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Abstract

We consider the approximation of a second order elliptic equation (Darcy problem) by
using the Primal Hybrid Finite Element Method on quadrilateral meshes. We present
new results in terms of sufficient, and in some cases also necessary, conditions to obtain
the optimal convergence rates on convex quadrilaterals obtained from bilinear mappings.
Numerical experiments are performed to illustrate the theoretical results.
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1. Introduction

Let Ω be a bounded open subset of R2, with a Lipschitz continuous boundary BΩ.
We consider the second order elliptic model problem

´ divpK ∇uq “ f in Ω (1.1a)
u “ 0 on BΩ, (1.1b)

where f P L2pΩq is a given function and K “ Kpxq is a symmetric and uniformly positive
definite tensor, i.e., there exist two positive constants C1 and C2 such that

C1ξ
T ξ ď ξT Kpxqξ ď C2ξ

T ξ @ξ P R2, x P Ω̄. (1.2)

Here we choose to treat homogeneous Dirichlet boundary conditions, but other boundary
conditions could be imposed (see, e.g. [1]). Problem (1.1) can be associated to the
problem of finding the pressure field u in the flow of an incompressible fluid in a rigid
saturated heterogeneous porous medium, where the tensor K represents the permeability
of the porous matrix divided by the fluid viscosity, in the so-called Darcy problem [2].
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The most classical finite element approach to solve (1.1) is the use of the H1-
conforming Galerkin method [3], where the finite element subspaces of H1pΩq are com-
posed of functions that are continuous along the interelement boundaries. In [4] the
authors introduced the Primal Hybrid Finite Element Method for solving (1.1), which is
a non-conforming finite element method based on a primal hybrid variational principle.
This principle allows for the relaxation of the interelement continuity of the finite ele-
ment subspaces, through the introduction of new variables on the faces of the elements,
which are related to Lagrange multipliers. In this case, the discrete solution no longer
belongs to H1pΩq [4]. The first methods based on this principle, in the context of second
order elliptic problems, were originally proposed in [5, 6]. Since then, variations of the
Primal Hybrid Method and have been proposed and successfully applied in the solu-
tion of different problems, such as quasi-linear [7] and non-linear [8] elliptic problems,
and parabolic problems [9, 10]. The primal hybrid principle is also at the core of the
development of the multiscale hybrid-mixed methods [11, 12, 13]. Naturally, the ideas
that support the hybridization process are also applicable for mixed [14, 1], dual-mixed
[15, 16] and discontinuous Galerkin methods [17, 18]. When combined with stabiliza-
tion techniques that circumvent the discrete inf-sup condition, the hybrid formulations
provide a powerful tool for the development of higher-order schemes such as the hybrid
high-order methods and the hybridizable discontinuous Galerkin methods [19, 18, 20, 1].
An extensive comparative study of the accuracy and computational performance of con-
tinuous, discontinuous, mixed, and stabilized primal hybrid finite element methods for
second-order elliptic problems can be found, for example, in [21].

Here, we restrict ourselves to the original primal hybrid variational formulation of the
model problem (1.1), without stabilization terms, which can be stated as: find the pair
pu, λq P X ˆM such that

ÿ

KPTh

ż

K

pK ∇uq ¨∇v dx`
ÿ

KPTh

xλ, vyBK “

ż

Ω
fv dx @ v P X, (1.3a)

ÿ

KPTh

xµ, uyBK “ 0 @µ PM. (1.3b)

Here λ is the Lagrange multiplier, the spaces X and M are linked to a given regular
partition Th of Ω composed of non-overlapping convex subdomainsK, and x¨, ¨yBK denotes
the duality between H´ 1

2 pBKq and H 1
2 pBKq. More specifically, the spaces X and M are

defined by
XpThq “

 

v P L2pΩq : v|K P H1pKq , @K P Th
(

and (1.4)

MpThq “

#

µ P
ź

KPTh

H´
1
2 pBKq : D q P Hpdiv,Ωq s.t. q ¨ nBK “ µ on BK ,@K P Th

+

,

(1.5)
where nBK represents the unit outward normal along BK. The well posedness of problem
(1.3) is studied in [4], where the authors show that it has a unique solution pu, λq, with
u P H1

0 pΩq and
λ “ ´pK ∇uq ¨ nBK on BK, @K P Th, (1.6)

linking the Lagrange multiplier to the flux (normal component of Darcy’s velocity),
which is an important quantity in several applications, usually evaluated through the
use of mixed finite elements [22, 23, 24, 2].

2



Finite element approximations for the primal hybrid formulation (1.3) are based on
the construction of finite dimensional subspaces Xh Ă X and Mh ĂM , that must satisfy
some compatibility conditions in order to provide stable and accurate solutions, which
reduce the flexibility in constructing such subspaces. In [4] the authors present families
of compatible spaces Xh Ă X and Mh Ă M on triangular and quadrilateral meshes,
generated from affine mappings of standard reference elements K̂. For the particular
case of quadrilateral meshes, the use of affine mappings of the reference element (in
general, the unit square) limits the domains that can be meshed, since it generates at
most parallelograms [25].

Herein we discuss the approximation of the primal hybrid formulation (1.3) by finite
element subspaces Xh generated by bilinear mappings, covering the more general case
of meshes composed of convex quadrilaterals (Theorems 3.4 and 3.6). The proposed
analysis makes use of results established in [25] and can be seen as a complement to the
original analysis carried out in [4].

2. The primal hybrid finite element method on quadrilaterals

Let Th be a partition of Ω into convex quadrilaterals which satisfies the following
regularity condition described in [26]. For each quadrilateral K P Th we obtain four
triangles by the four possible choices of three vertices of K. Denote by Ti, 1 ď i ď 4 each
one of these triangles. Then we define

ρK “ 2 min
1ďiď4

t diameter of circle inscribed in Tiu (2.1)

and
hK “ diameter of K. (2.2)

The shape constant of K is then defined as γK “ hK{ρK and the shape constant γ of a
mesh as the supremum of γK for K P Th. A family of meshes is called shape-regular if the
shape-constant of its meshes can be uniformly bounded [23, 24]. The mesh parameter
is defined as h “ maxKPTh hK . Denoting by K̂ the standard reference element, in our
case the unit square r0, 1s ˆ r0, 1s, each geometrical element K P Th, is generated from
an isomorphism FK : K̂ Ñ R2 such that K “ FKpK̂q.

We denote by PrpK̂q the space of polynomials on K̂ of total degree at most r, by
Pr,spK̂q the space of polynomials on K̂ of degree at most r in x̂1 and degree at most s
in x̂2 and set QrpK̂q “ Pr,rpK̂q. We also denote by EmpBK̂q the following polynomial
space over BK̂

EmpBK̂q “ tµ P L
2pBK̂q : µ|e P Pmpeq, @ e (edges) of K̂u

and by TmpBK̂q the subspace of EmpBK̂q composed of continuous functions. Finally we
define the Serendipity spaces in K̂ by

SrpK̂q :“ spantx̂i1x̂
j
2, x̂

r
1x̂2, x̂1x̂

r
2 : i` j ď ru, (2.3)

as in [27]. Now, defining the finite dimensional spaces Û Ă H1pK̂q and Λ̂ Ă L2pBK̂q,
such that for r ě 1 and m ě 0

PrpK̂q Ă Û , TrpBK̂q Ă Û |
BK̂ (2.4a)

EmpBK̂q Ă Λ̂, and tα̂µ̂ : µ̂ P Λ̂u Ă Λ̂ @α̂ P E0pBK̂q, (2.4b)
3



the spaces Xh and Mh are constructed as follows

Xh “ tv P L
2pΩq : @K P Th , v|K P UKu,

Mh “

#

µ P
ź

KPTh

ΛK : µ|BK1 ` µ|BK2 “ 0 on K1 XK2 , for every pair of adjacent

elements K1,K2 P Thu ,

with
UK “ tv P H

1pKq : v “ v̂ ˝ F´1
K , v̂ P Ûu

and
ΛK “ tµ P L2pBKq : µ “ µ̂ ˝ F´1

K , µ̂ P Λ̂u.
The discrete problem is then defined by: Find the pair puh, λhq P Xh ˆMh such that

apuh, vq ` bpv, λhq “

ż

Ω
fv dx @ v P Xh, (2.5a)

bpuh, µq “ 0 @µ PMh (2.5b)

where ap¨, ¨q and bp¨, ¨q are the continuous bilinear forms on X ˆX and X ˆM defined,
respectively, by

apv, uq “
ÿ

KPTh

ż

K

pK ∇uq ¨∇v dx and bpv, µq “
ÿ

KPTh

xµ, vyBK . (2.6)

Notice that, once determined the mappings FK , the spaces Xh and Mh are completely
described by the choice of Û and Λ̂. Thus, we also refer to the approximation space
XhˆMh by simply stating the adopted pair pÛ , Λ̂q. From Xh and Mh, we introduce the
space

Vh “ tv P Xh : @µ PMh, bpv, µq “ 0u,
which can be seen as a nonconforming approximation for the space H1

0 pΩq [4]. The
following compatibility condition is presented in [4] as a necessary and sufficient condition
for the existence and uniqueness of solution to (2.5)

tµ PMh : @v P Xh, bpv, µq “ 0u “ t0u. (2.7)

Examples of compatible spaces Û and Λ̂, for the particular case of two-dimensional
problems with quadrilateral meshes, are provided by the following lemma
Lemma 2.1 (Lemma 8 from [4]). Let m ě 0 be any non-negative integer. For some
integer r ě m` 1 consider the function

v0px̂1, x̂2q “ rx̂1p1´ x̂1q ´ x̂2p1´ x̂2qs

rpx̂1p1´ x̂1qq
r´1

2 ` px̂2p1´ x̂2qq
r´1

2 s, for r odd
v0px̂1, x̂2q “ rx̂1p1´ x̂1q ´ x̂2p1´ x̂2qs

p2x̂1 ´ 1qp2x̂2 ´ 1qrpx̂1p1´ x̂1qq
r´2

2 ` px̂2p1´ x̂2qq
r´2

2 s, for r even.

Denote by Q`r pK̂q the space spanned by QrpK̂q plus the function v0, and by S`r pK̂q the
space spanned by SrpK̂q plus the same function v0. It follows that the pairs pQ`r pK̂q, EmpBK̂qq
and pS`r pK̂q, EmpBK̂qq are both compatible pairs and provide unique solution puh, λhq for
the discrete problem (2.5).
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3. Convergence on quadrilateral meshes

In order to extend the convergence analysis of [4] and provide bounds for the errors
u´ uh and λ´ λh on bilinear meshes, we begin by recalling the norms

~v~X “

˜

ÿ

KPTh

~v~2
1,K

¸1{2

, (3.1)

with
~v~1,K “ p|v|

2
1,K ` h

´2
K }v}

2
0,Kq

1{2,

~µ~M “ sup
vPX

bpv, µq

~v~X
. (3.2)

If E0pBK̂q Ă Λ̂, the bilinear form ap¨, ¨q defines a norm over the space Vh, that we denote
by

}v}h “ papv, vqq
1{2. (3.3)

For affine meshes and sufficient regular solutions, it is shown in [4] that if Λ̂ “ EmpBK̂q
and S`r pK̂q Ă Û , with r ě m` 1, then the following error bounds hold

}u´ uh}h ď C1h
l|u|l`1,Ω, (3.4)

~λ´ λh~M ď C2h
l|u|l`1,Ω, (3.5)

where l “ mintr,m` 1u. These conditions do not guarantee optimal results for bilinear
meshes, though. In this case, more general results about the approximation by quadri-
lateral finite elements need to be used. We begin by summarizing important results of
[25] into the two following lemmas.

Lemma 3.1 (Theorems 3 and 4 from [25]). Let FK be any bilinear isomorphism of K̂
onto a convex quadrilateral K, then

PrpKq Ă UK ðñ QrpK̂q Ă Û .

Lemma 3.2 (Section 3 from [25]). Let Th be a regular bilinear mesh of Ω, then the
bounds

inf
vPXh

}u´ v}0,Ω ď Chr`1|u|r`1,Ω, @u P H
r`1pΩq,

inf
vPXh

}∇hpu´ vq}0,Ω ď Chr|u|r`1,Ω, @u P H
r`1pΩq,

are satisfied if and only if QrpK̂q Ă Û .

By applying these necessary and sufficient conditions on the Primal Hybrid Method,
we have:

Lemma 3.3. Assuming the same hypotheses of Lemma 3.2 and considering the space
Vh constructed in Section 2, the estimate

inf
vPVh

}u´ v}h ď Chr|u|r`1,Ω, @u P H
r`1pΩq XH1

0 pΩq, (3.6)

holds if and only if QrpK̂q Ă Û .
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Proof. First we show that QrpK̂q Ă Û is sufficient to obtain (3.6). Let Wh Ă H1pΩq be
the space

Wh “ twh P C0pΩ̄q : @K P Th, wh|K P PrpKq, wh|BΩ “ 0u.

Since Wh is composed of continuous functions, Lemma 3.1 implies that Wh Ă Vh. From
(3.3) and (1.2) and using classical results from approximation theory follows that

inf
vPVh

}u´ v}h ď C2 inf
wPWh

|u´ w|1,Ω ď Chr|u|r`1,Ω.

On the other hand, suppose that estimate (3.6) holds. Since Vh Ă Xh, we have from
(3.3) and (1.2) that

C1 inf
vPXh

}∇hpu´ vq}0,Ω ď inf
vPVh

}u´ v}h ď Chr|u|r`1,Ω,

and follows directly from Lemma 3.2 that QrpK̂q Ă Û .

Theorem 3.4. Consider Th a regular bilinear partition of Ω and let Xh and Mh be
the spaces constructed in Section 2 such that conditions (2.4) and (2.7) are satisfied.
Assume that u P H l`1pΩq XH1

0 pΩq with l “ mints,m` 1u. Then there exists a constant
C independent of h such that

}u´ uh}h ď Chl|u|l`1,Ω, (3.7)

if and only if QspK̂q Ă Û .

Proof. From Theorem 3 of [4] the discrete solution uh satisfies

}u´ uh}
2
h “

ˆ

inf
vhPVh

}u´ vh}h

˙2
`

ˆ

inf
µhPMh

sup
vhPVh

bpvh, λ´ µhq

}vh}h

˙2
. (3.8)

Since Vh Ă X, from Lemma 9 of [4], we have

inf
µhPMh

sup
vhPVh

bpvh, λ´ µhq

}vh}h
ď Chl|u|l`1,Ω. (3.9)

Them the desired result is obtained from (3.8), (3.9) and Lemma 3.3.

Remark 3.5. Assuming that the domain Ω is convex, by an extension of the Nitsche
technique is possible to obtain, from equation (3.7), the following estimate in L2pΩq [4]

}u´ uh}0,Ω ď Chl`1|u|l`1,Ω.

Theorem 3.6. Consider Th a regular bilinear partition of Ω and let Xh and Mh be
compatible spaces constructed as in Section 2 such that conditions (2.4) and (2.7) are
satisfied. Assume that u P H l`1pΩq XH1

0 pΩq with l “ mints,m` 1u. Then QspK̂q Ă Û
implies that there is a constant C independent of h such that

~λ´ λh~M ď Chl|u|l`1,Ω. (3.10)
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Proof. From Theorem 3 and Lemma 10 of [4], there exists a constant α ą 0 such that

~λ´ λh~M ď
1
α
}u´ uh}h `

ˆ

1` 1
α

˙

inf
µhPMh

~λ´ µh~M . (3.11)

From Lemma 9 of [4], (3.2) and by using that }v}h ď C2~v~X we obtain

inf
µhPMh

~λ´ µh~M ď Chm`1|u|l`1,Ω. (3.12)

Substituting (3.7) and (3.12) in (3.11) the proof is completed.

Remark 3.7. In [4] Lemma 10 states the existence of α ą 0 satisfying (3.11) for the case
of affine meshes. This result can be extend for the bilinear case, by using the bounds

}DFK}8,K̂ ď C1hK , }JFK}8,K̂ ď C2h
2
K , (3.13)

}DF´1
K }8,K ď C3

hK
ρ2
K

, }JF´1
K }8,K ď C4

1
ρ2
K

(3.14)

where DFK is the Jacobian matrix of FK and JFK its determinant.
Remark 3.8. Defining the norm over the space

ś

KPTh
L2pBKq

}µ}Mh
“

˜

ÿ

KPTh

hK}µ}
2
0,BK

¸1{2

,

it is possible to show that (3.10) implies the following estimate [4]

}λ´ λh}Mh
ď Chl|u|l`1,Ω.

4. Numerical experiments

In this section we present convergence studies in order to check the conditions for
optimal convergence given by Theorems 3.4 and 3.6, based on two test problems, with
known analytic solutions.

4.1. First test problem
The first test problem is defined on the unit square Ω “ p0, 1q2 with K “ I,

fpxq “ 2π2 sinpπxq sinpπyq and has exact solution upxq “ sinpπxq sinpπyq. In the com-
putations we considered homogeneous Dirichlet boundary conditions and the system
(2.5) was solved using the compatible pairs (Lemma 2.1) pQ`m`1pK̂q, EmpBK̂qq and
pS`m`1pK̂q, EmpBK̂qq with m “ 1, 2. Two sequences of meshes were adopted, as shown in
Figure 1. The first is a uniform mesh of nˆn squares and the second is a mesh of nˆn
congruent trapezoids of base h and parallel vertical edges of size 0.75h and 1.25h, as
proposed in [25]. Note that the meshes in the first sequence are affine and in the second
one are bilinear.

The errors and the rates of convergence are presented in Table 1. On square meshes,
the results indicate convergence Ophm`2q for }u´uh}0,Ω and Ophm`1q for }λ´λh}Mh

, as
7



Figure 1: First test problem; sequences of square and trapezoidal meshes, with n “ 4
and 8.

predicted by the theory. On trapezoidal meshes, the spaces pQ`m`1pK̂q, EmpBK̂qq, m “

1, 2, achieved optimal convergence rates for both }u´uh}0,Ω and }λ´λh}Mh
, as predicted

by Theorems 3.4 and 3.6, respectively. The results for the spaces pS`m`1pK̂q, EmpBK̂qq,
m “ 1, 2, indicate a reduction on the convergence orders, since these spaces do not satisfy
the requirements of Theorems 3.4 and 3.6. It is important to note that the quadratic
convergence for }λ´λh}Mh

with the space pS`2 pK̂q, E1pBK̂qq does not contradict Theorem
3.6, since it provides only sufficient conditions.
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Table 1: First test problem; errors and rates of convergence for different spaces.

Square meshes Trapezoidal meshes
}u´ uh}0,Ω }λ´ λh}Mh

}u´ uh}0,Ω }λ´ λh}Mh

n err. rate err. rate err. rate err. rate
pQ`2 pK̂q, E1pBK̂qq

8 2.5507e-04 2.97 2.9136e-02 1.85 3.5012e-04 2.96 3.8196e-02 1.87
16 3.2141e-05 2.99 7.54448-03 1.95 4.4162e-05 2.99 9.8923e-03 1.95
32 4.0270e-06 3.00 1.9061e-03 1.98 5.5353e-06 3.00 2.4988e-03 1.99
64 5.0369e-07 3.00 4.7788e-04 2.00 6.9247e-07 3.00 6.2640e-04 2.00

pS`2 pK̂q, E1pBK̂qq
8 3.5012e-04 2.96 2.9136e-02 1.85 3.5832e-04 2.95 3.7889e-02 1.87
16 4.4162e-05 2.99 7.5448e-03 1.95 4.6780e-05 2.94 9.8153e-03 1.95
32 5.5353e-06 3.00 1.9061e-03 1.98 6.5986e-06 2.83 2.4838e-03 1.98
64 6.9247e-07 3.00 4.7788e-04 2.00 1.1202e-06 2.56 6.2726e-04 1.99

pQ`3 pK̂q, E2pBK̂qq
8 5.8551e-06 3.98 6.0106e-04 3.01 9.7812e-06 3.98 9.6587e-04 2.99
16 3.6734e-07 3.99 7.4966e-05 3.00 6.1484e-07 3.99 1.2020e-04 3.01
32 2.2981e-08 4.00 9.3650e-06 3.00 3.8507e-08 4.00 1.4972e-05 3.01
64 1.4367e-09 4.00 1.1704e-06 3.00 2.4086e-09 4.00 1.8684e-06 3.00

pS`3 pK̂q, E2pBK̂qq
8 1.8198e-05 4.16 1.3107e-03 3.97 4.8452e-04 2.87 1.0400e-01 1.81
16 1.1056e-06 4.04 1.0364e-04 3.66 6.4011e-05 2.92 2.6936e-02 1.95
32 6.8612e-08 4.01 1.0370e-05 3.32 8.7026e-06 2.88 6.8010e-03 1.99
64 4.2807e-09 4.00 1.2030e-06 3.11 1.3567e-06 2.68 1.7061e-03 2.00
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4.2. Second test problem
We now check the convergence rates in a test problem defined on the V-shaped domain

shown in Figure 2, with anisotropic and heterogeneous tensor K given by

K1 “

ˆ

1 0
0 1

˙

if x ă 0 and K2 “

ˆ

2 1
1 2

˙

if x ą 0,

and source function

f1 “ p2 sin y ` cos yqx` sin y, if x ă 0 and f2 “ ´2ex cos y, if x ą 0.

This problem, originally proposed for a square domain in [28], has analytic solution

u “ r2 sin y ` cos ysx` sin y, if x ă 0 and u “ ex sin y, if x ą 0.

We may notice that the x component of the gradient of the solution has a discontinuity
at x “ 0. In the computations, we considered a mixed boundary condition. On the
vertical left and right boundaries, we imposed a non-homogeneous Dirichlet condition on
u, and on the rest of the boundary we imposed a non-homogeneous Neumann condition.

Again, two sequences of meshes based on parallelograms and trapezoids were adopted,
with elements aligned with the discontinuity of the tensor K at x “ 0 as shown in Figure
3. Despite the fact of the domain not being convex, the results presented in Table 2
show great agreement with the ones of the first test problem. They indicate convergence
Ophm`2q for }u´uh}0,Ω and Ophm`1q for }λ´λh}Mh

on squares, and optimal convergence
rates for both }u´uh}0,Ω and }λ´λh}Mh

when the spaces pQ`m`1pK̂q, EmpBK̂qq, m “ 1, 2
are adopted on trapezoidal meshes.
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Figure 2: Non-convex domain of the second test problem.

Figure 3: Second test problem; sequences of parallelogram and trapezoidal meshes, with
n “ 4 and 8.
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Table 2: Second test problem; errors and rates of convergence for different spaces.

Square meshes Trapezoidal meshes
}u´ uh}0,Ω }λ´ λh}Mh

}u´ uh}0,Ω }λ´ λh}Mh

n err. rate err. rate err. rate err. rate
pQ`2 pK̂q, E1pBK̂qq

8 7.6196e-04 2.96 9.7644e-02 1.74 8.8122e-04 2.95 9.6049e-02 1.66
16 9.7022e-05 2.97 2.5111e-02 1.96 1.1154e-04 2.98 2.5788e-02 1.90
32 1.2263e-05 2.98 6.2214e-03 2.01 1.4023e-05 2.99 6.5862e-03 1.97
64 1.5423e-06 2.99 1.5366e-03 2.02 1.7578e-06 3.00 1.6577e-03 1.99

pS`2 pK̂q, E1pBK̂qq
8 7.6200e-04 2.96 9.7644e-02 1.74 8.8762e-04 2.95 9.6410e-02 1.65
16 9.7017e-05 2.97 2.5111e-02 1.96 1.1361e-04 2.97 2.5900e-02 1.90
32 1.2262e-05 2.98 6.2214e-03 2.01 1.4904e-05 2.93 6.6201e-03 1.97
64 1.5423e-06 2.99 1.5366e-03 2.02 2.1487e-06 2.79 1.6705e-03 1.99

pQ`3 pK̂q, E2pBK̂qq
8 1.1394e-05 3.99 1.1379e-03 3.08 1.9470e-05 3.97 1.9972e-03 2.94
16 7.1560e-07 3.99 1.4051e-04 3.02 1.2369e-06 3.98 2.3274e-04 3.10
32 4.4845e-08 4.00 1.7534e-05 3.00 7.7981e-08 3.99 2.7221e-05 3.10
64 2.8068e-09 4.00 2.1924e-06 3.00 4.8952e-09 3.99 3.2678e-06 3.06

pS`3 pK̂q, E2pBK̂qq
8 5.6489e-05 4.20 1.1407e-02 3.46 6.7489e-04 2.58 1.1869e-01 1.86
16 3.1862e-06 4.15 1.0149e-03 3.49 9.8778e-05 2.77 3.1599e-02 1.91
32 1.8801e-07 4.08 9.2797e-05 3.45 1.4098e-05 2.81 8.2361e-03 1.94
64 1.1405e-08 4.04 8.6926e-06 3.42 2.2338e-06 2.66 2.1809e-03 1.92

Remark 4.1. In this paper, we have assumed homogeneous Dirichlet boundary condition.
The treatment of more general boundary conditions, such as the mixed one adopted in
the second test problem, requires some modifications on the variational formulation (1.3)
(see, e.g. [1]). For the conditions of this second test, we consider disjoint Dirichlet and
Neumann boundaries ΓD and ΓN , respectively, with ΓD ‰ H and ΓD Y ΓN “ BΩ,
and prescribed values u|ΓD

“ uD and ´ K ∇u ¨ n|ΓN
“ λ̄N . In order to include these

boundary conditions in the formulation, we redefine the space MpThq as

MpThq “

#

µ P
ź

KPTh

H´
1
2 pBKq : D q P H0,ΓN

pdiv,Ωq s.t. q ¨ nBK “ µ on BK ,@K P Th

+

,

where
H0,ΓN

pdiv,Ωq “
 

v P Hpdiv,Ωq : xv ¨ n, vy “ 0, @ v P H1
0,ΓD

pΩq
(

,

with H1
0,ΓD

pΩq “
 

v P H1pΩq : v|ΓD
“ 0

(

. Then, the primal hybrid formulation is stated
as: find the pair pu, λq P X ˆM such that

ÿ

KPTh

ż

K

pK ∇uq ¨∇v dx`
ÿ

KPTh

xλ, vyBK “

ż

Ω
fv dx´xλ̄N , vyΓN

@ v P X, (4.1a)

ÿ

KPTh

xµ, uyBK “ xµ, uDyΓD
@µ PM. (4.1b)
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In this case, it is important to highlight that the interpretation of the Lagrange multiplier
stated in (1.6) remains valid except on ΓN . Indeed, in (4.1) the Lagrange multiplier
vanishes on ΓN and the non-homogeneous flux is included through the term xλ̄N , vyΓN

.
Nonetheless, according to the results presented in [1], all the analysis (at continuous and
discrete levels) can be carried over, provided that the source terms are bounded. For
example, it suffices that f P L2pΩq, λ̄N P L2pΓN q and uD P H

1{2pΓDq.

5. Conclusions

We developed the convergence analysis of the Primal Hybrid Finite Element Method
on regular meshes of convex quadrilaterals generated by bilinear isomorphisms. The
theoretical development made use of previous results presented by [25] for general ap-
proximations by quadrilateral finite elements, and Theorems 3.4 and 3.6 can be seen as
a complement to the results of [4]. We also presented numerical results for test problems
with homogeneous and heterogeneous coefficients and different boundary conditions, that
are in agreement with the convergence theory.
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