Book of Exercises

MAT80. XIII Workshop on Dynamical Systems Celebrating the 80th birthday of Marco Antonio Teixeira

MINI-COURSE: Integral Characterization of Poincaré Half-Maps and its Applications to Limit Cycles of Planar Piecewise Linear Systems.

Fernando Fernández-Sánchez

Departamento de Matemática Aplicada II. Escuela Técnica Superior de Ingeniería. Universidad de Sevilla.

Instituto de Matemáticas. Universidad de Sevilla.

(Send the answers to fefesan@us.es)

What is an inverse integrating factor?

Let us consider the SDE

The ODE can also be written as

$$
\textbf{(S)}\ \left\{\begin{array}{ccl} \dot{x} & = & f(x,y), \\ \dot{y} & = & g(x,y). \end{array}\right. \ \left(\begin{array}{c} \cdot & = & \frac{d}{dt} \end{array}\right)
$$

(O) $q(x, y)dx - f(x, y)dy = 0.$

.

An inverse integrating factor (IIF) of system (S) in a region $\mathcal{U} \subset \mathbb{R}^2$ is a function $V: \mathcal{U} \to \mathbb{R}$ such that:

- $\bullet V \in C^1(\mathcal{U}),$
- *V* is not locally null,
- *V* satisfies the PDE

$$
\nabla V(x, y) \left(\begin{array}{c} f(x, y) \\ g(x, y) \end{array} \right) = V(x, y) \operatorname{div} \left(\begin{array}{c} f(x, y) \\ g(x, y) \end{array} \right)
$$

Why the name IIF?

Exercise

If *V* satisfies $\nabla V(x, y)$ $\int f(x, y)$ $g(x,y)$ $= V(x, y) \operatorname{div} \left(\begin{array}{c} f(x, y) \\ f(x, y) \end{array} \right)$ $g(x,y)$ ◆ , then $1/V$ is an integrating factor for equation (O) on $U \setminus V^{-1}(\{0\})$, that is, the equation $\frac{g(x,y)}{g(x,y)}$ $\frac{g(x,y)}{V(x,y)}dx-\frac{f(x,y)}{V(x,y)}dy=0$ is exact on $\mathcal{U}\setminus V^{-1}(\{0\}).$ • Moreover, after the change of time $ds = V(x, y)dt$, the system $\begin{cases} \dot{x} = f(x, y), \\ \dot{y} = g(x, y), \end{cases}$ $\mathsf{can}\,$ be written on $\mathcal{U}\setminus V^{-1}(\{0\})$ as the $\sqrt{2}$ \int $\frac{dx}{ds}$ = $\frac{f(x,y)}{V(x,y)}$ *,*

 $\frac{dy}{ds}$ = $\frac{g(x,y)}{V(x,y)}$

.

hamiltonian system

 $\left\lfloor \right\rfloor$

Linear systems: Generalized Liénard canonical form

Exercise

Consider $\begin{cases} \dot{x}_1 = m_{11}x_1 + m_{12}x_2 + b_1, \\ \dot{x}_1 = m_{12}x_1 + m_{12}x_2 + b_1, \end{cases}$ $\dot{x}_2 = m_{21}x_1 + m_{22}x_2 + b_2$, with Poincaré section $x_1 = 0$

- Prove that for $m_{12} = 0$, a Poincaré map cannot be defined.
- Try a linear change of variables $\begin{cases} x = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3, \\ x = \alpha_1 x_1 + \alpha_2 x_2 + \alpha_3, \end{cases}$ $y = \beta_1 x_1 + \beta_2 x_2 + \beta_3$, to transform the system into (LCF) $\begin{cases} \dot{x} = Tx - y, \ \dot{x} = Dx \end{cases}$ $\begin{array}{rcl}\n\ddot{x} & = & 1 \dot{x} & y, \\
\dot{y} & = & Dx - a, \n\end{array}$ and to keep the section fixed as $x = 0$. $(Soln: x = x_1, y = m_{22}x_1 - m_{12}x_2 - b_1).$
- Check that for $D \neq 0$ there is one equilibrium at $(a/D, aT/D)$.
- Prove that the system is invariant to $(x, y, a) \leftrightarrow (-x, -y, -a)$.
- Study the flow on $x = 0$.

Inverse integrating factors: Linear systems in Liénard form

 $(LCF) \begin{cases} \dot{x} = Tx - y, \\ \dot{x} = Dx - z. \end{cases}$ \dot{y} = $Dx - a$.

Proposition: The set V of polynomial inverse integrating factors $V(x, y)$ of degree less or equal than two for system (LCF) is a finite dimensional vector space whose dimension depends on the parameters *a*, *T* and *D*. Concretely, the following bases B_i may be chosen:

\n- \n of
$$
f(a^2 + D^2 \neq 0)
$$
 and\n
	\n- $T \neq 0$, then
	\n- $B_1 = \{D^2x^2 - DTxy + Dy^2 + a(T^2 - 2D)x - aTy + a^2\}$
	\n- $T = 0$, then $B_2 = \{1, Dx^2 + y^2 - 2ax\}$
	\n\n
\n- \n of $f(a^2 + D^2) = 0$ and\n
	\n- $T \neq 0$, then $B_3 = \{y^2 - Txy, y - Tx\}$
	\n- $T = 0$, then $B_4 = \{1, y, y^2\}$
	\n\n
\n

Inverse integrating factors: Linear systems in Liénard form

Exercise

Prove the Proposition.

Soln.: To do this, substitute the polynomial

$$
V(x,y) = \sum_{0 \le i+j \le 2} \alpha_{ij} x^i y^j
$$

into the equation

$$
\nabla V(x,y) \left(\begin{array}{c} Tx - y \\ Dx - a \end{array} \right) = V(x,y) \operatorname{div} \left(\begin{array}{c} Tx - y \\ Dx - a \end{array} \right).
$$

Then, solve the linear system of equations obtained from the equality of the coefficients of the corresponding terms and group the solutions in terms of $a^2 + D^2$ and *T*.

Inverse integrating factors: Zero set

$$
V(x,y) = D2x2 - DTxy + Dy2 + a(T2 – 2D)x - aTy + a2
$$

Proposition: The zero set $V^{-1}(\{0\})$ of function V is given by:

• For $D = 0$ (no equilibrium case) and

• $T = 0$, then $V^{-1}(\{0\}) = \emptyset$.

$$
T \neq 0, \text{ then } V^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 : T^2x - Ty + a = 0\}.
$$

• For $D \neq 0$ (equilibrium at $(x, y) = (a/D, aT/D)$) and

• $T^2 - 4D > 0$, then $V^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 : 2D\left(x - \frac{a}{D}\right) = \left(T \pm \sqrt{T^2 - 4D}\right)\left(y - \frac{aT}{D}\right)\}.$ • $T^2 - 4D = 0$, then $V^{-1}(\{0\}) = \{(x, y) \in \mathbb{R}^2 : 2D\left(x - \frac{a}{D}\right) = T\left(y - \frac{aT}{D}\right)\}.$ $T^2 - 4D < 0$, then $V^{-1}(\{0\}) = \{(a/\overline{D}, aT/D)\}.$

A brief Comment. For $D \neq 0$ and $A =$ $\begin{pmatrix} T & -1 \end{pmatrix}$ *D* 0 ◆ , $V(x,y) = -D \det \left(A \begin{pmatrix} x - \frac{a}{D} \\ y - \frac{aT}{D} \end{pmatrix} \right)$ $y - \frac{aT}{D}$ \setminus $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\int x - \frac{a}{D}$ $y - \frac{aT}{D}$ | | . **Exercise** \leftarrow

Inverse integrating factors: Some comments

 $V(x,y) = D^2x^2 - DTxy + Dy^2 + a(T^2 - 2D)x - aTy + a^2$

- The level curves of the inverse integrating factor *V* are conic sections.
- In particular, let us assume that $4D T^2 > 0$.
	- \bullet The level curves of V are ellipses whose center is the equilibrium.
	- The change $\sqrt{2}$ $\left| \right|$ $\left\vert \right\vert$ $x = X +$ *a* $\frac{a}{D}$, $y = \alpha X + \beta Y +$ *aT* $\frac{d}{D}$, for $\alpha = \frac{T}{2}$ $\frac{1}{2}$, $\beta =$ $\sqrt{4D-T^2}$ $\frac{1}{2}$. transforms $V(x, y)$ into $\tilde{V}(X, Y) = \beta^2(\alpha^2 + \beta^2)(X^2 + Y^2)$. **Exercise** \leftarrow

 \bullet $V(x, y)$ is a Lyapunov function:

$$
\nabla V(x,y) \left(\begin{array}{c} f(x,y) \\ g(x,y) \end{array} \right) = V(x,y) \operatorname{div} \left(\begin{array}{c} f(x,y) \\ g(x,y) \end{array} \right) = TV(x,y).
$$

Inverse integrating factors: Characteristic Polynomial

Exercise Let $A = \begin{pmatrix} T & -1 \\ D & 0 \end{pmatrix}$ *D* 0 ◆ and *p^A* its characteristic polynomial. For $D(Dx - a) \neq 0$, it is $V(x, y) = \frac{(Dx - a)^2}{D} p_A$ $\int D \frac{Tx - y}{D}$ $Dx - a$ ◆ . $\mathsf{Specifically},\ V(0,y)=\frac{a^2}{D}$ $\frac{a}{D}$ *p_A* $\left(D\right)$ *a* $\overline{ }$. ${\bf On}$ the other hand, for $D=0$, it is $V(0,y)=y^2\;p_A$ $\int D \frac{a}{a}$ *y* ◆ .

Construction of a suitable conservative vector field

For $V(x, y) = D^2x^2 - DTxy + Dy^2 + a(T^2 - 2D)x - aTy + a^2$, system (LCF) can be written as the hamiltonian system

$$
\begin{cases}\n\frac{dx}{ds} = \frac{Tx - y}{V(x, y)},\\
\frac{dy}{ds} = \frac{Dx - a}{V(x, y)},\n\end{cases}
$$

on $\mathcal{U} \setminus V^{-1}(\{0\})$, where $ds = V(x, y)dt$.

 $\mathsf{Moreover, the vector field} \,\, G(x,y) = \bigg(-\frac{Dx-a}{V(x,y)}\bigg)$ $\frac{Tx-y}{\frac{Tx}{}$ $V(x,y)$ ◆ is

- conservative on any connected component of $\mathcal{U} \setminus V^{-1}(\{0\})$,
- \bullet orthogonal to the flow on $\mathcal{U} \setminus V^{-1}(\{0\}).$

Remark: The integral on $\vec{\gamma}_3$

This is a positively oriented parameterization of the ellipse given by $V(x, y) = D(4D - T^2)$.

Therefore
$$
\oint_{\vec{\gamma}_3} G \cdot dr = \frac{2\pi T}{D\sqrt{4D - T^2}}.
$$

The integral (Equilibrium on the Poincaré section)

Short summary: Liénard form, Inverse Integrating Factor

The linear system (Liénard canonical form):

 $(LCF) \begin{cases} \dot{x} = Tx - y, \\ \dot{x} = Dx - z. \end{cases}$ $\dot{y} = \begin{bmatrix} 1 & y \\ Dx - a \end{bmatrix}$ $[\mathbf{\dot{x}} = \mathbf{F}(\mathbf{x})]$

Poincaré section is $x = 0$. It is assumed that $D^2 + a^2 \neq 0$. For $D \neq 0$ there is one equilibrium at $(a/D, aT/D)$.

The inverse integrating factor

 $V(x,y) = D^2x^2 - DTxy + Dy^2 + a(T^2 - 2D)x - aTy + a^2$

 $\begin{equation} \textsf{The vector field } \mathbf{G}(x,y) = \left(-\frac{Dx-a}{V(x,y)}\right) \end{equation}$ $\frac{Tx-y}{\frac{Tx}{y}}$ $V(x,y)$ $= \frac{\mathbf{F}(x, y)^{\perp}}{\mathbf{F}(x, y)}$ $\frac{Y(x,y)}{V(x,y)}$ is

• conservative on any connected component of $\mathbb{R}^2 \setminus V^{-1}(\{0\})$,

• orthogonal to the flow on $\mathbb{R}^2 \setminus V^{-1}(\{0\}).$

Obtaining the Flight time

Remind that if Φ is the flow of system and F is its vector field, then $V(\Phi(t;{\bf p})) = V({\bf p}) \exp \left(\int^t$ $\boldsymbol{0}$ $\text{div}F(\Phi(s; \mathbf{p})) ds$.

 $\displaystyle\textsf{For}\;\textsf{system}\;\big(\textsf{LCF}\big) \textnormal{ it is } \textnormal{div} F(x,y) \equiv T. \;\textsf{Thus,}\; T\tau = \log\left(\frac{V(0,y_1)}{V(0,y_0)}\right)$ ◆ .

• Moreover, if

$$
PV \int_{y_1}^{y_0} \frac{-y}{Dy^2 - aTy + a^2} dy = \frac{k\pi T}{D\sqrt{4D - T^2}}, \quad k \in \{0, 1, 2\},\
$$

then

$$
\log\left(\frac{V(0,y_1)}{V(0,y_0)}\right) = T\left(\frac{2k\pi}{\sqrt{4D-T^2}} + \int_{y_1}^{y_0} \frac{a}{V(0,y)} dy\right).
$$

Exercise

• Case
$$
D \cdot a \neq 0
$$
:
\n $k \in \{0, 1, 2\}$, $\frac{k\pi T}{D\sqrt{4D - T^2}} = \text{PV} \int_{y_1}^{y_0} \frac{-y}{Dy^2 - aTy + a^2} dy =$
\n $= -\frac{1}{2} \int_{y_1}^{y_0} \frac{2Dy - aT}{Dy^2 - aTy + a^2} dy + \frac{1}{2} \int_{y_1}^{y_0} \frac{-aT}{Dy^2 - aTy + a^2} dy \iff$
\n $\iff \log \left(\frac{V(0, y_1)}{V(0, y_0)}\right) = T \left(\frac{2k\pi}{\sqrt{4D - T^2}} + \int_{y_1}^{y_0} \frac{a}{V(0, y)} dy\right)$

\n- \n**Case**
$$
D = 0
$$
, $a \neq 0$: (Imply $k = 0$).\n
\n- \n**Case** $T \neq 0$: $\int_{y_1}^{y_0} \frac{a}{-aTy + a^2} dy = \frac{-1}{T} \int_{y_1}^{y_0} \frac{-a}{-aTy + a^2} dy$ \n
\n- \n**Case** $T = 0$: Trivial.\n
\n

• Case
$$
D \neq 0
$$
, $a = 0$: (Imply $D > 0$ and $k = 1$).
\n
$$
\frac{\pi T}{D\sqrt{4D - T^2}} = \text{PV} \int_{y_1}^{y_0} \frac{-1}{Dy} dy = \frac{1}{D} \log \left(\left| \frac{y_1}{y_0} \right| \right) = \frac{1}{2D} \log \left(\frac{y_1^2}{y_0^2} \right) \quad \Box
$$

Generalized Liénard Form of a Piecewise Linear System

Exercise

Consider
$$
\dot{\mathbf{x}} = \begin{cases} A_L \mathbf{x} + \mathbf{b}_L, & \text{if } x_1 \leq 0, \\ A_R \mathbf{x} + \mathbf{b}_R, & \text{if } x_1 \geq 0, \\ A_L, & \text{if } x_1 \geq 0, \end{cases}
$$
 where $\mathbf{x} = (x_1, x_2) \in \mathbb{R}^2$, $A_{L,R} = (a_{ij}^{L,R})_{2 \times 2}$, $\mathbf{b}_{L,R} = (b_1^{L,R}, b_2^{L,R}) \in \mathbb{R}^2$.

- \bullet Prove that $a_{12}^La_{12}^R>0$ is a neccesary condition for the existence of limit cycles.
- **2** Find a homeomorphism preserving the separation line $x = 0$, that transforms the system into the following Liénard canonical form

$$
\left\{\begin{array}{ll} \dot{x}=T_Lx-y\\ \dot{y}=D_Lx-a_L \end{array}\right.\quad\text{for}\quad x<0,\quad \left\{\begin{array}{ll} \dot{x}=T_Rx-y+b\\ \dot{y}=D_Rx-a_R \end{array}\right.\quad\text{for}\quad x>0,
$$

where $a_L = a_{12}^L b_2^L - a_{22}^L b_1^L$, $a_R = a_{12}^L (a_{12}^R b_2^R - a_{22}^R b_1^R)/a_{12}^R$, $b = a_{12}^L b_1^R / a_{12}^R - b_1^L$, and $T_L, \, T_R$ and $D_L, \, D_R$ are the traces and determinants of the matrices *A^L* and *AR*.

Hint:

$$
\begin{pmatrix}\nx \\
y\n\end{pmatrix} = \begin{pmatrix}\n1 & 0 \\
a_{22}^L & -a_{12}^L\n\end{pmatrix} \begin{pmatrix}\nx_1 \\
x_2\n\end{pmatrix} - \begin{pmatrix}\n0 \\
b_1^L\n\end{pmatrix}, \quad x_1 \le 0,
$$
\n
$$
\begin{pmatrix}\nx \\
y\n\end{pmatrix} = \frac{1}{a_{12}^R} \begin{pmatrix}\na_{12}^L & 0 \\
a_{12}^L a_{22}^R & -a_{12}^L a_{12}^R\n\end{pmatrix} \begin{pmatrix}\nx_1 \\
x_2\n\end{pmatrix} - \begin{pmatrix}\n0 \\
b_1^L\n\end{pmatrix}, \quad x_1 > 0.
$$

E. Freire, E. Ponce, and F. Torres, Canonical discontinuous planar piecewise linear systems, SIAM J. Appl. Dyn. Syst., 11 (2012). [Prop 3.1]

Lum-Chua's conjecture: Liénard canonical form

Under the (necessary) condition $a_{12} \neq 0$ the linear change of variables $(x, y)=(x_1, a_{22}x_1 - a_{12}x_2 - b_1)$ transforms the system into the Liénard canonical form,

$$
(S_L)\left\{\begin{array}{l} \dot{x}=T_Lx-y\\ \dot{y}=D_Lx-a \end{array}\right.\text{ for }\quad x<0,\quad (S_R)\left\{\begin{array}{l} \dot{x}=T_Rx-y\\ \dot{y}=D_Rx-a \end{array}\right.\text{ for }\quad x\geqslant 0,
$$

where $a = a_{12}b_2 - a_{22}b_1$.

Exercise

- Prove that no limit cycle exists for $T_L T_R \geq 0$ (Hint: Green's Theorem; See, for instance, E. Freire, E. Ponce, F. Rodrigo, F. Torres, Internat. J. Bifur. Chaos Appl. 6 Sci. Engrg. 8 (1998)).
- Prove that no limit cycle exists for $a = 0$ (Hint: The system is homogeneous).

Therefore, $T_L T_R < 0$ must be assumed for the existence of limit cycles.