Exemplos - Base e Dimensão

Exemplo 1: $\{(1,0),(0,1)\}$ é uma base para o espaço vetorial real \mathbb{R}^2 , que chamamos de base canônica do \mathbb{R}^2 .

De fato, o conjunto $\{(1,0),(0,1)\}$ é L.I., uma vez que a equação:

$$\alpha_1(1,0) + \alpha_2(0,1) = (0,0)$$

só é possível para $\alpha_1 = \alpha_2 = 0$. E além, disso, o conjunto gera todo o \mathbb{R}^2 , uma vez que qualquer $v = (x, y) \in \mathbb{R}^2$ pode ser escrito como (x, y) = x(1, 0) + y(0, 1). Assim, $\{(1, 0), (0, 1)\}$ é uma base para \mathbb{R}^2 .

Portanto, $dim(\mathbb{R}^2) = 2$.

Exemplo 2: $\{(1,1),(0,1)\}$ é uma base para \mathbb{R}^2 .

Tomando a equação:

$$\alpha_1(1,1) + \alpha_2(0,1) = (0,0) \Rightarrow$$

$$\Rightarrow \begin{cases} \alpha_1 = 0 \\ \alpha_1 + \alpha_2 = 0 \end{cases}$$

Obtemos um sistema que tem solução: $\alpha_1 = \alpha_2 = 0$. Logo, $\{(1,0),(0,1)\}$ é L.I.

Além disso, $\{(1,0),(0,1)\}$ gera todo o \mathbb{R}^2 , uma vez que todo $v=(x,y)\in\mathbb{R}^2$ pode ser escrito como (x,y)=x(1,1)+(y-x)(0,1). Assim, $\{(1,0),(0,1)\}$ é uma base para \mathbb{R}^2 .

Como era de se esperar, $dim(\mathbb{R}^2) = 2$.

Exemplo 3: $\{(1,0),(0,1),(2,1)\}$ **NÃO** é uma base para \mathbb{R}^2 .

Podemos escrever o elemento (2,1) como combinação linear de (1,0) e (0,1) da forma: $(2,1) = 2(1,0) + 1(0,1) \Rightarrow 2(1,0) + 1(0,1) - 1(2,1) = (0,0)$. Portanto, temos que $\{(1,0),(0,1),(2,1)\}$ não é L.I., logo não pode ser uma base para \mathbb{R}^2 .

Exemplo 4: $\{(1,0,1),(2,0,0)\}$ **NÃO** é uma base para \mathbb{R}^3 .

O conjunto $\{(1,0,1),(2,0,0)\}$ é L.I., porém não gera todo o \mathbb{R}^3 . Tome um $v=(x,y,z)\in\mathbb{R}$, não podemos escrever qualquer elemento dessa forma como combinação linear de $\{(1,0,1),(2,0,0)\}$, uma vez que:

$$(x, y, z) = \alpha_1(1, 0, 1) + \alpha_2(2, 0, 0) \Rightarrow$$

$$\Rightarrow \begin{cases} \alpha_1 + 2\alpha_2 = x \\ 0 = y \\ \alpha_1 = z \end{cases}$$

Ou seja, temos uma restrição para a coordenada y do vetor $(x, y, z) \in \mathbb{R}^3$, ou seja, o conjunto $\{(1, 0, 1), (2, 0, 0)\}$ gera apenas os elementos da forma (x, 0, z), mas não gera todo o \mathbb{R}^3 , portanto, não pode ser uma base para \mathbb{R}^3 .

Exemplo 5: $\{(1,1,1),(-1,1,0),(1,0,-1)\}$ é uma base para o espaço vetorial \mathbb{R}^3 .

Vamos mostrar que o conjunto é L.I. Tomando a equação:

$$\alpha_1(1,1,1) + \alpha_2(-1,1,0) + \alpha_3(1,0,-1) = (0,0,0) \Rightarrow$$

$$\Rightarrow \left\{ \begin{array}{c} \alpha_1 - \alpha_2 + \alpha_3 = 0 \\ \alpha_1 + \alpha_2 = 0 \\ \alpha_1 - \alpha_3 = 0 \end{array} \right. \xrightarrow{escal on amento} \left\{ \begin{array}{c} \alpha_1 - \alpha_2 + \alpha_3 = 0 \\ \alpha_2 - 2\alpha_3 = 0 \\ 3\alpha_3 = 0 \end{array} \right.$$

Obtemos um sistema linear homogêneo, cuja única solução é $\alpha_1 = \alpha_2 = \alpha_3 = 0$. Logo, $\{(1,1,1),(-1,1,0),(1,0,-1)\}$ é L.I.

Além disso, este conjunto gera todo o \mathbb{R}^3 . Tomando um elemento $v=(x,y,z)\in\mathbb{R}^3$ podemos escrevê-lo como:

$$(x, y, z) = \beta_1(1, 1, 1) + \beta_2(-1, 1, 0) + \beta_3(1, 0, -1) \Rightarrow$$

$$\Rightarrow \begin{cases} \beta_1 - \beta_2 + \beta_3 = x \\ \beta_1 + \beta_2 = y \\ \beta_1 - \beta_3 = z \end{cases} \Rightarrow \begin{cases} \beta_1 - \beta_2 + \beta_3 = x \\ \beta_2 - 2\beta_3 = z - x \\ 3\beta_3 = y + x - 2z \end{cases}$$

Obtemos um sistema linear que tem solução única. Dessa forma, podemos determinar os escalares $\beta_1, \beta_2, \beta_3$ de modo que todo vetor $(x, y, z) \in \mathbb{R}^3$ pode ser escrito como combinação linear dos elementos (1, 1, 1), (-1, 1, 0), (1, 0, -1). Assim $\{(1, 1, 1), (-1, 1, 0), (1, 0, -1)\}$ gera todo \mathbb{R}^3 e é L.I. logo, é uma base para \mathbb{R}^3 .

Portanto, $dim(\mathbb{R}^3) = 3$.

Exemplo 6: $\{1, x, x^2, ..., x^n\}$ é uma base para o espaço vetorial dos polinômios de grau menor ou igual a n, $P_n(\mathbb{R})$, conhecida como base canônica de $P_n(\mathbb{R})$.

De fato, o conjunto $\{1, x, x^2, ..., x^n\}$ é L.I. uma vez que:

$$\alpha_1 + \alpha_2 x + \alpha_3 x^2 + \dots + \alpha_{n+1} x^n = 0 + 0x + 0x^2 + \dots + 0x^n$$

só vale para $\alpha_1 = \alpha_2 = \dots = \alpha_{n+1} = 0$, uma vez que dois polinômios só são iguais se todos os coeficientes são iguais.

Além disso, $\{1, x, x^2, ..., x^n\}$ gera todo o espaço de polinômios de grau menor ou igual que n, uma vez que qualquer $p(x) \in P_n(\mathbb{R})$ pode ser escrito como: $\beta_1 + \beta_2 x + \beta_3 x^2 + ... + \beta_n x^n$. Logo, $\{1, x, x^2, ..., x^n\}$ é uma base $P_n(\mathbb{R})$.

Portanto, $dim(P_n(\mathbb{R})) = n + 1$.

Exemplo 7: $\{(0,1,2),(1,1,1),(0,2,0),(2,5,4)\}$ **NÃO** é uma base para \mathbb{R}^3 , mas podemos extrair uma base para \mathbb{R}^3 desse conjunto.

De fato, podemos verificar que: (2,5,4) = (0,1,2) + 2(1,1,1,) + (0,2,0), ou seja, (2,5,4) é combinação linear dos demais elementos do conjunto, o que faz com que o conjunto seja L.D. e não possa ser uma base para \mathbb{R}^3 .

Podemos extrair o elemento (2,5,4) desse conjunto e assim, $\{(0,1,2),(1,1,1),(0,2,0)\}$ será L.I., uma vez que, tomando a equação:

$$\alpha_{1}(0,1,2) + \alpha_{2}(1,1,1) + \alpha_{3}(0,2,0) = (0,0,0) \Rightarrow$$

$$\Rightarrow \begin{cases} \alpha_{2} = 0 \\ \alpha_{1} + \alpha_{2} + \alpha_{3} = 0 \\ 2\alpha_{1} + \alpha_{2} = 0 \end{cases}$$

Obtemos um sistema linear homogêneo cuja única solução é $\alpha_1 = \alpha_2 = \alpha_3 = 0$, logo o conjunto é L.I.

Como $dim(\mathbb{R}^3) = 3$ e $\{(0,1,2), (1,1,1), (0,2,0)\}$ possui três elementos e é L.I., logo forma uma base para \mathbb{R}^3 , pois se não formasse, pelo Teorema 4 (Completamento) poderíamos completá-lo até formar uma base, mas caso isso ocorra, formaríamos uma base com mais de três elementos, o que contradiz o Teorema 3, de que qualquer base para um espaço vetorial tem o mesmo número de elementos. Assim, $\{(0,1,2), (1,1,1), (0,2,0)\}$ é uma base para \mathbb{R}^3 .

Exemplo 8: Determine uma base para o subespaço $S = \{M \in \mathbb{M}_2(\mathbb{R}) \mid M^t = M\}$ de $\mathbb{M}_2(\mathbb{R})$, subespaço das matrizes simétricas de ordem 2×2 .

Vamos determinar um conjunto de geradores para S. Qualquer matriz simétrica de ordem 2×2 é da forma:

$$\left[\begin{array}{cc} a & b \\ b & c \end{array}\right] = a \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right] + b \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right] + c \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right]$$

Logo, $\left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right], \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right] \right\}$ é um conjunto de geradores para o subespaço S.

Tomando a equação:

$$\alpha_1 \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \alpha_2 \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \alpha_3 \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow$$

$$\Rightarrow \begin{cases} \alpha_1 = 0 \\ \alpha_2 = 0 \\ \alpha_2 = 0 \\ \alpha_3 = 0 \end{cases}$$

Dessa forma, a equação só tem a solução $\alpha_1=\alpha_2=\alpha_3=0$ e portanto, o conjunto $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ é Linearmente Independente, e gera o subespaço S, logo forma uma base para S.

Portanto, dim(S) = 3.