Book of Exercises

MAT80. XIII Workshop on Dynamical Systems Celebrating the 80th birthday of Marco Antonio Teixeira

MINI-COURSE: Integral Characterization of Poincaré Half-Maps and its Applications to Limit Cycles of Planar Piecewise Linear Systems.

Fernando Fernández-Sánchez

Departamento de Matemática Aplicada II. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

Instituto de Matemáticas. Universidad de Sevilla.

(Send the answers to fefesan@us.es)

What is an inverse integrating factor?

Let us consider the SDE

The ODE can also be written as

(S)
$$\begin{cases} \dot{x} = f(x,y), \\ \dot{y} = g(x,y). \end{cases} \left(\begin{array}{c} \cdot = \frac{d}{dt} \end{array} \right)$$

(0) g(x,y)dx - f(x,y)dy = 0.

An inverse integrating factor (IIF) of system (S) in a region $\mathcal{U} \subset \mathbb{R}^2$ is a function $V: \mathcal{U} \to \mathbb{R}$ such that:

- $V \in C^1(\mathcal{U})$,
- V is not locally null,
- V satisfies the PDE

$$abla V(x,y) \left(egin{array}{c} f(x,y) \ g(x,y) \end{array}
ight) = V(x,y) \operatorname{div} \left(egin{array}{c} f(x,y) \ g(x,y) \end{array}
ight)$$

Why the name IIF?

Exercise

If V satisfies ∇V(x,y) \$\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix} = V(x,y) \div \$\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}\$, then 1/V is an integrating factor for equation (O) on \$\mathcal{U} \cdot V^{-1}({0})\$, that is, the equation \$\frac{g(x,y)}{V(x,y)}dx - \frac{f(x,y)}{V(x,y)}dy = 0\$ is exact on \$\mathcal{U} \cdot V^{-1}({0})\$.
Moreover, after the change of time \$ds = V(x,y)dt\$, the system \$\begin{pmatrix} \dot{x} &= f(x,y) \\ \dot{y} &= g(x,y)\$, can be written on \$\mathcal{U} \cdot V^{-1}({0})\$ as the \$\end{pmatrix}\$.

hamiltonian system
$$\begin{cases} \frac{dx}{ds} = \frac{f(x,y)}{V(x,y)}, \\ \frac{dy}{ds} = \frac{g(x,y)}{V(x,y)}. \end{cases}$$

Linear systems: Generalized Liénard canonical form

Exercise

Consider $\begin{cases} \dot{x}_1 &= m_{11}x_1 + m_{12}x_2 + b_1, \\ \dot{x}_2 &= m_{21}x_1 + m_{22}x_2 + b_2, \end{cases}$ with Poincaré section $x_1 = 0$

- Prove that for $m_{12} = 0$, a Poincaré map cannot be defined.
- Try a linear change of variables $\begin{cases} x = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3, \\ y = \beta_1 x_1 + \beta_2 x_2 + \beta_3, \end{cases}$ to transform the system into (LCF) $\begin{cases} \dot{x} = Tx y, \\ \dot{y} = Dx a, \end{cases}$ and to keep the section fixed as x = 0. (Soln.: $x = x_1$, $y = m_{22}x_1 - m_{12}x_2 - b_1$).
- Check that for $D \neq 0$ there is one equilibrium at (a/D, aT/D).
- Prove that the system is invariant to $(x, y, a) \leftrightarrow (-x, -y, -a)$.
- Study the flow on x = 0.

Inverse integrating factors: Linear systems in Liénard form

(LCF) $\begin{cases} \dot{x} = Tx - y, \\ \dot{y} = Dx - a. \end{cases}$

Proposition: The set \mathcal{V} of polynomial inverse integrating factors V(x, y) of degree less or equal than two for system (LCF) is a finite dimensional vector space whose dimension depends on the parameters a, T and D. Concretely, the following bases \mathcal{B}_i may be chosen:

• If
$$a^2 + D^2 \neq 0$$
 and
• $T \neq 0$, then
 $B_1 = \{D^2x^2 - DTxy + Dy^2 + a(T^2 - 2D)x - aTy + a^2\}.$
• $T = 0$, then $B_2 = \{1, Dx^2 + y^2 - 2ax\}.$
• If $a^2 + D^2 = 0$ and
• $T \neq 0$, then $B_3 = \{y^2 - Txy, y - Tx\}.$
• $T = 0$, then $B_4 = \{1, y, y^2\}.$

Inverse integrating factors: Linear systems in Liénard form

Exercise

Prove the Proposition.

Soln.: To do this, substitute the polynomial

$$V(x,y) = \sum_{0 \leq i+j \leq 2} lpha_{ij} x^i y^j$$

into the equation

$$abla V(x,y) \left(egin{array}{c} Tx-y\\ Dx-a \end{array}
ight) = V(x,y) \operatorname{div} \left(egin{array}{c} Tx-y\\ Dx-a \end{array}
ight)$$

Then, solve the linear system of equations obtained from the equality of the coefficients of the corresponding terms and group the solutions in terms of $a^2 + D^2$ and T.

Inverse integrating factors: Zero set

$$V(x,y) = D^{2}x^{2} - DTxy + Dy^{2} + a(T^{2} - 2D)x - aTy + a^{2}$$

Proposition: The zero set $V^{-1}(\{0\})$ of function V is given by:

- For D = 0 (no equilibrium case) and
 - T = 0, then $V^{-1}(\{0\}) = \emptyset$.

•
$$T \neq 0$$
, then $V^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 : T^2x - Ty + a = 0\}.$

• For $D \neq 0$ (equilibrium at (x, y) = (a/D, aT/D)) and

• $T^2 - 4D > 0$, then $V^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 : 2D(x - \frac{a}{D}) = (T \pm \sqrt{T^2 - 4D})(y - \frac{aT}{D})\}.$ • $T^2 - 4D = 0$, then $V^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 : 2D(x - \frac{a}{D}) = T(y - \frac{aT}{D})\}.$ • $T^2 - 4D < 0$, then $V^{-1}(\{0\}) = \{(a/D, aT/D)\}.$

A brief Comment. For $D \neq 0$ and $A = \begin{pmatrix} T & -1 \\ D & 0 \end{pmatrix}$, $V(x,y) = -D \det \left(A \begin{pmatrix} x - \frac{a}{D} \\ y - \frac{aT}{D} \end{pmatrix} \middle| \begin{pmatrix} x - \frac{a}{D} \\ y - \frac{aT}{D} \end{pmatrix} \right)$.
Exercise

Inverse integrating factors: Some comments

 $V(x,y) = D^{2}x^{2} - DTxy + Dy^{2} + a(T^{2} - 2D)x - aTy + a^{2}$

- The level curves of the inverse integrating factor V are conic sections.
- In particular, let us assume that $4D T^2 > 0$.
 - The level curves of V are ellipses whose center is the equilibrium.
 - The change $\begin{cases} x = X + \frac{\alpha}{D}, \\ y = \alpha X + \beta Y + \frac{aT}{D}, \end{cases} \text{ for } \alpha = \frac{T}{2}, \beta = \frac{\sqrt{4D T^2}}{2}. \\ \text{transforms } V(x, y) \text{ into } \widetilde{V}(X, Y) = \beta^2 (\alpha^2 + \beta^2) (X^2 + Y^2). \end{cases} \overset{\text{Exercise}}{\leftarrow}$

• V(x, y) is a Lyapunov function:

$$\nabla V(x,y) \left(\begin{array}{c} f(x,y)\\g(x,y)\end{array}\right) = V(x,y) \operatorname{div} \left(\begin{array}{c} f(x,y)\\g(x,y)\end{array}\right) = TV(x,y)$$

Inverse integrating factors: Characteristic Polynomial

Exercise Let $A = \begin{pmatrix} T & -1 \\ D & 0 \end{pmatrix}$ and p_A its characteristic polynomial. • For $D(Dx-a) \neq 0$, it is $V(x,y) = \frac{(Dx-a)^2}{D} p_A \left(D \frac{Tx-y}{Dx-a} \right)$. • Specifically, $V(0, y) = \frac{a^2}{D} p_A \left(D \frac{y}{x} \right)$. • On the other hand, for D = 0, it is $V(0, y) = y^2 p_A \left(D \frac{a}{y} \right)$.

Construction of a suitable conservative vector field

For $V(x,y) = D^2x^2 - DTxy + Dy^2 + a(T^2 - 2D)x - aTy + a^2$, system (LCF) can be written as the hamiltonian system

$$\left\{ egin{array}{ccc} \displaystyle rac{dx}{ds} &=& \displaystyle rac{Tx-y}{V(x,y)}, \ \displaystyle rac{dy}{ds} &=& \displaystyle rac{Dx-a}{V(x,y)}, \end{array}
ight.$$

on $\mathcal{U} \setminus V^{-1}(\{0\})$, where ds = V(x, y)dt.

Moreover, the vector field $G(x,y) = \left(-\frac{Dx-a}{V(x,y)}, \frac{Tx-y}{V(x,y)}\right)$ is

- conservative on any connected component of $\mathcal{U} \setminus V^{-1}(\{0\})$,
- orthogonal to the flow on $\mathcal{U} \setminus V^{-1}(\{0\})$.

Remark: The integral on $ec{\gamma_3}$

A good choice for
$$\vec{\gamma}_3$$
 is
 $\vec{\gamma}_3 \equiv \begin{cases} x = 2\cos\theta + \frac{a}{D}, \\ y = T\cos\theta + \sqrt{4D - T^2}\sin\theta + \frac{aT}{D}. \end{cases}$
where $\theta \in [0, 2\pi].$

This is a positively oriented parameterization of the ellipse given by $V(x, y) = D(4D - T^2)$.

Therefore
$$\oint_{\vec{\gamma}_3} G \cdot dr = \frac{2\pi T}{D\sqrt{4D - T^2}}$$

The integral (Equilibrium on the Poincaré section)

Short summary: Liénard form, Inverse Integrating Factor

The linear system (Liénard canonical form):

(LCF)
$$\begin{cases} \dot{x} = Tx - y \\ \dot{y} = Dx - a \end{cases} \quad [[\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x})]]$$

Poincaré section is x = 0. It is assumed that $D^2 + a^2 \neq 0$. For $D \neq 0$ there is one equilibrium at (a/D, aT/D).

The inverse integrating factor

$$V(x,y) = D^{2}x^{2} - DTxy + Dy^{2} + a(T^{2} - 2D)x - aTy + a^{2}$$

The vector field $\mathbf{G}(x,y) = \left(-\frac{Dx-a}{V(x,y)}, \frac{Tx-y}{V(x,y)}\right) = \frac{\mathbf{F}(x,y)^{\perp}}{V(x,y)}$ is

• conservative on any connected component of $\mathbb{R}^2 \setminus V^{-1}(\{0\})$,

• orthogonal to the flow on $\mathbb{R}^2 \setminus V^{-1}(\{0\})$.

Obtaining the Flight time

Remind that if Φ is the flow of system and F is its vector field, then $V(\Phi(t; \mathbf{p})) = V(\mathbf{p}) \exp\left(\int_0^t \operatorname{div} F(\Phi(s; \mathbf{p})) \, ds\right).$

• For system (LCF) it is $\operatorname{div} F(x, y) \equiv T$. Thus, $T\tau = \log\left(\frac{V(0, y_1)}{V(0, y_0)}\right)$.

• Moreover, if

$$\mathrm{PV}\int_{y_1}^{y_0} \frac{-y}{Dy^2 - aTy + a^2} dy = \frac{k\pi T}{D\sqrt{4D - T^2}}, \quad k \in \{0, 1, 2\},$$

then

$$\log\left(\frac{V(0,y_1)}{V(0,y_0)}\right) = T\left(\frac{2k\pi}{\sqrt{4D-T^2}} + \int_{y_1}^{y_0} \frac{a}{V(0,y)}dy\right).$$
Exercise

• Case
$$D \cdot a \neq 0$$
:
 $k \in \{0, 1, 2\}, \qquad \frac{k\pi T}{D\sqrt{4D - T^2}} = PV \int_{y_1}^{y_0} \frac{-y}{Dy^2 - aTy + a^2} dy =$
 $= -\frac{1}{2} \int_{y_1}^{y_0} \frac{2Dy - aT}{Dy^2 - aTy + a^2} dy + \frac{1}{2} \int_{y_1}^{y_0} \frac{-aT}{Dy^2 - aTy + a^2} dy \iff$
 $\iff \log\left(\frac{V(0, y_1)}{V(0, y_0)}\right) = T\left(\frac{2k\pi}{\sqrt{4D - T^2}} + \int_{y_1}^{y_0} \frac{a}{V(0, y)} dy\right)$

• Case
$$D = 0$$
, $a \neq 0$: (Imply $k = 0$).
• Case $T \neq 0$: $\int_{y_1}^{y_0} \frac{a}{-aTy + a^2} dy = \frac{-1}{T} \int_{y_1}^{y_0} \frac{-aT}{-aTy + a^2} dy$
• Case $T = 0$: Trivial.

• Case
$$D \neq 0$$
, $a = 0$: (Imply $D > 0$ and $k = 1$).

$$\frac{\pi T}{D\sqrt{4D - T^2}} = \operatorname{PV} \int_{y_1}^{y_0} \frac{-1}{Dy} dy = \frac{1}{D} \log\left(\left|\frac{y_1}{y_0}\right|\right) = \frac{1}{2D} \log\left(\frac{y_1^2}{y_0^2}\right) \quad \Box$$

Generalized Liénard Form of a Piecewise Linear System

Exercise

Consider
$$\dot{\mathbf{x}} = \begin{cases} A_L \mathbf{x} + \mathbf{b}_L, & \text{if } x_1 \leq 0, \\ A_R \mathbf{x} + \mathbf{b}_R, & \text{if } x_1 \geq 0, \end{cases}$$
 where $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2,$
 $A_{L,R} = (a_{ij}^{L,R})_{2 \times 2}, \ \mathbf{b}_{L,R} = (b_1^{L,R}, b_2^{L,R}) \in \mathbb{R}^2.$

• Prove that $a_{12}^L a_{12}^R > 0$ is a neccesary condition for the existence of limit cycles.

2 Find a homeomorphism preserving the separation line x = 0, that transforms the system into the following Liénard canonical form

$$\begin{cases} \dot{x} = T_L x - y \\ \dot{y} = D_L x - a_L \end{cases} \quad \text{for} \quad x < 0, \quad \begin{cases} \dot{x} = T_R x - y + b \\ \dot{y} = D_R x - a_R \end{cases} \quad \text{for} \quad x > 0,$$

where $a_L = a_{12}^L b_2^L - a_{22}^L b_1^L$, $a_R = a_{12}^L (a_{12}^R b_2^R - a_{22}^R b_1^R) / a_{12}^R$, $b = a_{12}^L b_1^R / a_{12}^R - b_1^L$, and T_L , T_R and D_L , D_R are the traces and determinants of the matrices A_L and A_R . Hint:

$$\begin{pmatrix} x\\y \end{pmatrix} = \begin{pmatrix} 1&0\\a_{22}^L&-a_{12}^L \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix} - \begin{pmatrix} 0\\b_1^L \end{pmatrix}, \quad x_1 \leq 0,$$
$$\begin{pmatrix} x\\y \end{pmatrix} = \frac{1}{a_{12}^R} \begin{pmatrix} a_{12}^L&0\\a_{12}^La_{22}^R&-a_{12}^La_{12}^R \end{pmatrix} \begin{pmatrix} x_1\\x_2 \end{pmatrix} - \begin{pmatrix} 0\\b_1^L \end{pmatrix}, \quad x_1 > 0.$$

E. Freire, E. Ponce, and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11 (2012). [Prop 3.1]

Lum-Chua's conjecture: Liénard canonical form

Under the (necessary) condition $a_{12} \neq 0$ the linear change of variables $(x, y) = (x_1, a_{22}x_1 - a_{12}x_2 - b_1)$ transforms the system into the Liénard canonical form,

$$(S_L) \left\{ \begin{array}{ll} \dot{x} = T_L x - y \\ \dot{y} = D_L x - a \end{array} \right. \text{ for } x < 0, \quad (S_R) \left\{ \begin{array}{ll} \dot{x} = T_R x - y \\ \dot{y} = D_R x - a \end{array} \right. \text{ for } x \ge 0,$$

where $a = a_{12}b_2 - a_{22}b_1$.

Exercise

- Prove that no limit cycle exists for T_LT_R ≥ 0 (Hint: Green's Theorem; See, for instance, E. Freire, E. Ponce, F. Rodrigo, F. Torres, Internat. J. Bifur. Chaos Appl. 6 Sci. Engrg. 8 (1998)).
- Prove that no limit cycle exists for a = 0 (Hint: The system is homogeneous).

Therefore, $T_L T_R < 0$ must be assumed for the existence of limit cycles.