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Abstract

The main goal of the present work is to explore the underlying concepts of probability

theory. This exploration is done via the study of measure theory, which allows the for-

malization of said concepts. Before introducing measure theory, we can already define

basic ideas for finite probability spaces. To apply analogous concepts to general probabil-

ity spaces — the ones that can actually be found in the real world — it is presented an

introduction to measure theory with the sole purpose of achieving such generalization.
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1 Introduction

Probability is usually introduced in high school as a way of calculating chances of certain

things happening among the many possibilities for a random event, such as rolling a die or

flipping a coin. The exploration of more complex “random events” — such as the height

of a man drawn at random from a group of people, or the size of a population throughout

some time-frame, or the price of a certain asset in the stock market — make it obvious

that probability, even as a metric of chance, is not quite as simple as counting how many

outcomes are favorable to some guess.

The present work has the notable historical advantage of being done after all the theory

needed is already developed, so the order and complexity by which the concepts appear in

the text are far from a representation of how the field developed. Still, one should imagine

that “high school probability” still has to be somehow valid under the generalization

needed for the more complex systems (as the ones mentioned above, which are all of great

interest for statisticians, physicists, economists, etc.).

For this reason, in the first section we define quite convenient concepts, such as σ-algebras,

probability spaces and expectation. Some of these concepts can seem quite foreign and

without reason at first, but they serve as a bridge between the tools used both in the

simple flipping-coin-like systems and the complex quantum-mechanics-like systems.

Most of the definitions, lemmas, and theorems from this work are taken from [3] with a

bit more mathematical care, when possible. In the second section, it is also used excerpts

from [1] with changes made only to fit previous notation used. These excerpts are needed

since this section represents an introduction to measure theory, so the concepts and results

presented can be used outside the probability context. The second part of this section

connects the dots: the probability space is viewed as a measure space, so the definitions

and results from measure theory can extend the concepts of the first section to more

general scenarios.

The big difference between the said simple and complex systems are the sample spaces

from which the events are drawn. Without measure theory, one can only formally repre-

sent countable (not necessarily finite) sample spaces. Measure theory allows for general,

in particular continuous, sample spaces to be treated analogously to the countable ones.
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2 Recap of Probability Theory

The goal of this section is to simply define the concepts that will be most useful in the

future of this work. All the definitions and results shown can be found in [2, 3], the

presentation below tries basically to condense them.

2.1 Definitions

Definition 2.1 (σ-algebra). For a nonempty set Ω, a σ-algebra is a collection F of subsets

from Ω such that

1. ∅ ∈ F

2. If A ∈ F ⇒ Ac ∈ F (closed under complementation)

3. If A1, A2, A3, · · · ∈ F ⇒
⋃∞

k=1Ak ∈ F (closed under countable union)

Lemma 2.1. σ-algebras are also closed under countable intersection.

Proof. Let A1, A2, A3, · · · ∈ F for a σ-algebra F . Note that, for each k ∈ N,

Ak ∈ F ⇒ Ac
k ∈ F (closed under complementation)

⇒
∞⋃
k=1

Ac
k ∈ F (closed under countable union)

⇒
( ∞⋂

k=1

Ak

)c

∈ F (DeMorgan’s laws [2])

⇒
∞⋂
k=1

Ak ∈ F (closed under complementation)

Therefore σ-algebras are closed under countable intersection.

Definition 2.2 (Filtration). A finite sequence F1,F2, . . . ,Fn of σ-algebras of a nonempty

set Ω is called a filtration if Fi ⊂ Fk for each i ≤ k.

Definition 2.3 (Probability measure). Let F be a σ-algebra of a nonempty set Ω. A

probability measure is a function P : F → [0, 1] such that

1. P(Ω) = 1 and P(∅) = 0
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2. If A1, A2, · · · ∈ F is a countable sequence of disjoint sets, then

P
( ∞⋃

i=1

Ai

)
=

∞∑
i=1

P(Ai)

Definition 2.4 (Sample Space). A sample space Ω is a collection of possible results ω

for a certain random experiment.

Definition 2.5 (Event). Any subset E of Ω is called an event.

Definition 2.6 (Random variable). Let Ω be a sample space. A (real) random variable

is a function X : Ω → R.

Notation 2.1. P(X = x) ≜ P({ω ∈ Ω : X(ω) = x})

Definition 2.7 (Probability Space). A probability space is a triple (Ω,F ,P), where Ω

is a sample space, F is a σ-algebra of Ω (sometimes called event space), and P is an

associated probability measure.

Definition 2.8 (Preimage). Let f : A → B be a generic function. The preimage of f

� over Y ⊂ B is the set f−1(Y ) = {x ∈ A : f(x) ∈ Y }

� for y ∈ B is the set f−1(y) = {x ∈ A : f(x) = y}

Observation 2.1. From notation (2.1), P(X = x) ≡ P(X−1(x))

Definition 2.9. A σ-algebra generated by random variable is the set of all preimages of

the random variable. For a random variable X : Ω → R, we write

σ(X) = {X−1(Y ) : Y ⊂ R} = {{ω ∈ Ω : X(ω) ∈ Y } : Y ⊂ R}

Notation 2.2. {X ∈ A} ≜ {ω ∈ Ω : X(ω) ∈ A} ⇒ σ(X) = {{X ∈ Y } : Y ⊂ R}

Definition 2.10. Let X be a random variable in a probability space (Ω,F ,P), and G ⊂ F

be a sub-σ-algebra of F . We say that σ(X) is G-measurable if every set in σ(X) is also

in G.
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Definition 2.11 (Induced Measure). For a random variable X in a probability space

(Ω,F ,P), and for any given A ⊂ R, we define the induced measure of X on A to be

LX(A) ≜ P{ω ∈ Ω : X(ω) ∈ A} ≡ P(X ∈ A).

Definition 2.12 (Cumulative Distribution Function). For a random variable X, in a

probability space (Ω,F ,P) we associate a function FX : R → [0, 1], called cumulative

distribution function (CDF), such that FX(x) ≜ P(X ≤ x) ≡ LX(∞, x].

2.2 Countable Probability Spaces

Definition 2.13 (Expected Value). The expected value of a random variable X in a

probability space (Ω,F ,P) with a countable Ω, is defined as

E(X) ≜
∑
ω∈Ω

X(ω)P{ω}

It’s interesting to note that the idea behind the “expected value” (or expectation) is exactly

that: if you were to guess the most likely result from you random variable, that would be

it. Of course, any half-decent statistician would raise an eyebrow to this affirmation, since

we know nothing of the distribution (we’ll get back to this concept in time) of values of

our random variable, so this interpretation could be massively flawed — in the sense that

such guess could be a bad choice if the outcome of the guess mattered. For this reason,

the expectation of a random variable is to be understood as a metric of its average value

for all possible outcomes — in statistics terms, it is called the mean.

Observation 2.2. If Ω has cardinality |Ω| = n (abusing notation here so that either

n ∈ N or n = ∞), then we can write {x1, . . . , xn} ≜ {X(ω) : ω ∈ Ω}, therefore

E(X) =
n∑

i=1

xiP(X = xi)

Clearly, one can write the set of values for the random variable in terms of xi because such

set is countable, that is, it is either finite (exactly n elements) or has the cardinality of the

natural numbers N, thus it’s always possible to find a bijection such that the equivalence
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remains. Since the numbers xi are fixed, the case where |Ω| = ∞ implies that E(X) exists

if the series converges, which depends on how the probability measure P is defined for the

random variable.

Definition 2.14 (Variance). The variance of a random variable X in a probability space

(Ω,F ,P), is defined as

Var(X) ≜ E[(X − E(X))2]

Lemma 2.2. Var(X) = E(X2)− [E(X)]2

Proof. The proof follows directly from the definition

Var(X) = E[(X − E(X))2]

= E(X2 − 2XE(X) + [E(X)]2)

= E(X2)− 2E(XE(X)) + [E(X)]2

= E(X2)− 2E(X)E(X) + [E(X)]2

= E(X2)− [E(X)]2

3 Introduction to Measure Theory

In this section the mathematical rigor is increased. For this reason, most of the definitions,

results, and proofs extracted from [3] are rewritten with more mathematical care. Also,

the more abstract results are not contained in the previous reference, but can be found

in [1].

3.1 Lebesgue Integral

Definition 3.1. The Borel σ-algebra B(R) is the smallest σ-algebra containing all open

intervals in R. The sets in B(R) are called Borel.

Lemma 3.1. Every closed interval is Borel.
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Proof. Since B(R) is a σ-algebra, then one can note that every countable union of open

intervals is Borel, for instance, (a, b) ∪ (c, d) with b < c is Borel. On another hand, the

complement of a Borel set must also be a Borel set, so

[(a, b) ∪ (c, d)]c = (−∞, a] ∪ [b, c] ∪ [d,∞)

is Borel. Moreover, [b, c] is Borel. Since a, b, c, d ∈ R were arbitrary, any closed interval

(or half closed, for that matter) is Borel.

Lemma 3.2. Every set with countably many real numbers is Borel.

Proof. Note that, ∀a ∈ R, the limit

{a} =
∞⋂
n=1

(
a− 1

n
, a+

1

n

)

holds because of the Archimedean property of the real numbers, that is, ∀ε > 0,∃n ∈ N :

ε < 1/n, which in turn only is true given N is not bounded above [4]. So, since σ-algebras

are closed under countable intersections, then {a} is Borel.

Now, since σ-algebras are also closed under countable union, we have that
⋃

k∈M{ak} is

Borel, considering M countable and each ak ∈ R.

Notation 3.1. Let’s denote the extended real line as R ≜ R ∪ {∞}.

Definition 3.2 (Measure). Let B(R) be the σ-algebra of Borel subsets of R. A measure

on (R,B(R)) is a function µ : B(R) → R such that

1. ∀A ∈ B(R), µ(A) ≥ 0

2. µ(∅) = 0

3. If A1, A2, · · · ∈ B(R) is a countable sequence of disjoint sets, then

µ

( ∞⋃
i=1

Ai

)
=

∞∑
i=1

µ(Ai)
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Note that, by definition (2.3), a probability measure only adds the requirement of an

upper bound of 1; thus it is possible to define P(A) = µ(A)
µ(Ω)

, ∀A ∈ F σ-algebra of Ω, for

a certain measure µ. This covers definition (2.3) and resembles the frequentist approach

to probability (but let’s not get down that statistics rabbit hole).

Definition 3.3. The length of an interval [a, b] ⊂ R (not necessarily closed), will be given

by the well known metric

d : R× R → [0,∞]

(a, b) 7→ |b− a|

Definition 3.4. The Lebesgue Measure µ0 of an interval is the length of the interval.

Lemma 3.3. A set with countably many points has Lebesgue measure equal to zero.

Proof. Let A = {a1, a2, a3, . . . } ⊂ R. Note that A =
⋃∞

n=1{an}, so µ0(A) =
∑∞

n=1 µ0{ak}.

Now it suffices to show that, ∀k, µ0{ak} = 0 since µ0(B) ≥ 0 for any set B. And that

follows from

{ak} =
∞⋂
n=1

(
1− 1

n
, 1 +

1

n

)

⇒ {ak} ⊂
(
1− 1

n
, 1 +

1

n

)
for any n ∈ N

⇒ µ0{ak} ≤ µ0

(
1− 1

n
, 1 +

1

n

)
⇒ 0 ≤ µ0{ak} ≤ 2

n

n → ∞ ⇒ µ0{ak} = 0

Therefore any set with countably many points has Lebesgue measure of zero.

Definition 3.5. We say that a function f : R → R is Borel-measurable if

∀A ∈ B(R), f−1(A) ∈ B(R)

In other words, f is Borel-measurable if σ(f) ⊂ B(R).
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Definition 3.6. We say that a property is valid almost everywhere if the set on which

such property fails to hold has measure zero.

Observation 3.1. From this point on, unless explicit stated, all real functions f will

be Borel-measurable, and all subsets of R that will be considered will be Borel.

Now we begin defining the Lebesgue integral by somewhat of an standard procedure [1,

3], which is considering basic functions and assigning interpretations to the integral, in

order to then use such functions to build the Lebesgue integral of a general function.

Definition 3.7. Let IA : R → R such that IA =

 1, if x ∈ A

0, if x /∈ A

. This is called an

Indicator function, and its Lebesgue integral is defined as

∫
R
IA dµ0 ≜ µ0(A)

Definition 3.8. Let h(x) =
∑n

k=1 ckIAk
for ck ∈ R and Ak ⊂ R. This is called a simple

function, and it is such that its Lebesgue integral is defined as

∫
R
h dµ0 ≜

n∑
k=1

ckµ0(Ak)

Definition 3.9. Let f : R → R+ be a nonnegative real function, its Lebesgue integral is

∫
R
f dµ0 ≜ sup

{∫
R
h dµ0 : h simple and h(x) ≤ f(x), ∀x ∈ R

}

Note that the above definition for a nonnegative function matches the idea of a lower sum

of the Riemann integral.

Definition 3.10 (Lebesgue Integral of any function). Let f : R → R be a general

function. We define its positive and negative parts, respectively, as

f+(x) ≜ max{f(x), 0} and f−(x) ≜ max{−f(x), 0}
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With this we define the Lebesgue integral of f to be

∫
R
f dµ0 ≜

∫
R
f+ dµ0 −

∫
R
f− dµ0

Definition 3.11. A function f is said integrable if
∫
R |f | dµ0 < ∞. That is, neither

terms in the right-hand side of definition (3.10) are ∞.

Definition 3.12 (Lebesgue integral on a set). For f : X ⊂ R → R with A ⊂ X, we

define ∫
A

f dµ0 ≜
∫
R
IAf dµ0

A famous example of non-integrable functions when studying the Riemann integral is the

function IQ, also known as the Dirichlet function. Let’s consider both the Lebesgue and

the Riemann integrals on the interval [0, 1].

Starting with Lebesgue, since Q is countable, µ0(Q) = 0, so

∫
[0,1]

IQ dµ0 = 0

As for the Riemann, we need to define an upper and a lower sum, and then check if their

limits coincide. Note that the upper and lower sums are, respectively,

U =
n∑

k=1

1 · (xk − xk−1) and L =
n∑

k=1

0 · (xk − xk−1)

Since limn→∞ U = 1 ̸= 0 = limn→∞ L, we can affirm that IQ is not Riemann integrable,

but it is Lebesgue integrable.

Definition 3.13. For a sequence (an), n ∈ N, we say that it has monotone convergence

to a if either

1. (an) ↑ a ⇔ limn→∞ an = a and ∀n, an ≤ an+1

2. (an) ↓ a ⇔ limn→∞ an = a and ∀n, an ≥ an+1
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The proofs for the following theorems that are not shown here can be found on [1].

Theorem 3.1. For f, g functions in a measure space (Ω,F , µ)

1. If α, β ∈ R are scalars, then

∫
Ω

(αf + βg) dµ0 = α

∫
Ω

f dµ0 + β

∫
Ω

g dµ0

2. If f ≤ g everywhere, then ∫
Ω

f dµ0 ≤
∫
Ω

g dµ0

3. If A,B are disjoint, then

∫
A∪B

f dµ0 =

∫
A

f dµ0 +

∫
B

f dµ0

Theorem 3.2 (Monotone Convergence Theorem). Let (fn) be a sequence of functions

fn : D ⊂ R → R such that 0 ≤ fn ↑ f almost everywhere. Then
∫
D
fndµ0 ↑

∫
D
fdµ0, that

is ∫
D

f dµ0 = lim
n→∞

∫
D

fn dµ0

Proof. Since (fn) converges monotonically to f for all x ∈ A ⊂ D with µ0(A
c) = 0, so

fnIA ↑ fIA everywhere, then

∫
D

fn dµ0 =

∫
A

fn dµ0 +

∫
Ac

fn dµ0

=

∫
D

fnIA dµ0 ∵ µ0(A
c) = 0

↑
∫
D

fIA dµ0

=

∫
A

f dµ0 +

∫
Ac

f dµ0 ∵ µ0(A
c) = 0

∴
∫
D

fn dµ0 ↑
∫
D

f dµ0

Which is effectively equivalent to swapping the integral with the limit.
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Theorem 3.3 (Fatou’s Lemma). Let (fn) be a sequence of non-negative functions, then

∫
R
lim inf
n→∞

fn dµ0 ≤ lim inf
n→∞

∫
R
fn dµ0

Theorem 3.4 (Dominated Convergence Theorem). Let (fn) be a sequence of functions

fn : D ⊂ R → R such that |fn| ≤ g almost everywhere, with g integrable. If fn → f

almost everywhere, then (fn) and f are integrable with

∫
D

fn dµ0 →
∫
D

f dµ0

Notation 3.2. From this point on, unless explicit stated, all integrals will be Lebesgue,

so we can use the same notation of the Riemann integral without confusion

∫
[a,b]

f dµ0 ≜
∫
[a,b]

f(x)dµ0(x) ≡
∫ b

a

f(x)dx

Specially considering that the Lebesgue integral is defined for more functions and, if the

Riemann integral exists, it will yield the same result.

3.2 General Probability Spaces

Equipped with the Lebesgue integral, we can define more general probability spaces by

allowing the sample space Ω to be uncountable.

Definition 3.14 (Integral of a Random Variable). Let X be a random variable in a

probability space (Ω,F ,P)

1. if X(ω) = IA(ω), for A ∈ F , then X is an indicator and

∫
Ω

X dP = P(A)
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2. if X(ω) =
∑n

k=1 ckIAk
(ω), then X is simple and

∫
Ω

X dP =
n∑

k=1

ckP(Ak)

3. if X : Ω → R+, then∫
Ω

X dP ≜ sup

{∫
Ω

Y dP : Y simple and Y (ω) ≤ X(ω), ∀ω ∈ Ω

}

4. if X is a general random variable, we define its integral the same way we define a

real function, provided that the right-hand side does not have any ∞:

∫
Ω

X dP =

∫
Ω

X+ dP−
∫
Ω

X− dP

5. for A ∈ F , we have ∫
A

X dP =

∫
Ω

IAX dP

Observation 3.2. All the theorems for a general measure space can be translated to the

probability space (Ω,F ,P), including the convergence ones — the only change in language

needed is that almost everywhere becomes almost surely.

Definition 3.15. An event E ∈ F happens almost surely if P(E) = 1.

Definition 3.16 (Expected Value). The expectation of a random variable X in a prob-

ability space (Ω,F ,P) is defined as

E(X) ≜
∫
Ω

X dP

Note that the variance definition (2.14) still works for a general random variable. Also,

item 1 from definition (3.14) gives away an often useful identity of an indicator random

variable, which is that its expected value is the same as the probability of the event it

indicates.
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A very useful way of characterizing random variables is via their “distribution”. Let’s look

at an example to build an intuition about an important theorem from measure theory.

Example 3.1 (Standard normal distribution). Consider the function φ : R → R such

that

φ(x) =
1√
2π

e−
x2

2

If we consider a random variable X in a probability space (Ω,F ,P) such that Ω = R ⇔

F = B(R), and P such that

P(X ∈ A) ≡ LX(A) =

∫
A

φdµ0

then we can say that X has a standard normal distribution.

We don’t know what a “standard normal distribution” means, but it’s certainly related

to something we imposed on the probability space defined. Since there’s nothing special

with considering the real line as the sample space Ω (and thus having the Borel σ-algebra

as F), meaning we could imagine many different random variables with that constraint,

we have to assume that such concept of distribution is strictly related to the way we

defined the probability measure.

Note that, if A = (−∞, x] for some x ∈ R, then

∫
A

φdµ0 = P(X ∈ A)∫ x

−∞
φdµ0 = P(X ≤ x) ≡ LX(−∞, x]∫ x

−∞
φ(t)dt = FX(x)

⇒ φ(x) =
dFX

dx
≡ dLX

dµ0

∣∣∣
A
=

dP
dµ0

∣∣∣
{X≤x}

The last equation definitely has some abuse of notation, given we didn’t define the deriva-

tive with respect to a measure, which is called the Radon-Nikodym derivative [1].

Properly defining and exploring the Radon-Nikodym derivative is outside the scope of

this work, however we can interpret it as the way the measure P is weighted along the

real line according to the density φ [3].
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Definition 3.17. If φ : R → R+ is a function such that
∫
R φdµ0 = 1 then φ is called a

density.

Note that, in the example above, it was sufficient to use the fundamental theorem of cal-

culus [4] to obtain a relationship between the cumulative distribution function (definition

2.12) and the function of interest φ. So indeed, the distribution of a random variable X

is determined by how the probability measure is defined for it, and that can be given by

the function FX or by its derivative [2].

Definition 3.18. For a random variable X in a probability space (Ω,F ,P) with cumu-

lative distribution function FX , we define the probability density function (PDF) of

X as

fX(x) =
dFX

dx

Definition 3.19. Given a random variable X with a PDF fX in a probability space

(Ω,F ,P), the probability of X falling into A ∈ F is given by

P(X ∈ A) ≜
∫
A

fX dµ0

Obviously, we used this definition in the example (3.1), but the more useful information

here is that this is general, meaning we can use this definition to calculate the probabilities

for any random variable X for which we know its PDF or CDF.

Another interesting approach to densities and how they connect two different measures is

considering a nonnegative µ0-measurable function δ : R → R+ such that it defines another

measure ν via

ν(A) =

∫
A

δ dµ0, A ∈ B(R)

By this alternate definition, we say that ν has density δ with respect to µ0 [1]. We are

interested in the cases where δ is also µ0-integrable with unitary integral (that is, for the

whole real line).
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Theorem 3.5. Consider a function f in a measure space (Ω,F , ν), where ν has density

δ with respect to µ0, with δ integrable with respect to µ0, then, for A ∈ F

∫
A

f dν =

∫
A

fδ dµ0

Proof. For simplicity, let’s consider A = Ω at first. If f = IB then

∫
Ω

f dν = ν(B) =

∫
B

δ dµ0

Which holds by definition. If f is a simple function

∫
Ω

f dν =

∫
Ω

n∑
k=1

ckIk dν

=
n∑

k=1

ck

∫
Ω

Ik dν

=
n∑

k=1

ck

∫
Ω

Ikδ dµ0

=

∫
Ω

n∑
k=1

ckIkδ dµ0

=

∫
Ω

fδ dµ0

If f is non-negative, consider a sequence (fn) of simple functions such that fn ↑ f almost

everywhere.

lim
n→∞

∫
Ω

fn dν = lim
n→∞

∫
Ω

fnδ dµ0 ∵ fn is simple∫
Ω

f dν =

∫
Ω

fδ dµ0 ∵ monotone convergence theorem

Finally, if f is a general integrable function, then apply the logic above for the negative

and positive parts.

Now, if we do f 7→ fIA then we can consider any set A with the same arguments.

Clearly, if ν = P we are basically talking about a practical way of calculating expected
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values and probabilities for a random variable f for which we know the PDF δ.

For a random variable X which represents a simple numerical result from an experiment,

that is, the probability space is (R,B(R),P), and we can always re-write the random

variable so that X(ω) = ω. Considering that X has PDF fX we can write the expected

value definition in the well known manner [2]

E(X) ≜
∫
R
X dP =

∫
R
XfX dµ0 ≡

∫ ∞

−∞
xfX(x) dx

4 Conclusions

The purpose of this work was to build the necessary basis of advanced probability theory

necessary for the study of interesting applications, such as modelling stochastic processes

in continuous time and space. In particular, the choice of [3] as bibliography gives away

this intent, as the goal is to proceed studying stochastic calculus in the context of option

pricing models, eventually arising at the infamous Black-Scholes-Merton model.

It’s also a hope that this report could serve as a simple exposition of measure theoretic

probability for applied mathematics students with starting knowledge in analysis and

probability [2, 4].
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