2n+1,

My) = 5=
(V+ D |2 if y > 2n + 1.
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3 Averaging Theory

3.1 History and Motivations

The theory that we will explore in this chapter is focused on finding periodic

solutions of the problem

i =cF(t,z) +*R(t,z,¢). (3.1)

Before we introduce formal definitions, theorems and calculations on this, we
give a brief presentation of the history and motivations behind the method. For more
details on this topic, take a look at the Appendix A of reference (SANDERS; VERHULST;
MURDOCK, 2007).

The first known works that built the foundations for what we nowadays call
Awveraging Theory goes back to the 18th century, when perturbation methods for differential
equations were studied on an attempt to fill the gap between Newton’s theory of gravitation
and the new recent astronomic observations at the time. For it became clear that the
dynamics of the solar system were not accurately explained by successive two-body motions,
the effects of other objects - such as satellites, large planets and other effects - started
to be taken into account in the dynamics between the sun and a given planet. These
considerations lead to the reformulation of a perturbed two-body motion problem, which

didn’t have an available solution by then.

In the first half of the 18th century, the first attempts of solving such problem
took place with numerical methods involving the calculation of increments of position
and velocity within small intervals of time. In the second half of the century, the works of
Clairaut, Lagrange and Laplace brought to sight some new ideas on the topic. Despite
not being possible to establish a priority order of who did what first, it is known that
Clairaut focused on the solution of a particular problem, while Lagrange did some progress
on extending and generalizing it. Using our notation, what Lagrange did was to expand
the function F'(¢,x) by what is now known as the Fourier series, and then keep only the

first time-independent term of the expansion to yield a new equation.

Throughout the 19th and 20th century, some improvement of these approaches
to perturbation theory and averaging can be seen in the works of Jacobi, Poincaré and
Van der Pol. In particular, Van der Pol was concerned with studying nonlinear oscillations,

which lead to, more specifically, finding an approximate solution of the system

P+r=c-(1-2°)
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The approach given by him to this was based on Lagrange’s variation of constants;
introducing the transformation x — r - sin (t + ¢), the equation can be written as

dr? r?

- .
which he then solved by omitting the higher order terms.

Until the early 20th century, these techniques were applied to many works
regardless of the lack of a formal proof of their asymptotic validity. The first proof in that
direction was then given by Fatou; his proof assumes periodicity with respect to the time
variable and continuous differentiability of the vector field, which resembles the conditions
we will assume on Theorem 9 in the next section. Fatou used the Picard-Lindelof iteration

in order to obtain estimations for O(e) on time scale —.
€

3.2 Averaging on Smooth Systems

We start this section introducing the Gronwall Inequality and providing a
more formal definition of some concepts regarding approximations; then we will state
the First-Order Averaging Theorem for the periodic case, which will be proved based
on the classical proof, which can be found in Chapter 2 from (SANDERS; VERHULST;
MURDOCK, 2007).

Lemma 1. (The Gronwall Inequality) Let ¢ and [ be continuous functions with 5(t) > 0.
Suppose that for to <t <ty + T the following inequality holds

oty <o+t f B(s)pls)ds,

then

o) < acop | s

Definition 13. A function d(¢) is said to be an order function if 6(¢) is continuous and

positive in (0, &) and if lim d(e) exists.

e—0

Notice that {e"},-_; is a set of order functions; in particular, these are the ones

in which we are interested.

Definition 14. Let ¢(t,¢) be a function defined for ¢ > 0 and for ¢t € I.. We say
that ¢(t,e) = O(d(g)) for e — 07 if there exist positive constants g9 and k such that
l|o(t,e)|| < k|d(e)| for all t € I, and 0 < & < &y.

For instance, we have that €” = O(e™) for ¢ — 07 if n > m; for this reason,
whenever we calculate the Taylor expansion series of order n of a function f(z) around
the origin, we write +O(z") to denote the sum of the higher order terms. With these

definitions, we can formulate our first theorem of Averaging.
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Theorem 9. (First-order Averaging Theorem, (LLIBRE; TEIXEIRA, 2014)) Consider
the following system

i =cF(t,z)+*R(t, z,¢), (3.2)

where x € D < R"™, D is bounded, connected and open, t € [0,0), € € (0,e9) and F and R
are T-periodic on the variable t (i.e. F(t + T,x) = F(t,z) and R(t + T, z,e) = R(t, z,¢),
for some T' > 0). Define:

z = €F0(Z).
Suppose that F is C*, R is C* and z(t) € D for t € [0,1/¢]. Then:

1. Forte|0,1/¢], we have ||z(t) — 2(t)|| = O(e) as e — 07,

2. If a # 0 is such that Fy(a) = 0 and det(D,F(a)) # 0, then there exists a periodic
solution ¢(t,€) of period T of the system (3.2) which is close to a, i.e. ||¢p(0,¢) —al| =
O(e) ase — 0.

The proof of this theorem will be made through the proof of several lemmas but,

first, we introduce two more definitions of which we will make use in this demonstration.

Definition 15. We say that ¢.(t) = O(6(g)) as ¢ — 0% on the time scale 6(c)~" if the

estimate holds for 0 < §(e)t < L, where L is a constant independent of e.

Definition 16. A near-identity transformation is a family of transformations of the form
z=U(t,y,e) =y +e-ulty,e), (3.3)

where u is periodic in ¢ with period T" and y is the new vector variable that replaces x.

The idea of the proof is to choose u such that this change of variables transforms

the original equation 3.2 into the full averaged equation
§ = eFo(y) + € Rult,y, ), (3.4)

where R, is induced by the transformation, from which we obtain the (truncated) averaged

equation
i =cly(2), (3.5)

by deleting this last term. We start proving the following lemma:
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Lemma 2. Let f be a C* function and K be a compact subset of its domain, then f is
Lipschitz on K.

Proof: Since K is compact and f is C*, then f exists and is continuous on K, hence f
and f are both bounded on K, i.e. there exist M, M’ € R such that ||f(z) — f(y)|| < M
and || f(z) — f(y)|| < M', for all &,y € K.

Let {B,}aca be a cover of K by open balls; since K is compact, there exists a
finite subcover of {B,}aca of K, let By, ..., B, be such subcover.

Because each B; is convex, we can apply the Mean Value Inequality. Let x; and
y; be arbitrary points in B;, then write [x;,y;] = {z; - (1 —t) +y; - t : t € [0, 1]}; the Mean
Value Inequality guarantees that

1f (@) = fll < sup [[f(e)]] - [z — il

celz;,yi]

but since f is bounded

[ f (i) = fQua)ll < M- ||z — yil|, Vi, yi € B

Now, let y € K\B;, then because f is bounded

M M
1/ (@) = F)ll < M= —=ri < = [lzi =y,

K3 3

where r; is the radius of the ball B;. Since there is a finite number of such balls covering

M M
K, we can take \; = max{M',—, ..., —}; then for any x,y € K it’s true that
T

1 n

£ (2) = F@Il < Ag - [l =yl

Therefore f is Lipschitz on K. O

With this, notice that since F is C?, u is a smooth function and D is a bounded
connected set, then F and u are Lipschitz (on the vector variable) on D with constants A\
and \,, respectively. In particular, since they are periodic functions on the time variable,
then the Lipschitz condition shall hold for all time. We use the Lipschitz condition of u to

prove the existence of its inverse on the following lemma.

Lemma 3. Let y — U(t,y,¢€) as in (3.3) be a smooth map depending on t and €. Suppose
D < R" is a bounded connected open set; then there exists €9 such that, ¥Vt € R and for all
0 <e <eg, the map Ulp : D — U(D,t,¢) is bijective. Moreover, the inverse mapping has
the form

y=V(t,x,e) =z +ev(t,z,e)

and is smooth in (t,z,¢€).



Chapter 3. Averaging Theory 45

Proof: To prove that U is one-to-one for a small ¢, suppose that U(y,,t,¢) = U(ya,t,¢)
for 0 <e < 1/A,, then

Y1 +e- u(ylvtag) =Y t+e- u(y27t7€)
=|ly1 — vl = e - [ulyr, 1, €) — ulye, t,)|| < eXullyr — 2l

if y1 # yo, this implies that e\, = 1; however, since ¢ < 1/)\,, we have that e\, < 1,
therefore we must have y; = ys, hence U is one-to-one in D. This completes the proof of

the bijection, since we're restraining the codomain of U|p to the image of D by U.

To prove the form and the smoothness of the inverse of U, we use the inverse
function theorem: since D,U/(t, yo,0) is the identity matrix for every vy, it follows that
U(t,y,e) is locally invertible for a small ¢, and in a neighborhood By, of vy, moreover this
local inverse is smooth and has the desired form, i.e., y = = +¢cv(t, x,¢). Let {B,}yern be a
cover of D; since D is compact, it can be covered by a finite number & of such neighborhoods,
which we denote by By, ..., By, and with the respective bounds of €: ¢4, ..., ;. Then, taking
g0 = min{l/A\,, &1, ...,ex}, for € < g the local inverses exist, are smooth and have the
desired form. By the uniqueness of the inverse, the global inverse - which we’ve proven
to exist, since U is bijective - must coincide with the local inverses on each of these

neighborhoods, therefore V (¢, z, ¢) is smooth and has the desired form. O

Our next step is to verify if such transformation is indeed what we were looking

for.

Lemma 4. There exist mappings U carrying the original equation (3.2) to the full averaged

equation (3.4).

Proof: Let © = f(t,x,¢) and y = g(t,y, €) be differential equations on the variables x € R"
and y € R", which are related by the transformation = = U(t,y, ). Differentiating both

sides from the latter equality gives us, by the chain rule:

. oU dy
-~ ipu-Y .
T= + D,U o (3.6)

where D,U denotes the partial derivative of U with respect to the spatial variable y.
Now, we wish to find U such that f and g yield the equations (3.2) and (3.4),
respectively. In order to do that, we replace f, g and U by the desired expressions just to
derive an equation for u(t, y,€); then we do the inverse, i.e. by showing that such equation
can be solved and that it yields the desired result, the Lemma is proved.
So if we were to have f(t,z,e) = F(t,x)+e-R(t,x,¢), g(t,y,¢) and U(t,y,e) =
y + eu(t,y, ), the equation (3.6) would turn into

eF(t,x) + e?R(z,t,e) = 5(;1; + (Id + eDyu) (eFo(y) + e*Fi(t,y,€)) (3.7)
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where Id is the identity matrix. Notice that the left-hand side of the equation is on the
spatial variable z, whilst the right-hand side is on the variable y; to solve this, notice that

since z = y + cu(t,y, €), if we expand the series of F' and R for ¢ around 0, we have

F(t,y+eu(t,y) = F(t,y) + O(e),
R(t,y + eu(t,y),e) = R(t,y,0) + O(e),

then, rewriting the equation (3.7):

eF(t,y) + O(*) + 2(R(y,t,0) + O(e)) = ¢ (Zj + Fo(y)> +e?(Fy(t,y,e)+
Dyu(Fo(y) + eFu(t, y,€))),
or simply
eF(ty) + O(?) = ¢ (Z‘ + Fo(y)) +O().

Hence, to find u(t,y, ), we must solve the following equation:

ou
In fact, this yields
t
uly.t) = | Flys) = Fo(w)ds + h(y) (33)
0

We easily check that — for any k(y) — the function (3.8) fulfills the requirements
for U to be our near-identity transformation. First, notice that u(¢,y,e) is T-periodic for
any k(y):

T

u(T,y,e) = L F(y,s) — Fo(y)ds + k(y)

- LT F(y,s)ds — LT Fo(y)ds + k(y)

=T Fy(y) =T - Foly) + k(y)
— k;(y) = U(O,y,€).

Moreover, replacing U(t,y,e) = y + u(t, y,€) in the equation (3.6):

dy

eF(t,y) +e*R(t,y,0) + O(e?) = e(F(t,y) — Fo(y)) + (Id + eDyu) - g

d
= (Id+ eDyu) - d—‘z = cly(y) + e*R(t,y,0) + O(e?).
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Since u(t,y, €) is a smooth function, then Dyu is also smooth; hence, by Lemma
3, (Id + eDyu) is locally invertible and (Id + eDyu)™" = (Id + €T) for some T. Then:

v = (Id + eT)eFy(y) + 2 R(t,y,0) + O(e?)
= eFy(y) + 2(R(t,y,0) + T - Fy(y) + eTR(t,y,0))) + O(e?)
= cFy(y) + 2F.(t,y, €),

which ends the proof of this lemma. ]

Now, let z(t,¢) denote the solution of equation (3.2) with initial condition
x(0,e) = a, y(t,e) the solution of the full averaged equation (3.4) with initial condition
y(0,e) = V(a,0,e) = a+ eb(e) and z(t,¢) the solution of the truncated averaged equation
(3.5) with 2(0,¢) = a. The next two lemmas will prove the order of the differences yield

by these approximations.

Lemma 5. The solutions y(t,e) and z(t,e) satisfy the estimate
ly(t,e) — 2(t,e)|| = O(e)

for time scale O(1/e).

Proof: Expanding the expressions for y(¢,¢) and z(t,¢):

t

y(t,e) = a + eb(e) + L [eFo(y(s,€)) + 2 Fy(y(s, €), 5,€)]ds

z(t,e) = a+ L eFy(2(s,€))ds,

then

y(t,e) — 2(t,e)|| = ||eb(e) + J [eFo(y(s,€)) — eFy(2(s,€)) + e2Fu(y(s, ), 5,¢)]ds

0

<Hw@H+€LH%@@ﬁﬁ—%@@ﬁMW&+LHgﬂwwﬁx&dws
<c|b(e) + a/\FL (s, €) — 2(s, &)||ds + 2 M.,

where M, is a bound for F, and the Lipschitz constant \g is yield from

Hﬂwﬁﬁﬂ—%@@@m=Hlf(ﬂwaﬁﬂ—F@@de#

T 0
1 T
< 2 [T IPw(s2).7) — Plats,e).0)dr
0
1 T
< 2 [ elly(s,e) = sts.e)ar
0

= )‘F||y<57€) - Z(S,&)H.
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2
M,
The end of the proof follows from the Gronwall Inequality: taking o = :
2M €>\F
elb@)]], B = exr and o(t) = [ly(t,2) = 2(t.2)]| + =, we have
F
2]\4-* ¢ QM* QM*
ly(t, ) = =(t, )l + 3= <<l +5>\FL ly(s,2) = =(s )|+ Tds + LT,
then
g2 M, e? M,
t.e)— z(t < * b CefAFt _ 2 T
lote.e) = =t < (S5 + ellea) - e -
_ M* eApt 8M*
—e (5 + ) - - 5
= 0O(e).
]

Lemma 6. The solutions x(t,e) and z(t,e) satisfy the estimate
|lz(t,e) = z(t,€)]] = O(e),

for time scale O(1/¢).
Proof: Applying the triangle inequality:
||$<t75) - Z(t,é)H < ||Jf(t,€) - y<t76>|’ + ||y<t76) - Z(t7€)||'

By lemmas 3 and 4, ||z(t,e) — y(t,¢)|| is O(e) for all time and, by lemma 5,
l|y(t,e) — 2(t,e)|| is O(e) for time O(1/¢e); therefore ||z(t,e) — 2(¢t,€)|| = O(e) for time
O(1/e). O

This completes the proof of part 1 of Theorem 9. To complete the proof of part

2 from the Theorem 9, we need to show the following lemma:

Lemma 7. If a # 0 is such that Fy(2) and det(D,Fy(a)) # 0, then there exists a solution
of the system (3.2) near a that is T—periodic.

Proof: Let a € R" be such that Fy(a) = 0 and det(D,Fy(a)) # 0, and let (¢, a.,€) and
z(t,a.,€) be the solutions of (3.2) and (3.5), respectively, such that z(0, a.,e) = a. and

2(0, ae, €) = a. , where a. € B.,(a) for some g > 0. Then:

t

x(t,az,e) = x(0,az,€) + J eF(s,x(s,a.,¢€) + 523(3,:17(3, a.,€),e)ds
0
t

= (0, a.,e) + 6J F(s,z(s,ac,¢)ds + O(e?),

0
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since F'(t,z) is Lipschitz, then by Lemma 6
|F(s, (s, ac, €)) = F(s, 2(s, ac, €))|| < Apll2(s, ac, €)) — 2(s, ac, €)[| = Ofe),

hence
t

x(t,ae,e) = z(0,a.,¢) + 5J F(s,2(s,a.,¢)ds + O(e?),
0

now if Fy(a.) = 0, then z(s, a.,e) = a. for all s, which implies that

2(T,a.,e) — 2(0,a.,¢) = eFy(a.) + O(e*) = O(?),

then, for |e| sufficiently small, ||z(T, ac,e) — x(0, a., €)|| = 0, which implies that z(t, a., €)
is T—periodic. However, detD, Fy(a) # 0 implies that there’s a neighborhood where a is

the only zero of Fy(z), therefore a. — a when ¢ — 0. O
Example 8. (Van der Pol’s oscillator) Consider the Van der Pol’s equation

Pt+r=c-(1—-a2?7, (3.9)
introducing the change of variables y = x, we get the equivalent system

T =y,

y=—z+e(l—ay.

As we wish to have periodic time functions to average, it makes sense to rewrite

this in polar coordinates and then take the angle as the time variable; in fact, applying

x\ [cosf —rsinf r
Y sinf  rcos@ 6
and isolating 7 and 6, the equation (3.9) turns into the system
T\ e(rsin? 6 — 73 cos® fsin? 0)
0 —1 4 &(sinfcosf —r?cos®fsin ) ) -

Now, taking € to be the new time variable and expanding the expression for ¢

the coordinate change

around ¢y = 0 using the Taylor series, we get:

d

d—g = e(r® cos® O sin® @ — rsin®0) + O(e?). (3.10)
Notice that, taking F(6,r) = r® cos? §sin? § — rsin® 0 and 2 R(0,r,¢) = O(£?),

the functions satisfy the hypotheses from Theorem 9, so this is a system we can average.

Hence, calculating Fy(r):

1 2m
Fo(r) = — 3 cos? @ sin? @ — rsin® 0d6
2 Jo
1
= —r(r* —4).

8
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Therefore, the averaged system will be:
- 1, 9
T = 8§T(T —4) (3.11)

and, according to Theorem 9, this indicates that the system (3.10) has a periodic solution

around 7o = 2 for a sufficiently small €. Indeed, the general solution of system (3.11) is

o 2
r(t>_\/l—|—etf(%—1)’

where 79 is the initial value 7(0); then the solution of the equation (3.10) will be

2
r(t) = \/1 - €t6<% =y + O(e)

and returning to the original coordinates, we get the following solution for equation (3.9):

-cost + O(e).

2
x(t)*\/l—{—ete(%—l)

Since x(t) = r(t) cost, z(0) = 1o = 2 and z(0) = 0, hence the solution of the

initial value problem will be
z(t) =2-cost+ O(e)

and it’s easy to see that this will be a periodic orbit for a sufficiently small . In fact,
taking € = 0 and solving the original system numerically using Wolfram Mathematica,
we easily detect the limit cycle near (2,0). On Figure 19, one can see that the trajectory
starting on point (2.2,0) is being attracted to the origin, while on Figure 20 the trajectory
of the point (1.8,0) is being repelled from the origin; therefore, it follows from Theorem 4

that there must be a limit cycle between those two points.

3.3 Averaging on Non-smooth Systems

The next step in developing a theory for studying limit cycles on non-smooth
systems is to adapt the averaging methods to these type of systems. The first attempts to
do this were through regularization methods, which is the approach on many works from
our references, like (LLIBRE; TEIXEIRA, 2014) and (MARTINS; MEREU, 2014); the
validity of this type of averaging is systematically proved in reference (LLIBRE; NOVAES;
TEIXEIRA, 2015). However, another theory for averaging on piecewise smooth systems
has also been developed without the need of passing through the process of regularization;
we have chosen this as our main approach for it yields simpler calculations, allowing us to

focus on other aspects of our work.
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1
Figure 19 — Solution of system (3.9) with initial value z(0) = 2.2, t = 0 and € = 10

1
Figure 20 — Solution of system (3.9) with initial value z(0) = 1.8, £ = 0 and € = 1

The main reference on which we will rely is paper (LLIBRE; MEREU; NOVAES,
2015). On their work, the periodic averaging methods of orders 1 and 2 are developed for
systems with arbitrary number of discontinuities. Here, however, we shall focus on the
periodic averaging of first order for systems with one hypersurface of discontinuity (in
particular, we will further handle only planar systems with a line of discontinuity); despite
that, we remark that the calculations of this section can quite easily be extended to the
case of M-piecewise smooth systems. Before bringing up the main theorem of this section,

we present briefly the definition the Brouwer degree function, which will be needed further
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when proving the averaging theorem.

Theorem 10. Let X =Y = R". For bounded open sets V < X, consider continuous
maps f:V —Y and points yo € Y such that yo ¢ f(OV), where OV denotes the boundary
of V.. Then to each triple (f,V,yo) , there corresponds an integer dg(f,V,yo) having the

following properties:

1. Ifdg(f,V,y0) # 0, then yo € f(V). If fo : X — Y is the identity map, then for every

bounded open set and Yyo € V', we have:
dg(folv,Viy) = £1.
2. (Additivity) If Vi and Vs are a pair of disjoint open subsets of V' such that

vo ¢ f(VA(V1 U Va)),

then
ds(fo,V,yo) = ds(fo, Vi,v0) + di(fo, V2, o).

3. (Invariance under homotopy) Consider a continuous homotopy {f; : 0 < t < 1}
of maps from V toY. Let {y; : 0 < t < 1} be a continuous curve in Y such that
Y ¢ fr(OV) for any t € [0,1], then dg(fi, V,y:) is constant for every t € [0, 1].

Moreover, the degree function dg(f,V,yo) is uniquely determined by these

conditions.

The Theorem 10 guarantees the existence and uniqueness of the degree function
dg(f,V,yo0)); this is presented as two theorems on Browder’s paper, (BROWDER, 1983),

where the reader can also find the corresponding proofs.

Now, recall from chapter 2 that the discontinuity hypersurface ¥ splits the
space into two regions, namely ¥ and X7, over which we will define the smooth pieces
of the equation. The differential system that we're interested on averaging will have the

following form

i(t) = eF(t,x) + e R(t, x,¢), (3.12)
with
F'(t,z), if z € S,
F(t,x) =
F%(t,r), if v € Sy,
RYt,z,¢), if v e Sy,
R(t,x,e) =

R*(t,z,¢), if v € Sy,
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where F'2 : [ x Sie — R, RY? . T x S12 % (—€0,60) — R" and S15 = D n ¥*. Or,
1, ifxeA

alternatively, using the function X'(A) = , we can rewrite those as:
0,ifx¢g A

F(t,ll') = XSlFl(tax) + X52F2(t7$)7
R(t,z,€) = X, R*(t, 1, ¢) + X, R*(t, 2, ).

Then, if F'? and R“? are T-periodic functions, we can define the averaged

function Fy(z) as

Fo(2) = ; L " P . (3.13)

which is exactly how we’ve defined when treating the smooth case; the only difference here
is that, within the calculations, there will be the need of splitting this integral whenever

we reach a discontinuity.

As we have seen before in chapter 2, when generalizing concepts from smooth
differential equations to the piecewise smooth case, we need to pay attention to the
discontinuity J; more specifically, we must take special care with what happens along the
sliding region >*, for the dynamics on this region is more complex that just connecting
the flows defined on X% and ¥~ — like we do on X°. With that in mind, we add an
extra hypothesis to handle the case of averaging on piecewise smooth systems, which will

basically discard these more problematic cases.

Theorem 11. (First order averaging for discontinuous systems, (LLIBRE; MEREU;
NOVAES, 2015)) Assuming the following hypothesis:

HI1 There exists an open bounded set C < D such that, for each z € C, the curve
{(t,z) :te I =S8' = R/T} reaches transversely the set ¥ and only at generic points

of discontinuity;

H2 For j = 1,2, the continuous functions F7 and R’ are locally Lipschitz with respect

to x, and T-periodic with respect to the time variable t;

H3 Fora e C with Fy(a) = 0, there exists a neighborhood U < C' of a such that Fy(z) # 0
for all z € U\{a} and dg(F,,U,0) # 0.

Then for |e| # 0 sufficiently small, there exists a T-periodic solution x(t,e) of system (3.12)

such that x(0,e) — a as € — 0.

The proof of this theorem will be made through the proof of 4 lemmas, based
on how it is done in (LLIBRE; MEREU; NOVAES, 2015); we start with an immediate

consequence of hypothesis H1:
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Lemma 8. The hypothesis H1 implies that, for € # 0 sufficiently small, every solution of
(3.12) starting in C reaches the set X only at X°.

Proof: For z € C, let p = (ty,2) € & be a generic point of discontinuity; then there is a
neighborhood V), of p such that ¥, = V, n ¥ is an embedded C*-hypersurface of §! x R™,
k = 1. This implies that ¥, can be locally described by the inverse image of a regular

value C* function hy,:V, — R; ie. we can write

for an open set p € V}, < V,. Then, we describe the system locally as:

Er(t,x) = eF'(t,x) + 2R (t, x,¢), if h,(t,z) > 0,
F-(t,x) = eF?(t,x) + 2 R*(t, x,¢), if h,(t,z) < 0.
Recall from chapter 2 that

peXif Fhy(p) - £ hy(p) > 0
pe XU if Fh,(p)- F- hy(p) <0,

where FXh,(p) = F=(p) - Vh,(p) denote the Lie derivative of h, with respect to F=" at
the point p. Calculating F."h,(p) - F= h,(p):

Frhy(p) = (1,eF} + €°R}, ..., eF, + €°R}) - (

- &h Z (eF! + &*R}) (6hp) :
- 81’1

oh, oh,  Oh,
ot ' ox " o,

F=hy(p) = (1, eF? +&°R;, ..., eF) + *R2) - (

2 (eF? + &*R?) (&hp) ,
~ or;

oh, oh,  oh,
ot "o dxy,

2

oh ohy [ < ohy oh
AR - _ (Y 2 222y (22 1 2ply [ “'
. Fhy(p) - FZhy(p) ((%) = <Z (eF; R>(0xi)+<SFZ +e Rz)((%@-))

7

e el

Fo) Fol) = (52) o)

thus
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Notice that the hypothesis of the curve {(¢,z) : t € $} reaching ¥ transversely

oh oh
implies that a—tp(to, z) # 0 (if a—tp(to, z) = 0, the curve will be tangent to X at p). Therefore
oh,

2
(615) > 0, which means that, for a sufficiently small € # 0, F."h,(p) - F_ h,(p) > 0, i.e.
pE X°. O]

Remark 2. By proving this lemma, we reassure that we’ll be dealing only with reqular

pertodic orbits.

Lemma 9. The averaged function (3.13) is continuous.

Proof: Let zy € C and let V be a bounded open neighborhood of z, such that V < C.
Define A(z, zp) = Fy(2) — Fo(z0), we wish to show that

|A(z,29)] — 0, whenever z — z.

Define I1? = {t € [0,T] : (t,2) € S12} and I? = {t € [0,T] : (¢, 2) € B}; then,

the expression of Fy(z) can be split into:

Fo(z) = JT F(t,2)dt = J

0 I

F(t,2)dt + J

12

F(t,z)dt + J F(t, z)dt.

2

By hypothesis H, we have that the set I° has measure zero, so the integral
over it will be zero, thus there’s no need to worry with how F (¢, z) is defined at the set
of discontinuity . Furthermore, it’s clear that F|; = F 'and F| p=F % by definition;

hence, this yields the following expression for Fy(z):

Fo(2) :L P, z)dt+f F2(¢, 2)dt

2

hence

[Fo(z) — Fo(z0)| =

F'(t, zo)dt—J F2(t, z)dt

12

J F(t, z)dt+f F2(t, z)dt—f
I; 13 ];0 20

<f |F1(t,z>—F1(t,zo)|dt+f (P2t 2) — F2(t, z)|dt
A1l I

2 2
z mIZO

f Fi(t2) + f Fl(t,zO)Jrf F2(1,2) + f F2(1, 2)
m, nan e 2

Y

first, notice that

f ]Fl(t,z)—Fl(t,zo)\dtJrf (P2t 2) — F2(t, z)|dt
IInIl,

2A712
IZnlz,

<J )\F1H2—20|]dt+J Apz||z — zo||dt
IinId, I

2A~7]2

z zZQ

< ()\Fl +)\F2) T ||25—2:0||7
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where Ap1 and Ap2 are yielded from hypothesis H2, i.e. they are the Lipschitz constants of

F1 and F?, respectively. Hence, when z — z, it’s guaranteed that
(J |EY(t, 2) — F(t, z)|dt + f |F2(t, 2) — F*(t, zo)|dt> — 0.
I1n1} 12AT12
z EN) z 20
Now, for the second part of the expression, let
L =max{F/(t,z): (t,2) e [0,T] x V,j e 1,2}
and notice that

J Fl(t,z)+J Fl(t,zo)JrJ F2(t,z)+J F2(t, =)
JEAVEN JERVE I2\I2 12 \I2

<L (L) + (IN2)) + (D)) + w(I2NI2)),

where 4i(.) denotes the Lebesgue measure of the set. Then z — zo implies that p(I/\I ) — 0
and p(I2 \I7) — 0 for j € {1,2}, what zeros this part of the expression as well. Therefore

|A(z,29)] = 0, if z — zp, i.e. Fy(2) is continuous on z. O

Lemma 10. Let x(t,z,¢) : [0,t,) — R" be the solution of system (3.12) with x(0, z,¢€) = z,
then, under the assumptions of Theorem 11 and for t, < T, we have that the following

equality holds:
t

z(t,z,e) =2z+¢- f F(s,2)ds + O(e?).

Proof: Let z € C; the function ¢ € [0,t,) — x(t, z,¢) is piecewise differential. From

hypothesis H1, for some ¢ sufficiently small, we assume the solution crosses ¥ and write

z1(t, z,e), if 0 <t <t
x(t,z,€) =
xo(t, z,¢), if t. <t < t,,

where t. is the time when the solution reaches > and depends on €. Moreover we have that

21(0, z,8) = z,

(3.14)
To(te, 2,6) = x1(te, 2,€).
Since z(t, z, €) is a solution of the system (3.12), then:
01 1 2 pl
ﬁ(t,z,a) =cF (t,x1(t,z,¢)) + "R (t,x1(t, 2,€), €),
(3.15)
0
S (t20) = Pt ot 2,9) + R w1, 2,9), ),

thus, each line of the expression (3.15) define with the corresponding line of (3.14) a
initial value problem, for which we can apply the Theorem 1.2.4 from (SANDERS;
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VERHULST; MURDOCK, 2007) that guarantees the existence and uniqueness of a
solution for the interval [0, inf(T,d/M;), where M; = sup ||eF'(t,z) + e*R'(t,x,¢)||, G =
[0,T] x D x [—&¢,e0] and d is such that ||z — z|| < d VmGe D. This means that we are able
to choose &, sufficiently small such that d/M; is large enough to make inf(T,d/M;) = T
for i = 1,2, which guarantees the existence of these solutions on the interval [0, T] for a

sufficiently small ¢

Moving forward, by solving the initial value problems we get:

¢
z1(t, z,¢) = 21(0, z,¢) + J (eF*(s,21(s,2,¢)) + 2R (s, 21(s, 2,€),€))ds
0
¢

t
=z+ €f F'(s,z1(s,2,€))ds + 52J RY(s,z1(s,2,¢),€)ds
0 0

t

t
=2+ EJ F(s,x(s,z,¢))ds + €2J R(s,xz(s,z,¢€),¢€)ds,
0 0

for t € [0, t.]. Analogously:
t t
2a(t,2,6) = malte, 21 6) + ¢ f F2(s, 235, 2,€)) + &2 f R2(s,a(s,2,2), )ds.
te te

for t € [t.,t.); but

te te

F'(s,z1(s,2,€))ds + J RY(s,z1(s,2,€),€)ds.

xo(te, z,6) = w1 (te, 2,6) = 2 + EJ
0

0

hence:

te
F'(s,11(s, 2 5))d$+52f R'(s,x1(s,2,€),¢€)ds
0

xa(t, 2z, € —Z—I—af

0

t t
+5J F%(s,19(s,2,¢€)) +52f R*(s,9(s,2,¢),€)ds,
te

t t

F(s,z(s,z,¢))ds + 62J R(s,x(s, z,€),€)ds,
0

xo(t, 2, €) :z+5J

0

for t € [t.,t.). Since the expressions of x(t, z, €) coincide for both intervals, we can simply
write:

t t

F(s,x(s,2,¢))ds + f R(s,x(s, z,¢),¢)ds, (3.16)

x(t,z,€) = z+5f

0
for all ¢t € [0,¢,).

Now, let gy = min{g}, e}, such that the solution z(t,z,¢) exists for every
€ [0, T]. From the continuity of x(¢, z,) and compactness of [0, 7] x C' x [—¢&g, &¢], there

exists a compact K < D such that the solution z(¢,z,¢) is contained in K for every
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€ [0,T], z € C and € € [—&g, 0] and, since R is piecewise continuous, it follows that
R(t,z,¢) is bounded by a constant N on [0,T] x K x [—&q,&o]. Then, for every t < T

f R(s,z(s,z,¢),¢)ds

0

T
< f |R(s,x(s, z,¢),e)|lds <T - N,
0

t
thus J R(s,x(s,z,€),e)ds = O(1). Then, expression (3.16) becomes
0

t

x(t,z,€) = z + afo F(s,2(s,z,¢))ds + O(c?),

which still isn’t what we wanted to achieve — notice the spatial argument of F'. But, since
F'(t,x) is Lipschitz for i = 1,2, we have that:

|Fi(t7xi(ta275)) - Fz(taz)| < Li|xi(t7z7€) - Z| = 0(5)7

hence F'(t,z(t, z,€)) = F'(t,2) + O(e); then

t (te
fF(s,x(s,z,e))ds= F'(s,z1(s,2,¢ ds+f F%(s,15(s,2,¢))ds

0 JO

(te
= | F'(s,2)+ 0 ds—l—fFZsz )+ O(e)ds
0
.)rts
= Fl(s,z)ds—i-J F?(s,2)ds + O(¢).
JO te

Making € — 0, t. — 0, we wish to bound the error of the integral; notice that:

to te

¢ ¢
f F'(s,2)ds + J F?(s,2)ds = J F'(s,z)ds + J F'(s, z)ds
0 te 0

to
t te
+ f F?(s,2)ds — J F2%(s,2)ds.
to to
te
Notice that E(e) = f Fl(s,2) — F(s,2)ds < E|t. — to| for some constant E.
¢

We wish to prove that E(e) = 085); in order to do so, let h, be as in the proof of Lemma
8 and write H; = h,(t,z;(t, z,€)). Then H,(ty,0) = 0 and

W(t[bo) = at (t07x1(t0,z O)) azp(t()’xi(t()’z’o)) at (tO,Z O)
ox; o oh,
but E(tmz,O) = 0 and, by hypothesis H1, ﬁ(to,xi(to, 2,0)) # 0, hence
0H,;
to, 0 0
o (t0,0) # 0,

then it follows from the Implicit Function Theorem that € — ¢, is a C* function, hence

tE = to + 0(8)
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to t t
and, since J F'(s,z)ds + J F%(s,2)ds = J F(s,z)ds, this implies
0 to 0
t t
J F(s,x(s,2,¢))ds = J F(s,z)ds + O(e).
0 0
Therefore

t
x(t,z,€) = z + EJ F(s,2)ds + O(£?).
0

]

Lemma 11. Let U = R"™ be a bounded open set and let f : U x [—ep,e0] — R" be a
continuous function. If f(x,0) # 0 for all x € oU, then — for e = & # 0 sufficiently
small and V' = U x [=€,&]— dp(f(x,e),V,0) is well defined and dg(f(x,),V,0) =
dg(f(x,0),V,0).

Proof: dg(f(x,e),V,0) will be well defined if it satisfies the hypotheses of Theorem 10.
By our assumptions, f(x,g) : U x [—¢&g, 0] is continuous and U x [—¢, &0] is bounded, so
what is left is to prove that 0 ¢ f(0U,¢), for € € [—£,£].

Let € € [—¢&¢, 0] and consider the continuous homotopy
flw, ) = f(x,0) + t(f(x,€) — f(,0)). (3.17)

Suppose that there are sequences (g;) < [—&o, 0], (z;) € 0U and (t;) < [0, 1]

with lim &; = 0 such that f; (x;,;) = 0. Since U is the boundary of a bounded set, it
1—00

is compact, and so is [0, 1]; then, there exist subsequences of (z;) and (¢;) converging to

points of the sets 0U and [0, 1], respectively, i.e. ;, — te[0,1] and x;, — & € JU. Hence

f(xij70) + tij(f<xij75ij) - f(xz],o)) =0
= lim (f(24;,0) + t;, (f (2, 5,) — f(2,,0))) =0

= f(#,0) + t(f(#,0) — f(#,0) =0
f(j’()) =0,

which yields a contradiction to the hypothesis of f(x,0) # 0 for all x € oU.

To avoid such contradiction, there must be some 0 # € € [—&g, £9] such that
0¢ f;(0U,¢e) for all e € [—&, &]. In particular, for ¢t = 1,0 ¢ f(0U,¢€), hence dg(f(z,¢€),V,0)
is well defined.

Now, by the property 3. from Theorem 10, we conclude that dg(f(z,¢),V,0)
must be invariant by the homotopy defined in (3.17), therefore

dp(f(x,€),V,0) = dg(f(z,0),V,0) for all € € [-£,£].
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Proof of Theorem 11:

We recall that we desire to find a periodic solution from system (3.12), i.e.
x(t, z,€) such that z(T, z,¢) = 2. So, to complete this proof, let g(z,¢) be a function such
that eg(z,¢e) = x(T, z,¢) — z. First, notice that g is well-defined, since the solution z(t, z, )
is defined Vt € [0, T, as guaranteed by Lemma 10. Moreover, also by Lemma 10:

x(T,z,e) —z =¢€g(z,e) = ¢ LT F(s,2)ds + O(£?)

= g(ze) :L F(s, 2)ds + O(e),

for € # 0; hence g(z,¢) is continuous by Lemma 9. By the hypothesis H3, if a € C is

1 T
such that Fy(a) = TJ F(s,a)ds = 0, then there is a neighborhood U < C such that
_Jo
Fo(z) # 0 for all z € U\{a} and dp(Fy,U,0) # 0; then, by Lemma 11, it follows that for

e # 0 sufficiently small

dB(FQ(Z), U, O) = dB(g(Z,ﬁ), (]7 0) # 0.

Thus, by property 1. from Theorem 10, 0 € g(U, ¢) for e sufficiently small, i.e.
there exists a. € U such that g(a.,e) = 0, therefore x(t,a.,¢) is a periodic solution of
(3.12). Furthermore, since Fy(z) # 0 for all z € U\{a}, then a. — a when € — 0 and the

proof is complete. O
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4 Limit Cycles on Liénard-like Perturbations

We start this chapter by introducing an important theorem that will be exten-
sively used to find a lower bound for the maximum number of limit cycles of a Liénard-like
perturbed system. First of all, we remark the limitations of our calculations: even though
we aim to find a maximum number of limit cycles of a system, we can only guarantee a
lower bound of the mazimum number of limit cycles, in the sense of it being the maximum
number of cycles that can be found through first-order averaging. That being said, we shall
focus on determining the maximum number of roots of the averaged function defined in
the previous chapter and, in order to do so, we introduce the following theorem, as stated
in (LLIBRE; TEIXEIRA, 2014):

Theorem 12. (Descartes’ Theorem) Consider the real polynomial p(z) = a; " +...4+-a; z',
with r > 1, 0 < i1 < ... < i, and the numbers a;; are not simultaneously zeros for
Jeil,2,..,r}. Ifa;; - a;,,, <0, we say that they have a variation of sign. If the number of
variations of signs is m, then p(x) has at most m positive real roots. Moreover, it’s always
possible to choose the coefficients of p(x) in such a way that p(x) has exactly r — 1 positive

real roots.
Proof: We shall split this proof in two parts. First we prove the statement
If the number of variations of signs is m, then p(x) has at most m positive real roots.

Suppose, without loss of generality, that a;, > 0 (the case of a; < 0 is

analogous). This gives us two possibilities:

1. a;, -a;, > 0: in this case a;, > 0. Notice that p(0) > 0 and p(x) — +0o0 when x — +0,
hence the graph of p must cross the positive part of the x-axis an even number
of times, i.e. there are a even number of roots with odd multiplicity. Furthermore,
notice that if the graph touches the x-axis at a point x = x(, without crossing it,
this root must have even multiplicity. Therefore p has an even number of positive

roots counting multiplicity.

2. a;, - a;, < 0:in this case a;, < 0, then p(0) = 0 and p(x) — —o0 when z — +0,
hence the graph of p must cross the positive part of the x-axis an odd number of

times; i.e. p has an odd number of positive roots counting multiplicity.

Moreover, notice that, if a; - a;. > 0, the number of sign changes of the

coefficients is even; otherwise, if a;, - a;, < 0, then it is odd. If s denote the number of

r
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variation of sign of the coefficients of p and z the number of zeros of p counting multiplicity,
then we know that z = s(mod 2). We proceed now by induction on r and, without loss of

generality, suppose iy = 0.

If = 2, then we write p(x) = a- 2" + b and note that p will have at most one
root. Indeed, if a > 0, then p(z) > 0 Yz > 0, hence p has one root if b < 0 (z = s = 1) and

zero roots if b > 0 (z = s = 0); for a < 0, the same argument is valid changing the signs.

Assume that for r < k — 1 the statement is true, i.e. z(p) < s(p). Then for

r = k consider the following cases:

1. If a;, - a;, > 0, then s(p) = s(p). Since deg(p) = deg(p) — 1 = k — 1, by the
induction hypothesis z(p) < s(p). Then, by the Mean Value Theorem, we get that
z(p) = z(p) — 1, hence:
s(p) = s(p) = 2(p) = 2(p) — 1 = s(p) = z(p) — 1.

However, because z(p) = s(p)(mod 2) we can’t have s(p) = z(p) — 1, hence s(p) >

z(p) = 1, s0 s(p) = z(p).

2. If a;, - a;, < 0, then s(p) + 1 = s(p), hence

s(p) > s(p) = 2(p) = 2(p) — 1 = s(p) > 2(p) — 1,

which yields again s(p) = z(p).

Therefore, the number of roots of p is, at most, equal to number of variation of
sign of p.

Now, using as reference the Appendix III from (LLIBRE; TEIXEIRA, 2014),

we’ll show that the following is also true:

Its always possible to choose the coefficients of p(x) in such a way that p(x) has exactly

r — 1 positive real roots.

We first prove the following lemma:

Lemma 12. Let fi,..., f, : A — R be linear independent functions. There exist by, ..., b,

such that the r vectors:

fi(b1) f2(b1) fr(b1)
f1(b2) f2(b2) fr(b2)

are linearly independents.
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Proof of Lemma 12: We will prove this by induction.

For r = 2, notice that it is trivially true since f; and f5 are linearly independent.

Assume that this is true for » = k — 1 and, by contradiction, suppose that this

is not true for r = k. Then there exist aq, ..., a; not all equal to zero such that

fi(by) fa(br) Jr(br)
fi(b2) fa(b2) Jr(b2)
ay(b) : + aa(b) : + ... + a(b) : =0.
fi(br—1) fa(br—1) fr(br—1)
f1(b) f2(b) i (0)
By the induction hypothesis, we have necessarily ay(b) # 0; then split in two
cases:
. . . Qﬁ(b) >
1. There exists i € {1, ...,k — 1} such that fx(b;) # 0. In this case, o) doesn’t depend
Qg
k—1 o (b)
on b; then for every b, fy(b) = Z J o) f;(b), contradicting the linear independence
" (073
7j=1

of f&a“'aj%-

2. Foreveryi e {1,....,k—1}, fr(b;) = 0. In this case «j(b) = 0 for every j € {1,...,k—1},
but then ay(b) = 0, which contradicts the hypothesis.

This completes the proof of the Lemma. O

Now, notice that taking

filw) = 2", folz) = 2, ..., fo(2) = 2™,

such that 0 <4y < ... <1,, the functions are linearly independent. Taking b1, ..., b, like in

Lemma 12, the matrix

fi(br) - f2(br) fr(br)
A fl(:b2) fz(-b2) fr(:b2) |
jl(br> jé(br) j}(br)

will be invertible; hence the equation A -a = (0, ...,0,1)” has a unique solution @. In

particular, there exists aq, as, ..., o, such that
aq

(A®) RB) o £0))- | [=0
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fori =1,2,...,r — 1. In other words, we can choose coefficients of the polynomial such
that we obtain exactly » — 1 roots in a certain set, in particular the set of the positive real

numbers. This finally completes the proof of Theorem 12. n

4.1 Smooth Perturbations

In this section, we will apply the averaging theory developed in section 3.2 to
obtain a result on the number of limit cycles on a generalized Liénard smooth system; we
present a proof of the first part of Theorem 5.

Proof of the first part of Theorem 5: Consider the system

x:y—gp(x%

y:_xa

(4.1)

where p(z) = a2 + asx® + ... + agms12>™ . First we shall rewrite it in polar coordinates,

i.e. x = rcosf and y = rsin 6. Notice that
i =7cosh —rsind -0 x cos) —rsind r
L= = B
y=r1sinf +rcosf -0 Y sinf)  rcosf 0

Then, by inverting the coordinate change matrix, we get

7\ 1 (rcosf rsin@\ [rsind —e-p(rcoso)
0 r \—sinf cosf —rcosf ’
which yields the following system:

7= —e-cosf - p(rcosh),

0=—-1+ Esilrlﬁ-p(rcosﬁ).
r

Admitting # as the new independent variable, we can rewrite the above system

as the following equation:

dr e -cosf - p(rcosh)

o 1— £sinf - p(rcosf)

In order to apply the averaging theorem, we shall first compute the Taylor
g-cosf-p(rcosb)

expansion of the function g(g) = Just to make it simpler, let

1 —Esinf-p(rcosd)
1

a = cosf-p(rcosf) and b = —sin 6 - p(r cosf); then:
r



Chapter 4. Limit Cycles on Liénard-like Perturbations 65

The expansion series of g(¢) near 0 will then be:

g(e) = 9(0) + ¢'(0) - € + O(e7),

where ¢(0) = 0 and
gy L A =&-b)+&-alf)]
9(0)— (1—§b)2 520_

Finally, the original system (4.1) can be written as

Zilg = ¢ -cosf - p(rcos) + O(c?). (4.2)

Since F'(r,0) = cos - p(rcosf) is just a sum and product of smooth functions,
it is itself a smooth function; moreover, it is a periodic function on 6, since 6 appears
only as the argument of cosines. Writing O(e?) = 2 - R(r, ), notice that, analogously
to the case of F'(r,0), R(r, ) is also smooth and periodic on the second variable, so the
conditions from theorem 9 hold. Write

1 2
Fo(r) = — f cos @ - p(rcosf)do,
2m Jo

2m+1
since p(rcosf) = Z a;r* cos' 0, then
i=1

27

1 (eramil 1 2mil .
Fo(r) = %f Z a;ricostt Odh = . Z aiTZJ cos' Tt 0de.
0 i=1 i=1 0

Note that

2
J cos? 1 0do = 0,

0

27
J cos?* 0d = by, # 0,

0

so all the even terms of the summation (which yield odd terms in the integral) will vanish,

in such way that there will be left only the odd terms of the summation, i.e.:

2m+1 o m o
Z a;r f cost™ 0dl = Z angT%H J cos®*20dp
i=1 0

k=0 0
m

2k+1

= Z A2k+10k7 .
k=0

By item 2 of the Theorem 9, if a # 0 is such that Fy(a) = 0 and det(D, F(«)) #
0, then there exists a periodic solution ¢ (6, ) of period T of the system (4.2) which is close

1 m
to a. On the other hand, since Fy(r) = or Z a2k+1bkr2k+1 is a polynomial with m + 1
k=0

terms, then by Theorem 12 Fy(r) has at most m roots.
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Therefore, m is a lower bound for the maximum number of limit cycles of
system (4.2). Moreover, since Descartes’ Theorem guarantees that we can always choose
proper coefficients of Fy(r) such that this maximum number of roots is achieved, this also

guarantees that we can choose p(z) such that the system (4.1) has m limit cycles. ]

4.2 Non-smooth Perturbations

In this section, we apply the method of averaging for non-smooth systems, in
particular non-smooth Liénard-like perturbations. We’ll start by outlining the results from
some more recent works on the topic and, by the end of the chapter, we will have stated

and proved the main result of our work, which is a generalization of Martins and Mereu’s
results from (MARTINS; MEREU, 2014).

One of the works that started the study of limit cycles on discontinuous Liénard
polynomial differential systems was done by Llibre and Teixeira and is summarized by the
paper (LLIBRE; TEIXEIRA, 2014). In their work, they proposed the study of the system

T =y +e-sgn(gm(r,y)) - f(x),

y:_xv

(4.3)

where f(z) is a polynomial of degree n and the zero set of the function sgn(g,(z,v)),
m € {0,2,4,6...}, is the union of m/2 distinct straight lines passing through the origin,
dividing the plane in sectors of angles 27r/m. They managed to prove — using the periodic
averaging method for regularized discontinuous systems — that for m = 0,2 and 4 the

lower bounds for the maximum number of limit cycles of system (4.3) are, respectively,

-1 —1
{n 5 ], [g] and ln 5 ] They also left unproved the conjecture that, for m > 6, a lower

1 -2
bound for the maximum number of limit cycles of this system should be lQ (n — mz) ] .
This was then proven to be true in (DONG; LIU, 2017).

In (MARTINS; MEREU, 2014), the studied system was

T =y,

. (4.4)
y=—v—ce(f(z) y+sgn(y) (ke + k2)),

where f is a polynomial of degree n € IN and ky, ks € R. The approach chosen by the authors
was also based on the ideas of the regularization method — specifically by introducing a

piecewise linear function of the type

-1 ify<—w

ou(y) = 4 if —w<y<w.
w
1 ify>w
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The original system (4.4) is then replaced by

T =y,
y=—z—e(f(z) y+pu(y)(krz + k2)),

and it’s easy to see that, taking w — 0, ¢, (y) — sgn(y). The main result of their work is

(4.5)

presented as the following theorem:

Theorem 13. (Martins-Mereu) For every n > 1 and |e| sufficiently small, the mazimum
number of limit cycles of the system (4.5) bifurcating from the periodic orbits of the linear
center © =y, y = —x s [n/2] + 1. Moreover, there are systems (4.5) having exactly

[n/2] + 1 limit cycles.

By proving this case, the case for the differential system (4.4) comes as a
corollary, taking the limit when w — 0. We generalize this theorem replacing kyx + ko by
an arbitrary real polynomial g(x) of degree m > 1. As mentioned before in section 3.3,
our proof will not pass through the regularization process — in one hand, this should ease
the process of calculating the averaged function but, in the other hand, we need to take a

more careful look at the conditions of the functions we are averaging.

Theorem 14. (Main Result) Let f(z) and g(x) be real polynomials of degrees n =1 and

m = 1, respectively, and consider the system

jj:yv

. (4.6)
y=-—x—¢c-(f(x) y+sgnly) g(z)).

Then, for |e| sufficiently small, the number [g] + [%] +1 is a lower bound to the maximum
number of limit cycles of the system (4.6) bifurcating from the periodic orbits of the linear
center x =y, y = —x. Moreover, we can choose f and g such that this number of cycles is

indeed achieved.

Proof of the Main Theorem:
Let f(x Z a;x" and g(z Z b; 27, We start rewriting the system in polar

=0 7=0
coordinates

jﬁz?’"cose—rsinﬁé_ cosf —rsinf r
y'=7"sin9+rcosé’-é sinf  rcosf 0]’
then inverting the coordinate change matrix:

7\ 1 (rcosf rsind rsin 0
9 r \—sinf cosf —rcosf —e- (f(rcosf)-rsinf + sgn(rsind) - g(rcosh))

—e-sinf - (f(rcosh) - rsinf + sgn(rsinf) - g(rcosf))
[ % - (f(rcos®) - rsinf + sgn(rsinf) - g(rcosh))
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To ease our calculations, put a = (f(rcos@) - rsinf + sgn(rsin ) - g(r cos)).

Then, admitting 6 as the new independent variable, we have:

dr_ —e-8inf -a
do —1—%‘(3089'@

= ¢(e).

Expanding the series of ¢ around € = 0 we get
¢(e) = ¢(0) + ¢'(0) - & + O(?),
but clearly ¢(0) = 0, and

#(0) = —sinf-a(—1— - cosf-a)— (—Esinh - a- =) _sind.a
(—1— f -cosf - a)? o '

Hence

Zg =sin@ - (f(rcosf)-rsinf +sgn(rsinf) - g(rcosf)) - e + O(e?).

Writing F(r,6) = sin - (f(r cos0)-rsin @ +sgn(rsind)-g(rcosf)) and O(e?) =
R(r,0) - €%; define the averaged function Fy(r) as the following integral:

27
Fy(r) ! f (f(rcosf) -rsin® @ + sgn(rsinf) - sin 6 - g(r cos 0))do.

Note that sgn(rsin f) = sgn(sin @), since r > 0, which yields the value +1 when
0 € (0,7) and —1 when 6 € (,27), then:

T 21

T o

21
J (f(rcosf) - rsin? §db +J

0 0

Fo(r) = = [ sin@~g(rcos€))d9—f

™

sin@ - g(r cos 9))0[9] ,
and since

2m 0 s
J sinf - g(rcos®))do = f sinf - g(rcosf))do = —f sinf - g(r cos0))do,

™ s 0

the averaged function can be written as:

s

2m
f (f(rcos)-rsin®0dd + 2 - f sin @ - g(rcos@))d@] :

0 0

R - o |

T or

Let I and J denote the following integrals:

2m
I :f (f(rcosf) -rsin?é,

0

J = f sinf - g(r cos0))do,
0

then for the first integral we have:

2T n n 27
I = J Z a;r’ cos' 0 - rsin? 0dh = Z a;r J cos® O sin? 0d6.

0 =0 i=0 0
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As in (MARTINS; MEREU, 2014), we use the following formulas:

27
f cos?*1 9 . sin?6df = 0,k = 0,1,2...

0

21
J cos?* @ - sin®0df = way, # 0,k = 0,1,2...
0

thus

3] |
I= Z Tag;ua;r 2Tt
i=0

Hence I is a polynomial formed exclusively by odd exponents of r, and with
[g] + 1 terms.

For the second integral, notice that
Z br? J cos’ 6 - sin Od6).
=0

j= 0

J = J Z bjrj cos’ @ - sin Adf =
0 =0

In order to evaluate this integral, consider the change of variables u = cos#,

du = sin 8df then:

L -t -1yt —1
Jcos”@-sin&dezf udeZL.

0 1 J+1
. . . (=1)7*t -1 . .
If j is odd, then j + 1 is even and — T - 0; but, when j is even, i.e.
J
—1)+ —1 2
when j + 1 is odd, then ( ) = —— # 0. Hence
Jg+1 Jg+1

m
which means that J is a polynomial with [5] + 1 monomials, formed by even exponents

of r.
Since Fy(r) = — (I +2J) and [ and J don’t have any powers of r in common, it
T
follows that Fy(r) is a polynomial with [g] + [%] + 2 terms. Therefore, by the Descartes’

Theorem, Fy(r) can have at most [g] + [%] + 1 roots; then, if we could apply Theorem

11, it would follow that the system (4.6) can have [g] + [%] + 1 limit cycles bifurcating
from the linear center. Moreover, since we can choose the coefficients from Fy(r) such that
. n m . . . .

it has exactly [5] + [5] + 1 roots, this maximum number of limit cycles can indeed be
achieved. Thus, to complete this proof, all we need to do is verify that the hypotheses

from Theorem 11 are fulfilled.
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First of all, for a given bounded set D, it is easy to see that FY(r,f) and
R(r,0,¢), j = 1,2, are Lipschitz with respect to the variable r since they are polynomials
in 7; moreover, they are also periodic on # with period 27, hence the hypothesis H2 is
satisfied. We are left to show that so are the hypotheses HI and H3 — this will be done

by proving the following propositions:

Proposition 1. For |e| # 0 sufficiently small, there exists an open bounded set C such

that every solution of system (4.6) reaches ¥ on €.

Proof of Proposition 1: Since the original system is autonomous, it’s sufficient to

analyze under which conditions the set ¢ exists.

First, notice that we can write ¥ = h~1(0), where h(z,y) = y. Let X and Y

denote the smooth pieces of the system, i.e.:

_ Y an x = / )
o) = <—x —e(f(x) -y + g(ar))> Aty <_x —e(f@) -y - g(x»)

Let p € ¥ be the point where the solution crosses the discontinuity, then
p = (x,0); computing the Lie derivatives on p:

Xh(p) = X(p) - Vh(p) = (0,2 + - g(x)) - (0,1) = —x + ¢ - g(),

Yh(p) =Y(p) Vh(p) = (0,—z —e-g(z)) (0,1) = —x — - g(z),
thus Xh(p) - Yh(p) = 2* — €*(g(z))*. Therefore, for a sufficiently small |¢| and = # 0,

p € 2, hence we can find a bounded set such that every solution passing through it reaches

Y. at a crossing point. O

Proposition 2. The coefficients of the polynomials f and g can be chosen in a way that,
for every a € R with Fy(a) = 0, there exists a neighborhood U of a such that Fy(z) # 0 for
all z € U\{a} and dg(Fy,U,0) # 0

Proof of Proposition 2: Let Z = {r e R" : Fy(r) = 0} be the set of positive zeros of the
averaged function. The Brouwer degree of a C'-function f with respect to a neighborhood
V of zero is given by (see (BUICA; LLIBRE, 2004)):

dg(f,V,0) = Z sign(detD f(a))

acf~1(0)nV

and, since F{ is a polynomial on r € R, then

dp(Fo,V,0) = > sign(Fy(a)).

a€ZnNV

Let a € Z, then there exists a neighborhood U such that Fy(z) # 0 Vz € U\{a}

(e.g. consider an open interval with radius half the distance to the next zero of Fy); then

dp(Fy, U, 0) = sign(Fj(a)).
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Thus what is left to prove is that we can choose the coefficients of F{y such that
Fi(a) # 0 for every a € Z.

Recall that, if f(x) = Z a;x" and g(x) = Z b;z’, then
i=0 j=0
3] %] 2
1 , — b2
Fo(r) = — g2t o N T
o(r) or ;)7?@20427’ + JZ;) 25+1 |

or simply

Since m > 1, we can choose by # 0, hence bo # 0. We will show that this is
sufficient to prove that, in order to choose the coefficients of a polynomial with a maximum

number of positive roots, we can’t have the derivatives vanishing at the roots.

Consider p(z) = ¢ + Z c;zb a polynomial with n + 1 terms for which we
j=1

have chosen the coefficients such that it has n positive roots. Notice that Theorem 12
guarantees such choice and this number is maximal. Since p(z) is a C*-function, then

so is p'(x); hence, the Mean Value Theorem implies that between each zero of p(x) there
n

should exist a zero of p'(x). However, p'(x) = Z l; - ¢;2"" is a polynomial with n terms;
j=1

thus, by Theorem 12, it can have at most n — 1 positive roots, which means that all the
positive real roots of p'(x) lie between the positive roots of p(z), therefore p can’t have

it’s derivative vanishing at its positive roots.

Since Fy fulfills the above conditions, we can choose as; and EQJ- so that Fy(r)
has [E] + [%] + 1 roots and for every a with Fy(a) = 0 there’s a neighborhood U 3 a in

2
which Fy(z) # 0 for all z € U and

dB(F(), U, 0) = &gn(Fé(a)) # 0.

Furthermore, since ag; = mag;ap; with ag; # 0 and ng =5 +2]i , we can choose

J
a; and b;, © = 1,...,n and j = 1,...,m, such that we obtain the desired coefficients for
. O

Example 9. Let’s find a system like (4.6) with n = 4 and m = 2 such that the maximum
number of predicted limit cycles is achieved, which is, in this case, 4 limit cycles. In order

to do so, consider the following system:

T =y
g =—x —¢l(ap + @17 + agx® + azx® + ayx?) - y + sgn(y) (b + bz + bax?)].
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Our first step is to make a change of variables to write the original system in

polar coordinates, which yields the system:

7 = — esin(f)(rsin(0)(ap + rcos(0)(ay + rcos(f)(az + rcos(f)(as + aqrcos(h)))))+
+ sgn(r)sgn(sin(#))(by + r cos(0)(by + bar cos(6)))),
0 = — sin() (e cos(0) (ag + r cos(0)(ar + rcos(0)(ag + rcos(0)(as + asr cos(0))))) + sin())+
_esgn(r) cos(0)sgn(sin(0))(bo + 7 cos(#) (b1 + bar cos(0)))

r

— cos?(0).

Taking 6 as the new independent variable and applying the Taylor expansion

series until order 2, we get the following differential equation:

Ellg =e(rsin?(0)( ag + rcos(0)( a; + rcos(A)( ay + rcos()( as + agrcos(h)))))+

+ sgn(sin(6))( by + rcos(8)( by + barcos(6)))) + O(e?).

1 2
Then we can compute the averaged function Fy(r) = ZJ F(r,0)df, where
T Jo

F(r,0) is the expression multiplying € in the above equation:

e (r (3w (8ag + 2asr? + ayr*) + 32byr) + 96by)

F fr—
0<T) 481

Having found the averaged function, our next step is to force the existence of
four positive roots; i.e. we build a system on the coefficients of Fy(r) by replacing r by

four positive values, namely r = 1,2, 3 and 4.

31 (8ag + 2as + ay) + 32by + 96by = 0,
2(3m(8ag + 8as + 16a4) + 64by) + 96by = 0,
3(37(8ag + 18ay + 8lay) + 96by) + 96by = 0,
4(3m(8ag + 32ay + 256a4) + 128by) + 96by = 0.

(4.7)

Solving the system (4.7) on ag, as, ay and by, we get

L ATGby 52y by dby
0= YT 0950 T 15 [

T 2257 T T a5n
If we set by = 1 and a; = a3 = by = 0, the original system will be as following:
T = Y,

. . 8z* 5222 476 N N 4 ) (4.8)
=—x— - - r? + — | sgn :
y 2257 45r 2257 ) 7 15 ) 8"

If we do the inverse calculations, the averaged system derived from system (4.8)

will have the exact 4 roots that we forced in our calculations, which implies by Theorem

11 that, for a sufficiently small €, this system should have 4 limit cycles. Indeed, using
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Wolfram Mathematica we are able to detect these limit cycles for ¢ = L studying the
behavior of the numeric solution of the system near the points (1,0), (2,0), (3,0) and
(4,0). We notice that between the origin and the point (1,0) the solutions are spiraling
towards the origin, while between (1,0) and (2,0) they are repelled from the direction of
the origin. This behavior will invert itself between (2,0) and (3,0), then again between
(3,0) and (4,0) and then, finally, after (4,0) the solutions are all attracted towards the
origin. Therefore we will have an unstable limit cycle near (1,0), a stable limit cycle
near (2,0), another unstable one near (3,0) and another stable one near (4,0). Figure 21

illustrates the limit cycles in the phase portrait.

20

20

-10

0 o 0 10 20 "o " 0 B 0
(a) Global phase portrait of system (4.8) (b) The green cycles are stable and the red
cycles are unstable

Figure 21 — Illustration from the general behavior of system (4.8)

Remark 3. We call figure 21 an illustration because the precise location of the limit cycles
are not computed by the averaging method. Notice that in this example we need a € = 100
in order to make all the cycles appear, which is considerably smaller then the € in example
8, hence the variations of the spirals near the cycles are also smaller, making it more

difficult to locate the cycle.
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