

SOFIA GARCIA TELLES BRITO

Estimativa do redshift fotométrico de galáxias utilizando redes neurais artificiais

Campinas 11/05/2024

SOFIA GARCIA TELLES BRITO

Estimativa do redshift fotométrico de galáxias utilizando redes neurais artificiais^{*}

Monografia apresentada ao Instituto de Matemática, Estatística e Computação Científica da Universidade Estadual de Campinas como parte dos requisitos para obtenção de créditos na disciplina Projeto de Extensão Supervisionado, sob a orientação do(a) Prof^a. Flávia Sobreira.

^{*}Este trabalho foi financiado pelo PIBIC, projeto 2023/2024.

Resumo

Esse trabalho consiste na revisão do paper ANNz2 - Photometric Redshift and Probability Distribution Function Estimation Using Machine Learning from SADEH, I., ABDALLA, F. B., LAHAV. O ANNz2 é uma ferramenta que utiliza Redes Neurais Artificiais no treinamento de um algoritmo para que este consiga fazer estimativas do redshift fotométrico, z_{photo} , muito próximas do redshift espectroscópico, z_{spec} . Foram coletados os dados das magnitudes m_u , m_g , m_r , m_i e m_z , assim como seus respectivos erros associados, e dos redshifts espectroscópicos do catálogo do Sloan Digital Sky Survey (SDSS), Release 16 (DR16) a fim de testar dois modos de operação do ANNz2 Single Regression e Random Classification.

Abstract

This work consists in reviewing the paper ANNz2 - Photometric Redshift and Probability Distribution Function Estimation Using Machine Learning, from SADEH, I., ABDALLA, F. B., LAHAV. ANNz2 is a tool that uses Artificial Neural Networks to train an algorithm so that it can estimate the photometric redshift, z_{photo} , very close to the spectroscopic redshift, z_{spec} . Data on magnitudes m_u , m_g , m_r , $m_i \in m_z$, as well as their respective associated errors, were found on the Sloan Digital Sky Survey (SDSS), Release 16 (DR16), catalog in order to test two operating modes of ANNz2: Single Regression and Random Classification.

Conteúdo

1	Introdução									
2	Des	envolvimento	7							
	2.1	Definição de Machine Learning	7							
2.2 Alguns conceitos de Machine Learning										
		2.2.1 Performance	8							
		2.2.2 Caracterização	8							
		2.2.3 Função Densidade de Probabilidade (PDF)	8							
	2.3 Algumas observações sobre métodos de treinamento em Machine Learni									
	2.4 Regressão									
	2.5 Classificação									
	2.6	ANNz2	10							
	2.7 Redes neurais artificiais (ANNs)									
	2.8 Boosted decision trees (BDTs)									
	2.9Definição de métricas e notações2.10Modos de treinamento do ANNz2									
		2.10.1 Single Regression	12							
		2.10.2 Random Regression	13							
		2.10.3 Binned Classification	13							
		2.10.4 Single Classification	13							
		2.10.5 Random Classification	14							
3	Asti	copy: utilizando a base de dados do SDSS	14							
4	Resultados									
4.1 Single Regression										
	4.2	Random Regression	20							
5	Con	Conclusão 21								

1 Introdução

A observação do céu pode nos ajudar a entender o comportamento do universo desde os seus primórdios. Desde a descoberta da expansão cósmica em 1920 por Edwin Hubble, a cosmologia se tornou uma ciência de *big data* com a construção de telescópios modernos capazes de observar galáxias cada vez mais distantes. Uma informação importante é extraída do espectro da radiação destas galáxias. Quando se compara as linhas de absorção ou emissão da radiação destes objetos com as de vários compostos químicos na Terra, percebe-se um aumento no comprimento de onda dos fotóns caracterizado por um desvio na direção do vermelho, o que pode ser melhor visualizado com a Figura 1. Isso indica que as galáxias estão se afastando de nós [1].

Figura 1: Linhas espectrais com desvio vermelho (red-shifted), para 0 sem desvio (*stationary*) e com desvio para (blue-shifted). (Fonte: o azul https://noic.com.br/astronomia/curso/miscelanea/redshift-e-lei-de-hubble/)

O astrônomo americano Vesto Melvin Slipher, do Observatório Lowell, em 1912, ao analisar as linhas espectrais de 41 galáxias, percebeu que a maioria apresentava deslocamento espectral para o vermelho. Objetivamente, o *redshift* é a medida do aumento no comprimento de onda λ , ou diminuição da frequência ν (já que $\lambda = \frac{c}{\nu}$) da onda eletromagnética, o que ocorre quando a fonte emissora se afasta do observador.

Redshifts espectroscópicos são estimados utilizando as linhas espectrais de objetos observados. Isto é possível em dados de telescópios como o Sloan Digital Sky Survey (SDSS) [5] e Dark Energy Spectroscopic Instrument (DESI) [6] que observam o espectro inteiro de uma galáxia. Já telescópios como o Dark Energy Survey (DES) [7] e o Large Synoptic Survey Telescopic (LSST) [8] mapeiam o céu usando imagens de bandas espectrais. Neste caso, o *redshift* é estimado com base nas cores das galáxias em três ou mais

filtros e também em outras propriedades que podem ser obtidas das imagens, como o tamanho angular ou o índice de concentração [3].

Usando dados de telescópios espectroscópicos, podemos estimar os *redshifts* dos objetos com muita precisão. Porém, para observar o espectro inteiro de uma galáxia, é necessário um tempo de observação grande. Já telescópios fotométricos, embora percam a precisão na estimativa dos *redshifts*, conseguem observar uma quantidade muito maior de galáxias, aumentando a precisão da análise estatística feita com os dados. Se sabemos modelar o erro na estimativa de *redshift* fotométrico, então é vantajoso usar estes dados.

Nesse projeto, o código ANNz2 do paper ANNz2 - Photometric Redshift and Probability Distribution Function Estimation Using Machine Learning [4] foi escolhido como ferramenta para fazer estimativas do redshift fotométrico utilizando redes neurais e diversos métodos de Machine Learning. Para isso, foram utilizados os dados das magnitudes e dos redshifts espectroscópicos presentes na base de dados do SDSS (Sloan Digital Sky Survey), a fim de utilizar esses dados para, com base no que foi feito no paper [4], obter resultados utilizando os diversos métodos de treinamento nele apresentados.

2 Desenvolvimento

Em primeira análise, é necessário explicar o que é *Machine Learning* e quais são os métodos de treinamento existentes nesse tópico.

2.1 Definição de Machine Learning

Uma definição de *Machine Learning* pode ser encontrada na referência [13] (GÉRON, 2017):

"*Machine Learning* é a ciência (ou a arte) de programar computadores, de maneira que eles consigam aprender através dos dados."

Na mesma referência [13] (GÉRON, 2017), também se encontram duas definições mais gerais de *Machine Learning*:

"*Machine Learning* é o campo de estudo que dá aos computadores a habilidade de aprender sem ter sido explicitamente programado." (Arthur Samuel, 1959).

"Se diz que um programa computacional aprende de uma experiência E, com

respeito a uma tarefa T com uma performance P, se sua performance P em T aumenta com a experiência E." (Tom Mitchel, 1997).

Uma outra definição támbém é encontrada na referência [11]: *Machine Learning* se refere a um conjunto de técnicas para interpretação de dados em que se compara esses dados a modelos para o comportamento dos dados. Alguns exemplos dessas técnicas são métodos de regressão, métodos de classificação supervisionada, *maximum likelihood estimators* e o método Bayesiano [11].

2.2 Alguns conceitos de Machine Learning

2.2.1 Performance

Performance, no contexto desse trabalho, é a habilidade de prever o *redshift* de uma galáxia individual de forma precisa, ou seja, com uma pequena incerteza quando comparado com o verdadeiro *redshift*, que aqui escolheremos como sendo o *redshift* espectroscópico [2].

2.2.2 Caracterização

Caracterização, no contexto desse trabalho, é a habilidade de abarcar as propriedades da distribuição de um conjunto de galáxias [2].

2.2.3 Função Densidade de Probabilidade (PDF)

A Função Densidade de Probabilidade (PDF), h(x), quantifica a probabilidade de que um valor esteja entre $x \in x + dx$, que é igual a h(x)dx [11]. A PDF do *redshift*, p(z), nos dá a melhor representação do resultado de um algoritmo de *redshift* fotométrico [2]. A integral da PDF é chama Função Distribuição Cumulativa e é dada por [11]

$$H(x) = \int_{-\infty}^{x} h(x') dx'$$

2.3 Algumas observações sobre métodos de treinamento em Machine Learning

Os métodos de *Machine Learning* podem ser distinguidos por alguns fatores: pelo conjunto de treinamento de galáxias e informações que vão ser usadas sobre as galáxias para prever o *redshift* (exemplos: cores de galáxias, magnitude do fluxo); pelo quanto eles são treinados para otimizar; e por outras suposições e escolhas que afetam a estimativa da quantidade alvo (exemplos: alguns métodos dividem o conjunto de treinamento em subconjuntos por propriedades distinguíveis e outros definem uma vizinhança usando galáxias como referência para estimar o *redshift* de um objeto)[2].

Existem alguma limitações possíveis se tratando de *Machine learning* e é muito importante estar vigilante quanto a essas limitações. Elas são: conjuntos de treinamento não-representativos para o conjunto alvo; conjuntos de treinamento contendo erros (nos *redshifts* ou nos observáveis fotométricos) e conjuntos de treinamento pouco diversos, enviesando o aprendizado [2].

2.4 Regressão

A Regressão é uma das técnicas utilizadas em *Machine Learning*. Ela se trata da relação entre variáveis dependentes, y, e um conjunto de variáveis independentes, x, que descreve o valor esperado de y dado x: E[y|x]. [11]

No caso em que temos um modelo para a distribuição condicional com parâmetros θ , escrevemos a função $y = f(x|\theta)$, sendo y variável dependente e x vetor independente. [11].

No caso da regressão linear, temos

$$y_i = \theta_0 + \theta_1 x_i + \epsilon_i,$$

onde o índice *i* designa diferentes observações, $\theta_0 \in \theta_1$ são os coeficientes que descrevem a função de regressão que estamos tentanto estimar e ϵ_i representa um termo extra de ruído. [11]

2.5 Classificação

Na classificação supervisionada, criamos classes de dados e agrupanmos esses dados em categorias de acordo com uma determinada propriedade. Relaciona-se, então, um conjunto de parâmetros com os conjuntos de classes já predefinidos [11].

2.6 ANNz2

No ANNz2, o conjunto de dados original utilizado (do SDSS - *Sloan Digital Sky Survey*) é separado em três partes: treinamento, validação e testagem. O conjunto de treinamento é usado para derivar o mapeamento entre *inputs* e *outputs*, enquanto que, a cada etapa do treinamento, o conjunto de validação é utilizado para estimar a convergência da solução comparando o resultado da estimativa com o valor do *output*. Já o conjunto de testagem é usado após o treinamento para analisar a performance deste. [4]

Os dados de *input* coletados do SDSS são as magnitudes m_u , m_g , m_r , m_i , m_z . O dado de *output* é a estimativa feita do *redshift* fotométrico [4]. Se olharmos para a Seção 2.3, que trata sobre Regressão, os *inputs* das magnitudes seriam as componentes do vetor \mathbf{x} e o *output* seria o y. O valor do *redshift* espectroscópico serve como valor real do *redshift*, para comparar com o valor de *output* encontrado para o *redshift* fotométrico.

No ANNz2, os métodos de *Machine Learning* utilizados estão implementados no pacote TMVA do ROOT. O ROOT é um *framework* de processamento de dados do CERN (*European Organization for Nuclear Research*. O TMVA se trata de uma biblioteca do ROOT que contém diversas implementações de técnicas de *Machine Learning*, como *Neural Networks*, *Deep Networks*, *Multilayer Perceptron*, *Boosted/Bagged Decision Trees*, *Support Vector Machines*(CVM) e outros [12]. Os métodos que foram considerados mais adequados foram redes neurais artificais e *boosted decision trees* [4].

2.7 Redes neurais artificiais (ANNs)

Trata-se de um mapeamento entre o conjunto de variáveis de *input* (como magnitudes e cores) a uma ou mais variáveis de output, que é feito calculando a soma com pesos da coleção de funções de resposta (*response functions*). As variáveis de *input*, as funções de resposta e as variáveis de *output* são chamadas de neurônios [4]. No ANNz2

a ANNs utilizada foi a *Multilayer Perceptron*. Nessa rede, os neurônios são organizados em pelo menos 3 camadas: *input*, ocultos e *output*. Uma representação esquemática dessa rede se encontra na figura 2 [4].

Figura 2: Representação esquemática de uma rede neural aritficial, com os neurônios representados por círculos (*inputs*), quadrados (ocultos) e triângulos (*outputs*). Referência: "ANNz2 - Photometric redshift and probability distribution function estimation using machine learning" [4].

O aprendizado ocorre pela mudança de pesos inter-neuroniais após cada elemento do conjunto de dados ter sido processado, usando um algoritmo de *back propagation* [4].

2.8 Boosted decision trees (BDTs)

Se trata de uma árvore binária na qual as decisões são tomadas para uma variável por vez, até que o critério de parada seja satisfeito. Os vários nós de *output* da árvore são chamados de folhas (*leafs*). Uma representação esquemática de um árvore de decisão se encontra na figura 3 [4].

2.9 Definição de métricas e notações

Algumas definições de métricas (utilizadas para avaliar o desempenho) e notações importantes feitas no *paper* [4] são:

-Viés fotométrico: $\delta_{gal} = z_{phot} - z_{spec}$ [4];

-Espalhamento fotométrico: desvio padrão de δ_{gal} para um conjunto de galáxias

[4];

Figura 3: Representação esquemática de uma árvore de decisão. Nela, o nó raiz inicial está marcado com uma estrela, os nós internos com círculos vazios e os nós de *output* (*leafs*) com círculos preenchidos. Uma sequência de decisões binárias usando magnitudes $m_u, m_g, m_i \in m_z$ como variáveis de *input* é aplicada a cada elemento do conjunto de treinamento. Cada decisão binária utiliza a variável que, naquele nó, representa o melhor resultado. Referência: "ANNz2 - Photometric Redshift and Probability Distribution Function Estimation Using Machine Learning" [4].

 $-\sigma_{68}$ denota a meia largura da área que abrange o pico do 68° percentil da distribuição de δ_{gal} [4];

-Fração atípica da distribuição do viés: $f(\alpha\sigma)$, definida como a porcentagem de objetos que têm viés maior que um fator, α , de σ ou σ_{68} [4];

-Fração atípica combinada: $f(2, 3\sigma_{68} = \frac{1}{2}(f(2\sigma_{68}) + f(3\sigma_{68}) [4])$.

2.10 Modos de treinamento do ANNz2

O ANNz2 utiliza tanto técnicas de regressão quanto técnicas de classificação. Os modos de treinamento do ANNz2 são Single Regression, Random Regression, Binned Classification, Single Classification e Random Classification. Esse modos de treinamento são descritos nas subseções a seguir.

2.10.1 Single Regression

Essa é a configuração mais simples do ANNz2. Nesse caso, uma única regressão é feita [10]. O método e a configuração do método é fixa e, portanto, não otimizada.

2.10.2 Random Regression

Na Regressão Aleatória (*Random Regression*), um conjunto de métodos de regressão é automaticamente gerado, sendo que esse métodos de *Machine Learning* diferem uns dos outros de diversas maneiras, como por exemplo no conjunto de parâmetros de entrada usado no treinamento. Assim que o treinamento ocorre, a otimização é realizada, obtendo-se uma distribuição de soluções do photo-z para cada galáxia e, então, essas soluções são analizadas para se determinar quais foram os métodos que atingiram performance ótima. Esses métodos selecionados então são acrescidos de suas respectivas incertezas e um conjunto de PDFs é gerado, cada uma sendo contruída por um conjunto diferente de pesos relativos associados às componentes dos métodos. Por fim, torna-se possível selecionar a melhor solução de todos os métodos randomizados. [10]

2.10.3 Binned Classification

Na Binned Classification, o conjunto de dados de input é subdividido em diversos pequenos grupos (bins de classificação). A amostra de sinal (signal sample) é definida como a coleção de galáxias para as quais o redshift espectroscópico está dentro do intervalo do bin. Já a amostra de fundo (background sample) contém todas as galáxias cujo redshift espectroscópico está fora do intervalo do bin. Então, o algoritmo realiza o treinamento em cada redshift bin com um método de machine learning de classificação diferente e o output para cada bin é traduzido como a probabilidade de uma galáxia ter um redshift que se encontra no intervalo desse bin. A distribuição das probabilidades é, então, normalizada e se torna a PDF do photo-z para a galáxia. Por fim, é gerada uma PDF total e a média ponderada da PDF, juntamente das incertezas estimadas [10].

2.10.4 Single Classification

Essa é a configuração mais simples do ANNz2. Nesse caso, um classificação simples é realizada [10].

2.10.5 Random Classification

Assim como na *Random Regression*, um conjunto de métodos de *Machine learning* é randomizado durante o treinamento. Já na fase de otimização, ocorre o cálculo do parâmetro de separação entre as distribuições de sinal/fundo (*signal/background*) e é feito um *ranking* de todas as soluções. Então, todas ou nenhuma das soluções podem ser incluída no produto final. Adicionalmente, as incertezas de classificação são calculadas [10].

3 Astropy: utilizando a base de dados do SDSS

A base de dados utilizada foi a do *Sloan Digital Sky Survey* (SDSS), especificamente o *release* 16 (DR16). A amostra que foi utilizada é a amostra preparada para as análises de LSS do eBOSS e inclui apenas galáxias luminosas vermelhas, tendo sido aplicados cortes e máscaras [14]. Primeiramente, foi necessário fazer o tratamento desses dados usando o Astropy para fazer um teste com o código ANNz2.

Em primeiro lugar, foi necessário fazer o *download* dos seguintes arquivos *fits* do catálogo *:

eBOSS_LRGpCMASS_clustering_data-NGC-vDR16.fits (dados Norte), eBOSS_LRGpCMASS_clustering_data-SGC-vDR16.fits (dados Sul) e eBOSS_LRG_full_ALLdata-vDR16.fits (dados completos).

Os dados Norte (NGC) e o dados Sul (SGC) possuem uma coluna chamada 'LRG_ID' que serve para identificar os objetos presentes no catálogo. Então, após definir 'catalog_dir' como o PATH do local em que se encontram os arquivos citados, foram executadas as seguintes linhas de código para selecionar apenas as linhas com 'LRG_ID' válidos.

```
NGC=os.path.join(catalog_dir, "eBOSS_LRGpCMASS_clustering_data-NGC-vDR16.fits")
SGC=os.path.join(catalog_dir, "eBOSS_LRGpCMASS_clustering_data-SGC-vDR16.fits")
ALL=os.path.join(catalog_dir, "eBOSS_LRG_full_ALLdata-vDR16.fits")
```

evt1_data = Table.read(NGC, memmap=True)

^{*}Disponível em: https://data.sdss.org/sas/dr17/eboss/lss/catalogs/DR16/

```
evt2_data = Table.read(SGC, memmap=True)
all_data = Table.read(ALL, memmap=True)
```

```
#verificando o tamanho da amostra:
(~evt1_data['LRG_ID'].data.mask).sum(),
(~evt2_data['LRG_ID'].data.mask).sum(), len(all_data)
```

```
mask_evt1_lrg_only = ~evt1_data['LRG_ID'].data.mask
mask_evt2_lrg_only = ~evt2_data['LRG_ID'].data.mask
```

O próximo passo foi fazer o *join*, individualmente, dos arquivos NGC e SGC com o arquivo ALL DATA. Feito isso, foi feito o *stack* (empilhamento) dos dois conjuntos obtidos e, assim, gerados um arquivo com todos os dados NGC e SGC com 'LRG_ID' válidos e um arquivo guardando as informações de identificação dos objetos.

```
lrg1_joined = join(evt1_data[mask_evt1_lrg_only],
all_data[['RUN', 'CAMCOL', 'FIELD', 'ID', 'RERUN', 'LRG_ID', 'MODELMAG']], keys='LRG_ID')
```

```
lrg2_joined = join(evt2_data[mask_evt2_lrg_only],
all_data[['RUN', 'CAMCOL', 'FIELD', 'ID', 'RERUN', 'LRG_ID', 'MODELMAG']], keys='LRG_ID')
```

lrg_joined = vstack([lrg1_joined, lrg2_joined])

```
lrg_joined.write(os.path.join(catalog_dir,
'eBOSS_LRG_clustering_modelmag_data_NGCSGC_vDR16.fits'), overwrite=True)
```

```
lrg_joined [['LRG_ID', 'RA', 'DEC', 'RUN', 'CAMCOL', 'FIELD', 'ID',
'RERUN']]. write('eBOSS_LRG_clustering_-NGCSGC-vDR16_obj_ids.csv', overwrite=True)
```

Em seguida, selecionando o arquivo 'eBOSS_LRG_clustering_-NGCSGC-vDR16_ obj_ids.csv' e o colocando em uma tabela SQL, foi possível descobrir que o identificador dos objetos fotométrico ('objID') pode ser obtido das colunas 'RUN', 'RERUN', 'CAM-COL', 'FIELD' e 'ID' com a função 'fObjidFromSDSS' do SkyServer.

Foi executada, então, a seguinte query.

SELECT

```
c.lrg_id ,
p.objID, p.specObjID, p.ra, p.dec,
```

p.dered_u, p.dered_g, p.dered_r, p.dered_i, p.dered_z,

```
p.err_u , p.err_g , p.err_r , p.err_i , p.err_z
```

FROM MyDB.ebossDR16LRGClustering as c

```
JOIN DR18.PhotoObj p ON p.objID = dbo.fObjidFromSDSS(2, c.run, c.rerun, c.camcol, c.field, c.id)
```

 $INTO\ MyDB.\ eboss DR16LRGC lustering Photometry$

Após baixar a tabela 'ebossDR16LRGClusteringPhotometry' no arquivo 'ebossDR16LRGClusteringPhotometry.csv' e esse arquivo foi colocado no diretório com os demais arquivos. Assim, foi o *join* (com relação a 'LRG_ID' desse arquivo de fotometria com o arquivo obtido anteriormente pelo empilhamento dos arquivos NGC e SGC.

```
lrg_joined = os.path.join(catalog_dir,
'eBOSS_LRG_clustering_modelmag_data_NGCSGC_vDR16.fits')
```

lrg_photo = os.path.join(catalog_dir, 'ebossDR16LRGClusteringPhotometry.csv')

```
lrg_joined_tab = Table.read(lrg_joined)
lrg_photo_tab = Table.read(lrg_photo)
```

```
lrg_joined_join = join(lrg_photo_tab, lrg_joined_tab, keys_left='lrg_id',
keys_right='LRG_ID')
```

np.abs(lrg_joined_join['ra'] - lrg_joined_join['RA']).max()
np.abs(lrg_joined_join['dec'] - lrg_joined_join['DEC']).max()

A tabela 'lrg_joined_join' possui 174816 linhas e 36 colunas. No entanto, as únicas colunas que são necessárias são: 'MODELMAG', 'err_u', 'err_g', 'err_r', 'err_i', 'err_z' e 'Z'. Assim, foi necessário criar um novo arquivo somente com os dados necessários para o *input* do ANNz2.

```
new_order = ['MODELMAG', 'lrg_id', 'err_u', 'err_g', 'err_r', 'err_i', 'err_z', 'Z']
```

```
lrg_joined_join_selected = lrg_joined_join [new_order]
```

```
lrg_joined_join_selected.write(os.path.join(catalog_dir,
'eBOSS_LRG_clustering_modelmag_data_NGCSGC-selected_vDR16.fits'), "overwrite=True")
```

A tabela 'lrg_joined_join_selected' está representada na Figura 4.

Table length=174816								
MODELMAG	lrg_id	err_u	err_g	err_r	err_i	err_z	z	
float32[5]	int64	float64	float64	float64	float64	float64	float64	
25.723623 19.939554	155	1.166705	0.1577692	0.1553537	0.09805954	0.1606366	0.6899790890408843	
24.98986 19.97161	164	1.683199	0.475468	0.1872905	0.0872043	0.1701971	0.6703961690458896	
21.900898 19.842785	166	0.4250453	0.3084107	0.2416351	0.1275055	0.2263277	0.938681613552569	
24.926273 19.667055	167	2.522411	0.2480161	0.295671	0.1257648	0.1927489	0.8546939792986834	
25.94632 19.737507	178	1.070446	0.6998233	0.1665629	0.07360715	0.152274	0.7486357721889371	
24.903866 19.478413	182	2.791524	0.380014	0.14156	0.08432812	0.1603149	0.6099426425190794	
25.382797 19.59364	185	2.208333	0.3695331	0.3637002	0.1716594	0.1684795	0.8808363995653804	
22.071062 19.809128	188	0.378562	0.2430625	0.1393567	0.08222785	0.1445032	0.6468334192655131	
23.214466 19.976397	189	0.9849465	0.5371121	0.1710789	0.09241519	0.1620435	0.8383725926612978	
26.460602 19.471415	588	0.9072875	0.3969019	0.1793048	0.1076104	0.1508087	0.6412123656670905	
26.019072 19.18466	377612	1.411682	0.3379578	0.165506	0.1082411	0.1857756	0.6861845038655601	
26.408495 19.759415	377613	0.5933867	0.4745699	0.1337036	0.06912997	0.1758418	0.7253840315689559	
24.17064 19.419062	377614	1.211575	0.3121546	0.08819267	0.04476507	0.09807403	0.6276900965299482	
24.974031 19.884604	377615	1.233365	0.2250503	0.1139753	0.06401406	0.1407673	0.6245972507066833	
25.447977 19.748634	377616	0.9833993	0.7299526	0.1167653	0.05342529	0.1201108	0.7136041503853774	
26.533506 19.559748	377620	0.4251032	0.2760071	0.09417978	0.04830667	0.1177817	0.6293471585204776	
21.407385 19.715363	377621	0.2416606	1.129584	0.1895795	0.1073512	0.2094158	0.8315863916537576	
23.424105 19.952333	377625	0.7521243	0.6160727	0.1903158	0.07554701	0.1395938	0.7494615135042955	
22.829556 19.956715	377628	0.7297657	0.605174	0.3218153	0.1291861	0.2375163	0.8280102785040316	
26.677126 19.941578	377631	0.4600784	0.5767424	0.201619	0.1212205	0.1656556	0.6895709834159385	

Figura 4: Tabela 'lrg_joined_join_selected'

Usando 'novo' para abrir o arquivo 'eBOSS_LRG_clustering _modelmag_data-NGCSGC-selected-vDR16.fits', foi necessário, então, separar as magnitudes 'U', 'G', 'R', 'I', 'Z' de 'MODELMAG'.

```
novo = fits.open("/home/sofia/Documentos/Astropy/
eBOSS_LRG_clustering_modelmag_data-NGCSGC-selected_vDR16.fits")
```

data1 = novo[1].data MODELMAG = data1['MODELMAG'] LRG_ID = data1['LRG_ID']

```
M0 = [MODELMAG[n][0] for n in range(len(MODELMAG))]
lrg_joined_join_selected['#F:MAG_U'] = M0
lrg_joined_join_selected['F:MAGERR_U'] = lrg_joined_join_selected['err_u']
```

```
M1 = [MODELMAG[n][1] for n in range(len(MODELMAG))]
lrg_joined_join_selected['F:MAG_G'] = M1
lrg_joined_join_selected['F:MAGERR_G'] = lrg_joined_join_selected['err_g']
```

```
M2 = [MODELMAG[n][2] for n in range(len(MODELMAG))]
lrg_joined_join_selected['F:MAG_R'] = M2
lrg_joined_join_selected['F:MAGERR_R'] = lrg_joined_join_selected['err_r']
```

```
M3 = [MODELMAG[n][3] for n in range(len(MODELMAG))]
lrg_joined_join_selected['F:MAGL'] = M3
lrg_joined_join_selected['F:MAGERRL'] = lrg_joined_join_selected['err_i']
M4 = [MODELMAG[n][4] for n in range(len(MODELMAG))]
lrg_joined_join_selected['F:MAGZ'] = M4
lrg_joined_join_selected['F:MAGERRZ'] = lrg_joined_join_selected['err_z']
del lrg_joined_join_selected['MODELMAG']
del lrg_joined_join_selected['err_u']
del lrg_joined_join_selected['err_g']
del lrg_joined_join_selected['err_r']
```

```
del lrg_joined_join_selected ['err_i ']
del lrg_joined_join_selected ['err_z ']
del lrg_joined_join_selected ['lrg_id ']
lrg_joined_join_selected ['zz '] = lrg_joined_join_selected ['Z']
del lrg_joined_join_selected ['Z']
lrg_joined_join_selected.rename_column('zz', 'D:Z')
```

lrg_joined_join_selected.write(os.path.join(catalog_dir, 'eBOSS_LRG_clustering_modelmag_data_NGCSGC-selected_and-organized_vDR16.csv'))

Assim, foi gerado também, no formato de entrada do ANNz2 (csv), o arquivo contendo todas as informações n ecessárias para realizar *Single Regression* e *Random Regression*.

Por fim, foi necessário dividir o conjunto de dados de 174816 objetos em vários subconjuntos para avaliação, treinamento e otimização.

4 Resultados

4.1 Single Regression

Após a execução do modo Single Regression com os arquivos adequados, com o intervalo de 0.6 < z < 1.0 operando com o modo ANN, foi possível obter uma tabela com as colunas 'D:Z' (*redshift* verdadeiro, no caso o espectroscópioc) e 'F:ANNZ_best'

(melhor estimativa de *redshift* obtida após, treinamento, otimização e validação).

Plotando o gráfico de z (que é o redshift espectroscópico, z_{esp}) por z_{best} (que é o redshift fotométrico, z_{photo}), obtemos a Figura 5.

Figura 5: Gráfico de z versus z_{best} para Single Regression.

Claramente, o treinamento não foi muito bem sucedido. O treinamento perfeito ocorreria caso o gráfico se aproximasse da equação $z = z_{best}$. No caso, os valores de z_{best} estão densamente concentrados entre 0.7 e 0.8, apontando para a aproximação linear de uma reta constante em torno de 0.75.

Também plotando os gráficos de δ , $\sigma \in f_{2\sigma}$, obteve-se a Figura 6.

Figura 6: Gráficos de δ , σ e $f_{2\sigma}$ após Single Regression.

No entanto, os gráficos obtido com o *input* do '*examples*' do próprio código original, foram os que podem ser visualizados nas Figuras 7 e 8. É possível observar que os resultados foram parecidos com os obtidos utilizando o DR16 do SDSS no modo Single

Regression no modo ANN, no entanto bem mais dispersos, estando dentro do intervalo $0.50 < z_{best} < 0.75.$

Figura 7: Gráfico de z versus z_{best} para Single Regression utilizando os dados do 'examples'.

Figura 8: Gráficos de δ , σ e $f_{2\sigma}$ após Single Regression utilizando os dados do 'examples'.

4.2 Random Regression

Após a execução do modo Random Regression com os arquivos adequados, com o intervalo de 0.6 < z < 1.0 operando com o modo BDT, com 50 MLMs, foi possível obter uma tabela com as colunas 'D:Z' (*redshift* verdadeiro, no caso o espectroscópico) e 'F:ANNZ_best' (melhor estimativa de *redshift* obtida após, treinamento, otimização e validação).

Plotando o gráfico de z por z_{best} , obtemos a Figura 9.

Figura 9: Gráfico de z versus z_{best} para Random Regression.

No entanto, o gráfico obtido com o *input* do '*examples*' do próprio código original, foi o que pode ser visualizado na Figura 10. É possível observar que os resultados foram bastante diferentes dos obtidos utilizando o DR16 do SDSS no modo Random Regression no modo BDT. Existem algumas hipóteses sobre o porque disso ter acontecido. Talvez a base de dados selecionada do DR16 do SDSS tenha sido pouco representativa (os resultados estão todos em torno do intervalo de *redshift* 0.65 < z < 0.80, de forma que pode ser que a quantidade de objetos nessa faixa de *redshift* nas amostras utilizadas pode ser muito mais alta do que a quantidade de outras faixas de *redshift*) ou talvez tenha acontecido *overtraining*. Será necessária uma investigação mais cuidadosa para descobrir o que pode estar causando tamanha diferença.

5 Conclusão

Com tudo que foi discutido até aqui, fica nítido que será necessário, além de refazer testes com *Single Regression* e *Random Regression* e investigar o motivo de o treinamento não estar ocorrendo como esperado, testar os demais modos de operação *Random Classification*, *Binned Classification* e *Single Classification*) para realizar com-

Figura 10: Gráfico de z versus z_{best} para Random Regression utilizando o 'examples' original.

parações entre os resultados obtidos com a Single regression e com a Random Regression e possivelmente obter evidência de um treinamento bastante bem sucedido, com um gráfico z versus z_{best} mais próximo da reta $z = z_{best}$.

Referências

- OLIVEIRA, Kepler de. Astronomia e Astrofísica. 3^a ed. São Paulo: Editora Livraria da Física, 2014;
- [2] NEWMANN, Jeffrey A., GRUEN, Daniel. Photometric Redshifts for Next-Generation Surveys. June, 2022. Disponível em: https://arxiv.org/pdf/2206.13633.pdf
- [3] COLLISTER, Adrian A., LAHAV, Ofer. ANNZ: Estimating Photometric Redshifts Using Artificial Neural Networks. University of Cambridge, Cambridge, UK, p. (1,6), February, 2004. Disponível em: https://arxiv.org/pdf/astro-ph/0311058.pdf
- [4] SADEH, I., ABDALLA, F. B., LAHAV, O. ANNz2 Photometric Redshift and Probability Distribution Function Estimation Using Machine Learning. University College London, UK; Rhodes University, PO, p. (1,22), June, 2016. Disponível em: https://arxiv.org/abs/1507.00490
- [5] D.G. York et al. The Sloan Digital Sky Survey: Tecnical Summary. AJ, 120:1579, 2000.
- [6] B. Abareshi et al. Overview of the Instrumentation for the Dark Energy Spectroscopic Instrument. AJ, 164:207.
- [7] T Abbolt et al. The Dark Energy Survey: more than dark energy an overview. MRAS, 460 1270 D, 2016.
- [8] Z. Ivezic et al. LSST: From Science Drivers to Reference Design and Anticipated Data Product. ApJ, 873 111, 2019.
- [9] Sistemas de Coordenadas UFRGS, Disponível em: http://astro.if.ufrgs.br/coord.htm
- [10] Código e documentação do ANNz2 disponível para instalação. Disponível em: https://github.com/IftachSadeh/ANNZ

- [11] IVEZIC, Z., CONNOLLY, A., VANDERPLAS, J., GRAY, A. Statistics, Data Mining, and Machine Learning in Astronomy: A Practical Python Guide for the Analysis of Survey Data. Princeton University Press, 2014.
- [12] ROOT Data Analysis Framework, 2024. Disponível em: [https://root.cern/manual/tmva/]. Acesso em: 9, março, 2024.
- [13] GÉRON, Aurélien. Hands-On Machine Learning with Scikit-Learn and TensorFlow: concepts, tools and techniques to build intelligent systems. O'Reilly Media, 2017.
- [14] ROSS, Aschley J., etc, The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale structure catalogues for cosmological analysis.https://arxiv.org/abs/2007.09000 September, 2020, Disponível em: https://arxiv.org/abs/2007.09000.