21/11/2014 2a. prova,

Questão 1. (Lista)

- a) (0,5 pontos) Escreva a fórmula explícita para a solução limitada do pro- $\begin{cases} u_t - \Delta u = f, & \text{em } \mathbb{R}^n \times (0, \infty) \\ u = g, & \text{em } \mathbb{R}^n \times \{t = 0\} \end{cases}.$ blema
- b) (2,0) Usando a fórmula do item a), deduza uma fórmula para a solução $\begin{cases} u_t \Delta u + u = f, & \text{em } \mathbb{R}^n \times (0, \infty) \\ u = g, & \text{em } \mathbb{R}^n \times \{t = 0\} \end{cases}.$ do problema
- 2. (Lista)
 - a) (2,0) Seja u uma solução do problema

$$\begin{cases} u_{tt} - u_{xx} = 0, & \text{em } \mathbb{R} \times (0, \infty) \\ u = g, u_t = h, & \text{em } \mathbb{R} \times \{t = 0\} \end{cases}$$

 $\begin{cases} u_{tt} - u_{xx} = 0, & \text{em } \mathbb{R} \times (0, \infty) \\ u = g, \ u_t = h, & \text{em } \mathbb{R} \times \{t = 0\}. \end{cases}$ com g e h tendo suporte compacto. Usando a fórmula de D'Alembert, mostre que $u(\cdot,t)$ também tem suporte compacto, para cada t>0. Mostre que a função energia $E(t) = \frac{1}{2} \int_{\mathbb{R}} (u_t^2 + u_x^2) dx$ é constante. b) (0,5) Mostre que o problema

b) (0,5) Mostre que o problema
$$\begin{cases} u_{tt} - u_{xx} = f, & \text{em } \mathbb{R} \times (0, \infty) \\ u = g, \ u_t = h, & \text{em } \mathbb{R} \times \{t = 0\}. \end{cases}$$
tem no máximo uma solução.

3. (2,5) Sejam U um aberto limitado do \mathbb{R}^n , com fronteira suave, T > 0, $U_T = \Omega \times (0,T]$, e $u \in C^{\infty}(U_T)$ uma solução da equação do calor $u_t - \Delta u = 0$ em U_T . Mostre que se ζ é uma função de classe C^{∞} em \mathbb{R}^{n+1} tal que $\zeta \equiv 0$ em \mathbb{R}^{n+1}/U_T e $\zeta \equiv 1$ em um aberto $V \subset \subset (U \times (0,T))$, entao vale a fórmula

 $u(x,t) = \int_0^t \int_U K(x,t,y,s) u(y,s) dyds$, para todo $(x,t) \in V$, com $K(x,t,y,s) = \Phi(x-y,t-s) \left(\zeta_s(y,s) + \Delta \zeta(y,s) \right) + 2\nabla_y \Phi(x-y,t-s) \cdot \nabla \zeta(y,s),$ onde Φ é a solução fundamental da equação do calor em \mathbb{R}^n .

- **4.** a) (1,0) Mostre que se $u \in C^2(\mathbb{R}^n \times (0,\infty))$ satisfaz a equação da onda $\Box u \equiv u_t - \Delta u = 0 \text{ em } \mathbb{R}^n \times (0, \infty) \text{ então } w(x, t) = \int_{S_r(0)} u(y, t) \, d\sigma_y, \ r = |x|,$ também satisfaz a equação da onda $\Box w = 0$ em $\mathbb{R}^n \times (0, \infty)$.
- b) (1,5) Seja n=2k+1 ($n\geq 3$ ímpar). Usando o Lema sobre regra de derivação visto em aula (do livro-texto) mostre que se $u \in C^{k+1}(\mathbb{R}^n \times (0,\infty))$ satisfaz a equação da onda $\Box u \equiv u_t - \Delta u = 0$ em $\mathbb{R}^n \times (0, \infty)$ então, para cada $x \in \mathbb{R}^n$ fixado, a função $\tilde{U}(r,t) := (\frac{1}{r}\frac{d}{dr})^{k-1} \left(r^{2k-1} f_{S_r(x)} u(y,t) d\sigma_y\right)$ satisfaz a equação da onda $\tilde{U}_{tt} = \tilde{U}_{rr}$ em $\mathbb{R} \times (0, \infty)$. Além disso, mostre também que $\tilde{U}\big|_{r=0} = 0$. **Observação:** a resolução deste item só no caso n = 3 valerá 1,0 ponto.