Teorema - Subespaço Gerado

Teorema: Seja S um conjunto finito de elementos de um espaço vetorial V. O conjunto de todas as combinações lineares dos vetores de S, denotado por [S], forma um subespaço vetorial de V

Demonstração: Seja $S = \{v_1, v_2, ..., v_n\}$ um conjunto de n elementos de V. Vamos verificar que valem as condições de subespaço vetorial para [S]:

- (i) O elemento neutro de V está em [S], pois basta tomar todas as constantes α_i nulas, assim o resultado da combinação linear é o elemento neutro do espaço vetorial V;
- (ii) Considere $u, w \in [S]$. Se $u \in [S]$, então: $u = \alpha_1 v_1 + ... + \alpha_n v_n$. E se $w \in [S]$, então: $w = \beta_1 v_1 + ... + \beta_n v_n$. Temos que: $u + w = (\alpha_1 v_1 + ... + \alpha_n v_n) + (\beta_1 v_1 + ... + \beta_n v_n) = (\alpha_1 + \beta_1) v_1 + ... + (\alpha_n + \beta_n) v_n$. Como $\alpha_i + \beta_i \in \mathbb{R}$, temos que u + w é também combinação linear dos elementos de S, logo $u + w \in [S]$;
- (iii) Considere $u \in [S]$ e um escalar $\beta \in \mathbb{R}$. Se $u \in [S]$, então: $u = \alpha_1 v_1 + \ldots + \alpha_n v_n$. Assim, temos que: $\beta u = \beta(\alpha_1 v_1 + \ldots + \alpha_n v_n) = \beta \alpha_1 v_1 + \ldots + \beta \alpha_n v_n$. Como $\beta \alpha_i \in \mathbb{R}$, temos que βu é também combinação linear dos elementos de S, logo $\beta u \in [S]$.

Assim, provamos que [S] é um subespaço vetorial de V.