
UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE
MATEMÁTICA, ESTATÍSTICA E COMPUTAÇÃO CIENTÍFICA

DEPARTAMENTO DE MATEMÁTICA APLICADA

Monografia apresentada ao Instituto de Matemática,
Estatística e Computação Científica da Universidade
Estadual de Campinas como parte dos requisitos
para obtenção de créditos na disciplina Projeto

Renan Das Chagas Palma

Decomposição Polar De Matrizes

24/06/2024

Supervisionado, sob a orientação do Prof. Alberto Saa.

 Campinas

Contents
1 Introduction 2

2 SVD 2

3 Polar Decomposition 5
3.1 Newton-Schulz . 6

4 Computational Tests 8

5 Conclusion 13

1

1 Introduction
The polar decomposition of a given complex or real matrix A is a factorization of the form A = UP
where U is a unitary e P is a positive semi-definite hermitian matrix. In fact, as we will see later P has
the same rank as A, we will also see that A doesn’t have to be square. If A ∈ Cn×m with n ≥ m there
will be A = UP with the only difference U ∈ Cn×m is a matrix with columns forming an orthonormal set
this matrix that has very similar properties of a unitary one. The case A is real is completely analogous
with only difference U is orthogonal. The polar decomposition can be found in [1, 3, 4].

It will be shown that the existence of this decomposition is a direct consequence of the Singular
Value Decomposition (SVD) of a given matrix, a well-known result that will be shown later in this work,
exists for any matrix A. Furthermore, we will explore a straightforward method to compute the Polar
decomposition of A using its SVD.

The primary objective of this work is to introduce an alternative algorithm for calculating the polar
decomposition, distinct from the SVD-based approach. This algorithm called Newton-Schulz cubic
iteration involves a series of iterative steps applied to A to derive U . We will test this algorithm and
compare its performance with the conventional SVD-based method. You can find a detailed description
of the method in [3].

2 SVD
First some definitions from [2].

Definition 1 (Positive Semi-definite matrix). A square symmetric matrix A ∈ Cn×n is called positive
semi-definite if for all vectors z ∈ Cn, the following condition holds:

z∗Az ≥ 0,

where z∗ denotes the conjugate transpose of z.

Definition 2 (Rank). Let A ∈ Cn×m. Consider Range(A) = {y ∈ Cn | Ax = y}, which is a subspace of
Cn. We call rank(A) the dimension of this subspace.

Definition 3 (Unitary Matrix). A square matrix A is called unitary iff AA∗ = I this set of matrices are
very important, they are length and angle preserving transformations. there is a caracterization will be
used later on that can be easily proved. the columns or rows of A are an orthonormal set.

The next theorem is an exercise left for the reader from [2].

Theorem 2.1 (Singular Value Decomposition). Given A ∈ Cn×m a non-zero complex matrix with rank
r. A can be expressed as A = UΣV ∗ where U ∈ Cn×n and V ∈ Cm×m are a unitary matrices and
Σ ∈ Cn×m is a particularly interesting form, Σii = σi for i ∈ {1, . . . , r} with σ1 ≥ σ2 ≥ . . . ≥ σr > 0 and
0 everywhere else. σi are called the singular values of the matrix A and are unique.

Proof. This exercise is based on induction. First, let’s consider the case when rank(A) = 1. Let v be a
basis for the range of A. This means that Aei ∈ span({v}) for each i, where ei is the i-th standard basis
vector. Therefore, we can write ai = γiv for some scalars γi, where ai is the i-th column of A. In other
words, we have:

ai
γi

=
aj
γj

for all i, j ∈ {1, . . . ,m}. (2.1)

So, every column of A is a multiple of any other column. Therefore, A can be written as:

2

A =
[
a1 γ̃2a1 · · · γ̃ma1

]
= a1v

∗ (2.2)

where v∗ =
[
1 γ̃2 · · · γ̃m

]
. Let σ1 = ∥a1∥2∥v∗∥2. This implies that A = σ1a1v

∗, where both a1
and v∗ are vectors with unit norm.

We can easily construct a Householder transformations U ∈ Cn×n and V ∈ Cm×m that map e1 to a1
and e1 to v, respectively. Specifically, Ue1 = a1 and V e1 = v. Consequently, the first columns of U and
V are a1 and v, respectively.

Finally, it is straightforward to see that:

A = σ1a1v
∗ = U

σ1 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0

V ∗. (2.3)

Thus, every rank-1 matrix has a singular value decomposition (SVD).
Now, let’s consider A with rank r > 1. Take v1 as a unit vector in the direction of maximum

magnification of A. In other words, let σ1 = ∥Av1∥2 = ∥A∥2. Define u1 = σ−1
1 Av1.

Let Ũ ∈ Cn×n and Ṽ ∈ Cm×m be unitary matrices where u1 and v1 are their respective first columns.
Consider the matrix Ã = Ũ∗AṼ . Then, Ã has an interesting form:

Ã = Ũ∗[Aṽ1 Aṽ2 . . . Aṽm] = Ũ∗[σ1u1 Av2 . . . Avm] = [Ũ∗σ1u1 Ũ∗Av2 . . . Ũ∗Avm]. (2.4)

The first column of Ã is

Ũ∗σ1u1 =

u∗
1

u∗
2
...
u∗
n

σ1u1 = σ1

⟨u1, u1⟩
⟨u1, u2⟩

...
⟨u1, un⟩

 = σ1

1
0
...
0

So,

Ã =

[
σ1 z∗

0 Â

]
. (2.5)

where z ∈ Cm−1 and Â ∈ C(n−1)×(m−1).
Also, if

w =

[
σ1

z

]
∈ Cm

then,

∥Aw∥2
∥w∥2

=

√
(σ2

1 + z∗z)2 +
∑

i(Âz)2i√
σ2
1 + zT z

≥
√
(σ2

1 + z∗z)2√
σ2
1 + z∗z

=
√

σ2
1 + z∗z. (2.6)

But
σ1 ≥

∥Aw∥2
∥w∥2

≥
√
σ2
1 + z∗z, (2.7)

which means z = 0.
Then A has this form:

Ã =

[
σ1 0

0 Â

]
. (2.8)

3

Now we clearly have Ã with rank r − 1, and so by the induction hypothesis, we have an SVD for Â,
Â = Û Σ̂V̂ ∗. Note that we also have:

Ã =

[
1 0

0 Û

] [
σ1 0

0 Σ̂

] [
1 0

0 V̂ ∗

]
. (2.9)

Thus, since A = Ũ ÃṼ ∗, we have:

A = Ũ

[
1 0

0 Û

] [
σ1 0

0 Σ̂

] [
1 0

0 V̂ ∗

]
Ṽ ∗ = UΣV ∗, (2.10)

where U and V are unitary.

An important corollary that is going to be used to guarantee the convergence in the Newton-Schulz
algorithm is this:

∥A∥F =

 n∑
i=1

m∑
j=1

|aij |2
1/2

(2.11)

which is the Frobenius norm. It will be shown that if A has rank r, then,

∥A∥F =

(
r∑

i=1

σ2
i

)1/2

. (2.12)

This is a straightforward result if we consider another true result:

∥UA∥F = ∥A∥F (2.13)

if U is unitary. For this, just notice that

∥A∥F =
√
tr(A∗A)

because (A∗A)ij =
∑n

k=1 aik · ajk, and so (A∗A)ii =
∑n

k=1 |aik|2. Hence,

tr(A∗A) =

n∑
i=1

n∑
k=1

|aik|2 = ∥A∥2F . (2.14)

Then if A = BC where B is unitary,

∥A∥2F = ∥BC∥2F = tr((BC)∗BC) = tr(C∗(B∗B)C) = tr(C∗C) = ∥C∥2F . (2.15)

In light of this result and the fact that the trace is cyclic (tr(XY Z) = tr(ZXY) = tr(Y ZX)) [6], we
have:

∥A∥F = ∥UΣV ∗∥F = ∥Σ∥F =

(
r∑

i=1

σ2
i

)1/2

(2.16)

4

3 Polar Decomposition
Now the existence and uniqueness of the polar decomposition will be shown: Given A ∈ Cn×m let
A = SΣV ∗ be it’s SVD decomposition. According to the steps outlined in [4]:

A = SΣV ∗ = SInΣV
∗ =

[
S1 S2

] [V ∗V 0
0 In−m

]
ΣV ∗

=
[
S1V

∗V S2

] [Σm

0

]
V ∗

=
[
S1V

∗V Σm + S2 · 0
]
V ∗ = S1V

∗V ΣmV ∗ = (S1V
∗)(V ΣmV ∗)

(3.1)

where S ∈ Cn×n, S1 ∈ Cn×m, S2 ∈ Cn×n−m and V ∈ Cm×m.
Now we can easily show that

U = S1V
∗ ∈ Cn×m (3.2)

has columns forming an orthonormal set, and that

P = V ΣmV ∗ ∈ Cm×m (3.3)

is a semidefinite-positive matrix.
First, is straight forward to see that P = P ∗ and since the diagonal entries of Σm are all non-negative

numbers, we can write Σm = Σ
1
2
mΣ

1
2
m where Σ

1
2
ii = σ

1
2
i . Thus, we can easily prove that P is semi-definite

positive. If x ∈ Cm, then

x∗Px = x∗(V ΣV ∗)x = x∗(V Σ
∗
2Σ

1
2V ∗)x = (Σ

1
2V ∗x)∗(Σ

1
2V ∗x) = y∗y = ∥y∥22 ≥ 0,

where y = Σ
1
2V ∗x.

Second, By definition S1 has columns forming an orthonormal set and V is unitary. The columns of
U are S1vi where vi are the rows of V and so

⟨S1vi, S1vj⟩ = (S1vj)
∗(S1vi) = v∗jS

∗
1S1vi = vTj vi = (vTj vi)

T = v∗i vj = ⟨vj , vi⟩ =

{
0 if i ̸= j

1 if i = j

And the columns of U are orthonormal.
For the uniqueness, P is always unique because A∗A = P ∗U∗UP = P ∗P . But since P is Hermitian,

A∗A = P 2. Now, a well-known result is that every complex matrix is unitarily similar to an upper
triangular matrix (Schur decomposition). It’s straightforward to show that if a matrix is normal (it
commutes with its adjoint), then the upper triangular matrix in the Schur decomposition is, in fact, a
diagonal one. So, since A∗A is Hermitian, and a Hermitian matrix commutes with its adjoint, a Hermitian
matrix is always diagonalizable. These statements are well known and can be found in [1] and [2].

Then, P 2 = EDE−1, where D = diag(λ1, . . . , λm) contains the eigenvalues, and E consists of the
eigenvectors of A∗A. Consequently, P = ED1/2E−1, and for each non-zero element in D, we have two
possibilities: ±

√
λi for the elements of D1/2.

If A∗A is full rank, it implies that there are 2m square roots! P is unique, though, because first,
λi ≥ 0. If λi < 0, for the eigenvector vi associated with λi, we would have:

v∗i (A
∗A)vi = v∗i (λivi) = λi∥vi∥22 < 0

This would contradict the fact that A∗A is positive semidefinite. Since P is also positive semidefinite,
the only possible choice for the diagonal elements of D1/2 are the positive square roots of the elements
of D.

5

3.1 Newton-Schulz
The Newton-Schulz cubic iteration is an algorithm used to iteratively compute the matrix U in the
decomposition A = UP . Once we have U , we can easily determine P using the relation P = U∗A.

The iterative method is based on the following iteration:

Xk+1 =
1

2
Xk (3I −X∗

kXk) , (3.4)

where X0 = A. Note here Xk keeps the size of X0 for each iteration.
Let’s see why this always converges to U . Let’s consider Xk ∈ Cn×m with n ≥ m. The SVD of Xk,

which we know always exists:

Xk = ŨΛkṼ
∗. (3.5)

After one iteration, we will have:

Xk+1 =
1

2
ŨΛkṼ

∗
(
3I − (ŨΛkṼ

∗)∗ŨΛkṼ
∗
)

=
1

2
ŨΛkṼ

∗
(
3I − Ṽ Λ∗

k(Ũ
∗Ũ)ΛkṼ

∗
)

=
3

2
ŨΛkṼ

∗ − 1

2
ŨΛkΛ

∗
kΛkṼ

∗

= Ũ

(
3

2
Λk −

1

2
ΛkΛ

∗
kΛk

)
Ṽ ∗

= ŨΛk+1Ṽ
∗,

(3.6)

where the diagonal entries of Λk+1 are given by

λ
(i)
k+1 =

1

2
(3λ

(i)
k − (λ

(i)
k)3). (3.7)

where λ
(i)
k = (Λk)ii.

In other words, this iteration maintains the unitary factors of the preceding matrix. Consequently,
it retains the unitary factors of the initial matrix A. Thus, we have Ũ = S and Ṽ ∗ = V ∗, where S and
V are the unitary matrices in the SVD of A. The values of Λk+1 evolve according to the simple cubic
polynomial p(x) = 1

2 (3x− x3), and we know that if x0 ∈ (0, 1) the sequence xk define by xk = pk(x0) is
increasing and bounded by 1, because

xk ∈ (0, 1)→ (1− x2
k) > 0→ xk(1− x2

k) > 0→ xk(3− x2
k) > 2xk →

1

2
(3xk − x3

k) > xk → p(xk) > xk.

Therefore {pk(x0)} converges to L and because p is continuous:

L = lim
k→∞

pk(x0) = p

(
lim
k→∞

pk−1(x0)

)
= p(L). (3.8)

and L is a fixed point of p. Then L = 0 or L = 1 since x0 ̸= 0 and p is monotonically increasing in
(0, 1) it must be 1. If A is full rank, then:

lim
k→∞

Λk =

[
Im
0

]
(3.9)

6

and
lim
k→∞

Xk = ŜV ∗ (3.10)

where Ŝ is the first m columns of S. Thus, in light of the equation 3.2 from last section, Xk converges
to the unitary factor in the polar decomposition. Unfortunately if A is not full rank, the newton-schulz
algorithm fails to converge for the right unitary matrix. If A has rank r<m.

lim
k→∞

Λk =

[
Ir 0
0 0

]
and

X = lim
k→∞

Xk = S

[
Ir 0
0 0

]
V ∗ (3.11)

note here S ∈ Cn×m and X ∈ Cn×m with n ≥ m which has columns forming an orthormal set if
X∗X = Im and so,

X∗X = V

[
Ir 0
0 0

]
S∗S

[
Ir 0
0 0

]
V ∗ = V

[
Ir 0
0 0

] [
Ir 0
0 0

]
V ∗. (3.12)

Where the second and third matrices are m×n and n×m respectively. Note if A was full rank, those
matrices would have been [

Im 0
] [Im

0

]
= Im.

and then, from (3.11), we have

X∗X = (v1 . . . vr 0 . . . 0)V ∗ ̸= Im. (3.13)

An interesting thing happens in the case A is not full rank. even Xk not converging for U , the
algorithm still converges to the correct matrix P . This is because

X∗A =

(
S

[
Ir 0
0 0

]
V ∗
)∗

SΣV ∗ = V

[
Σr 0
0 0

]
V ∗ (3.14)

Where the middle matrix is an m×m matrix, which, according to the results of the last section 3.3,
is in fact the matrix P .

To ensure the algorithm works, we need to start with a full-rank matrix that retains the same unitary
factors as in the SVD of A and has singular values within the interval (0, 1]. One suitable choice is to
normalize A by its Frobenius norm:

A

∥A∥F
This normalized matrix has the same unitary factors as A, and the maximum singular is within (0, 1].

σj√∑m
i=1 σ

2
i

≤ σj√
σ2
1

≤ σ1√
σ2
1

= 1.

7

Algorithm 1 Newton-Schulz cubic iteration
Input: A ∈ Cn×m, N number of iterations, ϵ tolerance
Output: Y , Y ∗A
1: X ← A

∥A∥F

2: for k = 0, 1, . . . , N − 1 do
3: Y ← 1

2X(3I −X∗X)
4: if |∥Y ∥F −

√
m| < ϵ · n ·m then

5: return Y , Y ∗A
6: else
7: X ← Y
8: end if
9: end for

10: return Y , Y ∗A

Algorithm 2 SVD Approach
Input: A ∈ Cn×m

Output: U , P
1: S,Σ, V ← svd(A)
2: return SV ∗, V ΣV ∗

4 Computational Tests
All the tests were conducted using Julia notebooks in Pluto, focusing on matrices with entries of type
Float64 and ComplexF64. The computational setup consisted of a desktop equipped with an AMD Ryzen
5 4th generation CPU and 16 GB of RAM. The tests were performed under the Windows 10 operating
system using Julia version 1.10.3, and Julia was configured to run with a single thread.

It is reasonable to expect that the performance of the Newton-Schulz algorithm will be better when
considering matrices with singular values uniformly distributed in (α, 1) with α > 0 sufficiently far from
0. In fact, what matters is the relative distance between the singular values. The closer

σmin

σmax
is to 1, the

fewer iterations will be needed to converge.
The first aspect I examined was the performance of the Newton-Schulz algorithm compared to SVD

with matrices with random entries uniformily distributed in (0, 1).

8

The graph below illustrates median time comparisons using the @benchmark function from the
BenchmarkTools library in Julia to run Newton-Schulz and SVD for square matrices A ∈ Rn×n with
n ∈ {3, 10, 100, 1000}. For more details how algorithms, tests and graphs were made check this link [5].

(a) Plot 1 (b) Plot 2

(c) Plot 3 (d) Plot 4

Figure 1: Mean and stdeviation using @benchmark function from the benchmarkTools library in Julia

9

The same test mentioned above was conducted, considering matrices with singular values uniformly
distributed in the (12 , 1) interval. Here, as mentioned above, since the minimum singular value is closer to
1, it needs fewer iterations to converge for the unitary matrix U that’s why the performance of newton-
schulz is better.

(a) Plot 1 (b) Plot 2

(c) Plot 3 (d) Plot 4

Figure 2: Mean and stdeviation using @benchmark function from the benchmarkTools library in Julia

10

Lastly, larger matrices require more computation time for two main reasons. Firstly, the number of
calculations increases proportionally with matrix size when considering the FLOP count. Counting only
the basic arithmetic operations involved we have:

X∗
kXk

is an n2 dot product with vectors of length m, each one accounting for m multiplications and m − 1
additions, totaling (2m− 1)n2 operations. The expression 3I −X∗

kXk introduces additional m additions
and 2m multiplications. The final multiplication, 1

2Xk(3I−X∗
kXk), involves nm dot products with vectors

of length m, contributing (2m − 1)nm + m operations. Therefore, the total flop count per iteration is
5m + (2m − 1)(n2 + nm), for each iteration. The second reason is, of course, that as the matrix size
increases, the number of singular values also increases, and the probability of having smaller singular
values increases as well.

The next 3 figures illustrate the number of iterations needed for convergence. All figures used matrices
of sizes 3, 10, 100, and 1000. In Figure 3, the matrices were real with entries uniformly distributed in
(0, 1). In Figure 4, complex matrices were used, with real and imaginary parts uniformly distributed in
(0, 1). Figure 5 shows matrices with singular values uniformly distributed in (12 , 1).

The graphs do not show any difference between the complex and real matrices. However, as discussed
earlier, significantly fewer iterations are needed for the matrices in Figure 5. This is illustrated in the
earlier plots as well, for example, in the times for matrices 1000 in figure 1 versus figure 2.

Figure 3:

11

Figure 4:

Figure 5:

12

5 Conclusion
In this study, I compared two distinct algorithms for computing the polar decomposition of a matrix: the
Newton-Schulz cubic iteration and a method based on Singular Value Decomposition (SVD). Through a
series of experiments and theoretical analysis, I evaluated the performance of each algorithm in various
scenarios. Although I couldn’t find how the SVD algorithm from the ’LinearAlgebra’ library in Julia is
implemented, I used as a proxy the algorithm described in [1]. This algorithm, known as the Golub-
Reinsch SVD has a computational complexity 4m2n+ 8m2n+ 9n3 operations to calculate Σ, U , and V .
This number makes sense when we look at the results: for the matrices in (a) Plot 2, the times are very
similar, and in that case, the flop count is also similar, approximately 24n2m = 24n3 for Newton-Schulz.

References
[1] Gene H. Golub, Charles F. Van Loan, Matrix Computations, The Johns Hopkins University Press,

Fourth Edition, 2013.

[2] David S. Watkins, Fundamentals of Matrix Computations, John Wiley & Sons, Third Edition, 2010.

[3] Li, W., & Sun, W. (2002). Perturbation Bounds of Unitary and Subunitary Polar Factors. SIAM
Journal on Matrix Analysis and Applications, 23(4), 1183–1193.

[4] Higham, N. J. (1986). Computing the polar decomposition—with applications. SIAM Journal on
Scientific and Statistical Computing.

[5] GitHub Repository for Polar Decomposition, https://github.com/rcpalma/
ms777---polar-decomposition/blob/main/notebook_used.

[6] "Polar Decomposition". Wikipedia, https://en.wikipedia.org/wiki/Polar_decomposition.

[7] "Matrix Norm". Wikipedia, https://en.wikipedia.org/wiki/Matrix_norm

13

https://github.com/rcpalma/ms777---polar-decomposition/blob/main/notebook_used
https://github.com/rcpalma/ms777---polar-decomposition/blob/main/notebook_used
https://en.wikipedia.org/wiki/Polar_decomposition
https://en.wikipedia.org/wiki/Matrix_norm

	Introduction
	SVD
	Polar Decomposition
	Newton-Schulz

	Computational Tests
	Conclusion

