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ABSTRACT

This thesis sets the bases of a research line in the theory of G2−instantons. Its immediate

motive is to study a nonlinear parabolic flow of metrics on a holomorphic bundle E →W over

a certain asymptotically cylindrical Calabi-Yau 3−fold, assuming E is stable ‘at infinity’.

Crucially, the solution’s infinite time limit, if it exists, is a Hermitian Yang-Mills (HYM)

metric on E .

After a prelude on the group G2 and G2−manifolds
(
M7, ϕ

)
, I develop the analogous

versions of such aspects of lower dimensional gauge theory as the Chern-Simons functional,

the notion of self-duality and topological energy bounds. I also explain how HYM metrics

over a CY 3 give rise to G2−instantons over the product CY 3×S1, hence why our global

analysis problem advances the cause of obtaining such instantons. I then move on to the

general deformation theory of irreducible G2−instantons, culminating at the local model

for the moduli space. An illustration of some of these ideas appears as an exercise on 7-tori.

Secondly, I sketch A. Kovalev’s construction of compact manifolds with holonomy G2 and

derive simple results, such as a Poincaré-Lelong-type equation of currents.

The core of the thesis is the study of the nonlinear ‘heat flow’. Following the methods of S.

Donaldson, C. Simpson et al., I establish the existence of a smooth solution {Ht} defined

for all time and having good asymptotic behaviour. Furthermore, I reduce the question

of convergence as t → ∞ to a conjectured lower energy bound over a cylindrical segment,

down the tubular end, of measure roughly proportional to ‖Ht‖C0 .

Finally, I propose one example of a bundle satisfying the stability assumptions of our evo-

lution problem, derived from the null-correlation bundle over CP 3.

Addendum: A sufficient restatement with proof of the conjectured lower energy bound has

been added a posteriori as Appendix B. This was not part of the original thesis.
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INTRODUCTION

The present work lays the foundation of a long-term research project in the theory of

G2−instantons. It fits in the wider context of gauge theory in higher dimensions, following

the seminal works of S. Donaldson, R. Thomas, G. Tian and others. The common thread to

such generalisations is the presence of an additional, closed structure on the base manifoldM

which induces an analogous notion of anti-self-dual connections, or instantons, on bundles

over M . In the case at hand, G2−manifolds are 7−dimensional Riemannian manifolds with

holonomy in the exceptional Lie group G2, which translates exactly into the presence of such

a closed structure. This allows one to make sense of G2−instantons as the energy-minimising

gauge classes of connections, solutions to the corresponding Yang-Mills equation.

Although the development of similar theories, notably in dimensions four [D-K] and six

[Tho], has led to a very significant understanding of the invariants associated to moduli

spaces of instantons, little is currently known about the 7−dimensional case – indeed, no

G2−instanton has yet been constructed, much less any moduli space invariants studied.

This is due not least to the success and attractiveness of the previous theories themselves,

but partly also to the relative scarcity of working examples of G2−manifolds [Bry][B-S][Joy].

In 2003, A. Kovalev provided an original construction of compact manifolds M with

holonomy G2. These are obtained by gluing two smooth asymptotically cylindrical Calabi-

Yau 3-folds W1 and W2, truncated sufficiently far along the noncompact end, via an addi-

tional “twisted” circle component S1. This opened a clear, three-step path in the theory

of G2−instantons: (1) to obtain a Hermitian Yang-Mills (HYM) connection over each Wi,

which pulls back to a G2−instanton Ai over the product Wi × S1, (2) to glue the Ai

compatibly with the twisted connected sum
(
W1 × S1

)
#̃
(
W2 × S1

)
in order to obtain a

G2−instanton A = A1#̃A2 over M [Don1][Tau], and (3) to study the moduli space of such

instantons and eventually compute invariants in particular cases of interest.

The present work has a three-fold purpose in this context. First, to formalise in gen-

erality the basic elements of a theory of G2−instantons and their moduli spaces. Second,
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to concretely frame the problem of obtaining G2−instantons over Kovalev’s manifolds. Fi-

nally, and most importantly, to make significant progress towards completing part (1) of

the above strategy.

I begin Chapter 1 recalling basic facts about the group G2, in order to motivate the

appearance of the G2−structure ϕ (Section 1.1). This survey then proceeds to define

G2−manifolds and mention some of their key properties (Section 1.2). After this prelude I

move on to the gauge theory set up, discussing broadly the Yang-Mills functional and the

principle of generalisation to dimension n ≥ 4 under the presence of a closed (n− 4)−form

[Tia][D-T]. I then start in earnest the adaptation of gauge-theoretical concepts and tools into

the setting of G2−manifolds, such as the Chern-Simons functional and its associated 1−form

(Subsection 1.3.2), the notion of self-duality of 2−forms in the presence of ϕ, topological

energy bounds for the Yang-Mills functional and the relationship between HYM connections

over a Calabi-Yau 3−fold W and G2−instantons over W × S1 (Section 1.4).

The next fundamental adaptation is the deformation theory of G2−instantons, via Fred-

holm differential topology; the discussion culminates at the finite-dimensional local model

for the moduli space near irreducible G2−instantons (Section 1.5). I illustrate some of these

ideas with an exercise on T 3−fibred 7-tori (Section 1.6).

Chapter 2 is a quick introduction to Kovalev’s manifolds [Kov1][Kov2], featuring the

statement of his noncompact Calabi-Yau-Tian theorem and a discussion of its essential

ingredients (Section 2.1). The main purpose is to set the scene for the analysis to follow,

which takes place over an asymptotically cylindrical SU (3)−manifold W as given by that

theorem. In the process we establish quite a bit of notation and prove a few basic results

for the sequel, as well as a Poincaré-Lelong equation of currents which is just a curiosity

(Subsection 2.1.3). Finally, I include a brief outline of the gluing process and some broader

strategic comments (Subsection 2.2.2).

The core of the thesis is Chapter 3, concerning the HYM problem on a holomorphic

bundle E → W satisfying a certain asymptotic stability assumption along the noncompact

end of W and carrying a suitable reference metric H0 (Section 3.1). This amounts to

studying a parabolic equation on the space of Hermitian metrics [Don2][Don4] over an

asymptotically cylindrical base manifold, and it follows a standard pattern [Sim][Guo][But].

One begins by solving the associated Dirichlet problem on an arbitrary finite truncation
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WS , first obtaining short-time existence of smooth solutions HS (t) (Subsection 3.1.1), then

extending them for all time. Fixing arbitrary finite time, one obtains HS (t) −→
S→∞

H (t)

on compact subsets of W (Subsection 3.1.2). Moreover, every metric in the 1−parameter

family H (t) approaches exponentially the reference metric H0, in a suitable sense, along

the cylindrical end. Hence one has solved the original parabolic equation and its solution

has convenient asymptotia.

From Section 3.2 onwards I tackle the issue of controlling lim
t→∞

H (t), which is the final

milestone towards step (1) of the project. Adapting to our context the ‘determinant line

norm’ functionals introduced by Donaldson [Don2][Don3], I conjecture a time-uniform lower

bound on the ‘energy density’ F̂ over a finite piece, down the tubular end, of size roughly

proportional to ‖H(t)‖C0(W ), in Conjecture 3.71 (Subsection 3.2.3). That, in turn, is a

sufficient condition for uniform C0−convergence of H (t) over the whole of W , in view of an

upper energy bound derived by the Chern-Weil method (Section 3.3). Therefore the HYM

problem has been effectively reduced to establishing the conjectured lower energy bound

over such a ‘large’ cylinder, as stated in Theorem 3.76.

Finally, Chapter 4 presents an illustrative example of a setting E → W satisfying the

assumptions of our analysis in Chapter 3, based on the null-correlation bundle over CP 3

[O-S-S][Bar].

ABOUT THE ADDENDUM: Please note that Appendix B, containing the correct re-

statement and a proof of Conjecture 3.71, hence of the main existence result claimed in

Theorem 3.76, has been added to this document in November 2009. Its contents have not

been scrutinised by the examiners of the original thesis, nor do they have any connection

with the doctoral requirements of Imperial College London, and the author alone bears

responsibility for any mistakes therein.
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CHAPTER 1

GAUGE THEORY ON G2−MANIFOLDS

1.1 The group G2

The exceptional Lie group G2 comes last in the classification of families of simple Lie groups

according to their (connected) Dynkin graphs [Jac]:

Al, Bl, Cl, Dl, E6, E7, E8, F4, G2︸ ︷︷ ︸
exceptional

where subscript counts simple roots in the Lie algebra. Families E6, E7, E8, F4 and G2 are

called exceptional because each has a single element, and the ordering of letters corresponds

to the presence of graph edges with increasing multiplicity. Yet again G2 is ‘exceptional’,

being the only one to admit a triple edge, the greatest root valence in a Dynkin graph.

Etymologies aside, in practice we will be interested in an alternative definition of G2

[Sal, p.155]; let {ei}i=1,...,7 denote the canonical basis of
(
R7
)∗
, eij

.
= ei ∧ ej etc.:

Definition 1.1 The group G2 is the subgroup of GL(7) preserving the 3−form

ϕ0 =
(
e12 − e34

)
∧ e5 +

(
e13 − e42

)
∧ e6 +

(
e14 − e23

)7
+ e567 (1.1)

under the standard (pull-back) action on Λ3
(
R7
)∗
, i.e.,

G2
.
= {g ∈ GL(7) | g∗ϕ0 = ϕ0} .

This arguably obscure definition encodes the geometrical fact that G2 is the group of

automorphisms preserving a generalised vector cross-product in R7. To see this, recall that

the usual vector cross-product in R3 comes from the identification of this space with the

imaginary quaternions Im (H); then a×b is just the commutator under quaternionic algebra

a× b
.
=
1

2
[a, b] . (1.2)
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The same relation (1.2) defines an analogous cross-product in R7 if we borrow the com-

mutator this time from the imaginary octonions ImO ' R7, with multiplication conventions:

∙ e1 e2 e3 e4 e5 e6 e7

e1 −1 e5 e6 e7 −e2 −e3 −e4

e2 −e5 −1 −e7 e6 e1 −e4 e3

e3 −e6 e7 −1 −e5 e4 e1 −e2

e4 −e7 −e6 e5 −1 −e3 e2 e1

e5 e2 −e1 −e4 e3 −1 e7 −e6

e6 e3 e4 −e1 −e2 −e7 −1 e5

e7 e4 −e3 e2 −e1 e6 −e5 −1

It is then straightforward to verify that ϕ0 induces the cross-product, in the presence of the

Euclidean metric, by considering the following bilinear map from R7 to its dual:

R7 × R7 →
(
R7
)∗

(a, b) 7→ (a, b)yϕ0
.
= ϕ0 (a, b, .) = (a× b)

∗ .
(1.3)

For example, ϕ0 (v1, v2, ∙) = e5 (∙) = (v5)
∗ = (v1 × v2)

∗, where ei(vj)
.
= δij . Note that the

the restriction to ImO of the natural inner product on O,

〈a, b〉
.
= 1
2

(
a.b+ b.a

)
, (1.4)

defined by polarisation (which means simply multiplication by −1 on ImO), coincides with

the Euclidean inner product on R7:

〈a, b〉 =
〈
aivi, b

jvj
〉
= 1

2

(
−aibj

)
(vi.vj + vj .vi)︸ ︷︷ ︸

−2δij

=
∑
i a
ibi.

(1.5)

Indeed, the Euclidean metric itself can be recovered from ϕ0 using the relation

〈a, b〉 e1...7 = (ayϕ0) ∧ (byϕ0) ∧ ϕ0 (1.6)

(established e.g. by direct inspection on basis elements), and Proposition 1.3 will show

that G2 preserves volume and orientation as on the left-hand side above. We conclude, in

12
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particular, that the induced cross-product (1.3) is obtained solely from the structure ϕ0.

Actually, ϕ0 encodes completely the octonions’ algebra, as we can see from two elemen-

tary properties of the imaginary octonions:

Lemma 1.2 For a, b ∈ ImO, we have:

1. a× b = a.b+ 〈a, b〉;

2. 6 〈a, b〉 = −trTa,b,

where Ta,b is the linear map given by the cross-product composition

Ta,b : ImO → ImO

v 7→ a× (b× v) .
(1.7)

Proof

1. We have a × b = 1
2 [a, b] = a.b − 1

2 (a.b+ b.a); on the other hand, by definition,

2 〈a, b〉 = a.b+ b.a = − (a.b+ b.a) since a and b are pure imaginary.

2. By linearity, it suffices to consider a, b among the canonical basis {v1, ..., v7}:

trTvi,vj =
7∑

k=1

(
Tvi,vj (vk)

)k
=

7∑

k=1

(vi × (vj × vk))
k (1.)=

7∑

j 6=k=1

(vi × (vj .vk)︸ ︷︷ ︸
vl

)k

= −
7∑

j 6=k=1

(vl.vi)
k = −

7∑

j 6=k=1

(δijvk)
k = −6δij

= −6 〈vi, vj〉 .

Combining both parts of the above Lemma 1.2 we have

a.b = a× b+
1

6
trTa,b (1.8)

where the right-hand side is defined solely using the cross-product; hence the octonion

product structure on ImO is indeed recovered from the cross-product given by ϕ0. Moreover,

as claimed:

13
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Proposition 1.3 G2 ⊂ SO (7).

Proof We may think of the double cross-product (1.7) as a map

T : R7 × R7 → R7 ⊗
(
R7
)∗

(a, b) 7→ Ta.b

and it is easy to see from the equivariance of the cross-product that T is G2−covariant:

Tga,gb (v) = ga× (gb× v)

= ga× g
(
b× g−1v

)

= g
(
a×

(
b× g−1v

))

= g ◦ Ta,b ◦ g
−1 (v) .

Hence trTa,b is G2−invariant for all a, b and so G2 ⊂ O (7) by Lemma 1.2. Regarding

orientation, observe in the relationship (1.6) between ϕ0 and the Euclidean inner product,

〈a, b〉 e1...7 = (ayϕ0) ∧ (byϕ0) ∧ ϕ0,

that the r.h.s. is G2−equivariant as a map R7 × R7 → Λ7
(
R7
)∗
. Acting on the l.h.s.

with any g ∈ G2 and applying the transformation law for the volume element gives

〈ga, gb〉 = (det g)−1 〈a, b〉 .

Consequently,

(det g)7 = det [(det g) δij ] = det [(det g) 〈vi, vj〉]

= det
[〈
g−1vi, g

−1vj
〉]
= det [〈vi, vj〉]

= 1.

Furthermore, in view of Proposition 1.3, part 1 of Lemma 1.2 means that G2 is exactly

the group of algebra automorphisms of ImO. Extending the action trivially on 1 ∈ O, we

realise in the same sense

G2 = Aut (O) .

14
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The connection between this presentation of G2 and the Lie algebraic setting in the begin-

ning of this Section is the fact that g2 = Der (O) has precisely the triple-edged diagram

predicted in the Dynkin classification [Jac], but this will not be important for this text.

The following Theorem [Bry, 1.] summarises some relevant properties of G2:

Theorem 1.4 The subgroup G2 ⊂ SO(7) ⊂ GL(7) is compact, connected, simple, simply

connected and dim (G2) = 14 . Moreover, G2 acts irreducibly on R7 and transitively on S6.

1.2 G2-manifolds

Ultimately we want to consider Riemannian manifolds with holonomy group G2, so the

first thing to do is to spot suitable candidates. A famous result by Berger [Theorem A.80]

classifies essentially all cases in which a subgroup of SO (n) may occur as the holonomy group

of an irreducible and nonsymmetric1 simply-connected Riemannian manifold. Accordingly,

our starting point will be the following instance of Berger’s theorem:

Corollary 1.5 If (M, g) is a simply-connected Riemannian manifold such that g is irre-

ducible and nonsymmetric and Hol (g) = G2, then dimM = 7.

Let M be an oriented simply-connected smooth 7−manifold. We will see in this Section

that ifM carries a torsion-free G2−structure, then it also admits a Riemannian metric with

holonomy at least contained in G2.

Definition 1.6 A G2−structure on the 7−manifold M is a 3−form ϕ ∈ Ω3 (M) such that,

at every point p ∈M , ϕp = f∗p (ϕ0) for some frame fp : TpM → R7.

Given such ϕ, the set of all global frames f satisfying ϕ = f∗ϕ0 is indeed a principal

subbundle of the frame bundle F →M , with fibre G2, because the right-action of G2 on F

fixes ϕ0 by definition. Moreover, as G2 ⊂ SO (7) [Proposition 1.3], ϕ fixes the orientation

given by some (and consequently any) such frame f and also the metric g = g (ϕ) given

pointwise by Lemma 1.2. We may refer to (ϕ, g) as the G2−structure whenever doing so is

more economical than recalling explicitly that g is the associated metric.

The torsion of ϕ is the covariant derivative ∇ϕ given by the Levi-Civita connection of

the induced metric g, thus we say that ϕ is torsion-free if ∇ϕ = 0.

1for a discussion of Lie groups arising as holonomy of Riemannian symmetric spaces, see [Joy, pp. 50-53].
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Definition 1.7 A G2-manifold is a pair (M,ϕ) where M is a 7−manifold and ϕ is a

torsion-free G2−structure on M .

The following theorem [Joy, 10.1.3, p.244][Fe-G] indicates the convenience ofG2−manifolds

in the construction of examples of manifolds with holonomy group G2.

Theorem 1.8 Let M be a 7−manifold with G2−structure ϕ and associated metric g; then

the following are equivalent:

1. ∇ϕ = 0, i.e., M is a G2−manifold;

2. Hol (g) ⊂ G2;

3. let ∗ϕ denote the Hodge star operator induced by g; then

dϕ = d ∗ϕ ϕ = 0.

NB.: Equations ∇ϕ = 0 and d ∗ϕ ϕ = 0 are nonlinear in ϕ, since the metric g itself (hence

also the Hodge star and the Levi-Civita connection) depends on ϕ.

Finally, if we restrict our attention to compact G2−manifolds, the condition to have

holonomy exactly G2 is given by the next theorem, which is a direct consequence of Cheeger-

Gromoll decomposition [Joy, 10.2.2, p.245].

Theorem 1.9 Let (M,ϕ, g) be a compact G2−manifold; then

Hol (g) = G2 ⇐⇒ π1 (M) is finite.

The purpose of the ‘twisted’ gluing in A. Kovalev’s construction of asymptotically cylin-

drical G2−manifolds [cf. Section 2.2] is precisely to secure this topological condition, hence

strict holonomy G2.
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1.3 Gauge theory in higher dimensions

Gauge theory can be described as the study of bundles E → X with connections satisfying

some gauge-invariant condition on the curvature [Jar, Ch. 1]. For example, the flatness

condition

FA = 0 (1.9)

is clearly gauge-invariant. From a variational point of view, flat connections solve trivially

the Yang-Mills equation

d∗AFA = 0, (1.10)

which is the Euler-Lagrange equation of the Yang-Mills functional

YM (A)
.
= ‖FA‖

2 =

∫

X

|FA|
2 .

When dimX = 4, connections whose curvatures lie in the subbundle of ±1−eigenspaces of

the Hodge star in Ω2 (gE) (respectively self-dual and anti-self-dual) also solve (1.10), by

the Bianchi identity:

d∗AFA = ±dAFA = 0.

So both self-dual (SD) and anti-self-dual (ASD) connections are critical points2 of the Yang-

Mills functional. Indeed, it is well-known from Chern-Weil theory that, whenever a SD or

ASD connection exists, it is an absolute minimum3 of YM .

In Subsection 1.3.1 I will sketch some of G. Tian’s ideas [Tia] on the generalisation

of these concepts to higher dimensions n = dimX ≥ 4, in the presence of a closed

(n− 4)−form on X.

In Subsection 1.3.2 I will briefly describe the Chern-Simons picture, in which flat con-

nections emerge analytically as critical points of a certain functional, over a base of real

dimension three. We will then apply the same principle to detect G2−instantons in dimen-

sion seven.

2Usually
(
i.e., when c2(E) 6=

(
1− 1

rk (E)

)
c1(E)

)
, E admits at most one type: either SD or ASD; and

possibly none.

3We shall carry an analogous discussion for G2−manifolds in Subsection 1.4.2.
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1.3.1 The Yang-Mills functional

Let E → X be a unitary bundle of rank r with structure group4 G over a Riemannian

manifold X of dimension n ≥ 4. Given a connection A on E, we define the Yang-Mills

functional as usual:

YM (A)
.
= ‖FA‖

2 =

∫

X

〈FA ∧ ∗FA〉g ,

where g = Lie (G), thus having its Euler-Lagrange equation:

d∗AFA = 0. (1.11)

Following [Tia], the presence of a closed (n− 4)−form Θ on X gives a criterion for finding

classes of solutions to (1.11), which suggests a generalisation for the concept of instanton:

Lemma 1.10 Let A be a unitary connection on E → X such that tr (FA) ∈ Ω2 (X) is

harmonic and

Θ ∧

(

FA −
1

r
tr (FA)⊗ Id

)

= − ∗

(

FA −
1

r
tr (FA)⊗ Id

)

; (1.12)

then A is a solution of (1.11). Moreover, if X is compact and without boundary, A satisfies

YM (A) =

(

2C2 (E)−
r − 1
r

C1 (E)
2

)

∙ [Θ] +
1

4π2r

∫

X

|tr (FA)|
2 dμ

with [Θ] ∈ Hn−4 (X,R).

Remark 1.11 Concerning the above Lemma:

1. The curvature splits invariantly into trFA ⊗ Id and its traceless part F 0A:

FA =

(

FA −
1

r
tr (FA)⊗ Id

)

︸ ︷︷ ︸
F 0A

+
1

r
tr (FA)⊗ Id

and indeed ‖tr (FA)‖L2 is minimised by the harmonic representative of the de Rham co-

homology class [tr (FA)]. So, when looking for energy-minimising connections, it suffices

to minimise the L2−norm of F 0A [Don2, p. 4].

4We will soon specialise, for simplicity, to the case G ⊆ SU(n).
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2. Assume G ⊆ SU(n); at a minimising connection, the energy YM (A) depends only on

E → X and on the cohomology class of Θ. We define indeed generalised instantons as

solutions of

FA ∧Θ = − ∗ FA.

3. Quite often the condition (1.12) is overdetermined and the criterion is void, but in our

present case of interest it is precisely the G2−instanton equation [cf. (1.21)].

In Section 1.4 we will study the anti-self-dual property (of generalised instantons) in the

case where X = M is a G2−manifold and Θ = ∗ϕ is the Hodge dual of its G2−structure

(see also [Rey]).

1.3.2 Chern-Simons theory

Consider a bundle P over a compact 3−manifold Y [Don1, §2.5]. The Chern-Simons func-

tional is a multi-valued real function on the quotient B = A/G, of the space A of connections

on P by the gauge group, taking integer periods. It has the remarkable property that its

critical points are precisely the flat connections on P modulo gauge.

Recall that A is an affine space modelled on Ω1 (gP ) so, fixing a reference A0 ∈ A,

A = A0 +Ω
1 (gP ) .

In particular, TA ' A× Ω1 (gP ), so we think of vectors on A as elements a ∈ Ω1 (gP ) and

define a 1−form on A by

ρ (a)A
.
=

∫

Y

tr (FA ∧ a) . (1.13)

Let us first check that ρ is closed: since FA+b = FA + dAb + b ∧ b, we have the first order

difference

ρ (a)A+b − ρ (a)A =
∫

Y

tr (dAb ∧ a) +O
(
|a| . |b|2

)
. (1.14)

Notice that the leading term in (1.14) is symmetric in a and b by Stokes’s theorem:

∫

Y

tr (dAb ∧ a− b ∧ dAa) =
∫

Y

d (tr (b ∧ a)) = 0. (1.15)

This shows that ρ is closed when we compare the reciprocal Lie derivatives on parallel vector

fields a, b around a point A:
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dρ (a, b)A = (Lbρ (a))A − (Laρ (b))A

= lim
h→0

1

h

{(
ρ (a)A+hb − ρ (a)A

)
−
(
ρ (b)A+ha − ρ (b)A

)}

= lim
h→0

1

h2
{(
ρ (ha)A+hb − ρ (ha)A

)
−
(
ρ (hb)A+ha − ρ (hb)A

)}

︸ ︷︷ ︸
O(|h|3)

= 0.

Since A is contractible, the Poincaré Lemma tells us that ρ is the derivative of some

function ϑ, say. Moreover, again by Stokes’s Theorem, ρ vanishes on img (dA) ' TA {G.A},

which are precisely the directions tangent to the G−orbits [cf. Subsection 1.5.1 below].

Hence ρ descends to the quotient B and so does ϑ, at least locally. In fact, it can be shown

that ϑ is given, up to an integer period, by the Chern Simons functional :

ϑ : B → R/Z

[A] 7→ 1
2

∫

Y

tr

(

dA0a ∧ a+
2

3
a ∧ a ∧ a

)

where A = A0 + a and we assume for simplicity FA0 = 0. The first-order variation of ϑ is

ϑ (A+ b)− ϑ (A) = 1
2

∫

Y

tr (dA0a ∧ b+ a ∧ dA0b+ 2a ∧ a ∧ b) +O
(
|b|2
)

= 1
2

∫

Y

tr 2(dA0a+ a ∧ a)︸ ︷︷ ︸
FA

∧ b+O
(
|b|2
)

= ρ (b)A +O
(
|b|2
)
,

so one finds precisely

dϑ = ρ.

Comparing with (1.13), we see that the flat connections on P → Y are indeed the critical

points of the Chern-Simons function in dimension 3.

Now, in the spirit of Subsection 1.3.1, a similar theory can be formulated in higher

dimensions under the presence of a suitable closed (n− 3)−form [D-T][Tho]. Our case of

interest is n = 7, in which the 4−form ∗ϕ, Hodge-dual to the G2−structure on M , allows
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for the definition of a functional of Chern-Simons type5 on the set of connections A:

ϑ (A) = 1
2

∫

M

tr

(

dA0a ∧ a+
2

3
a ∧ a ∧ a

)

∧ ∗ϕ,

where we fix for simplicity A0 ∈ A such that FA0 ∧ ∗ϕ = 0. This function is obtained by

integration of the analogous 1−form

ρ (a)A =

∫

M

tr (FA ∧ a) ∧ ∗ϕ. (1.16)

We find ϑ explicitly by integrating ρ over paths A (t) = A0+ ta, from A0 to any A = A0+a:

ϑ (A)− ϑ (A0) =
∫ 1

0
ρA(t)

(
Ȧ (t)

)
dt

=

∫ 1

0

∫

M

tr
((
FA0 + tdA0a+ t

2a ∧ a
)
∧ a
)
∧ ∗ϕ

= 1
2

∫

M

tr

(

dA0a ∧ a+
2

3
a ∧ a ∧ a

)

∧ ∗ϕ.

It remains to check that (1.16) is closed, so that the above procedure doesn’t depend on

the path A (t). This is true because of the property d ∗ ϕ = 0 of the G2−structure, which

ensures that the leading term in the expansion of ρ,

ρ (a)A+b − ρ (a)A =
∫

M

tr (dAb ∧ a) ∧ ∗ϕ+O
(
|b|2
)
,

is still symmetric [cf. (1.14) and (1.15)] by Stokes’ Theorem:

∫

M

tr (dAb ∧ a− b ∧ dAa) ∧ ∗ϕ =
∫

M

d (tr (b ∧ a) ∧ ∗ϕ) = 0.

Hence

ρ (a)A+b − ρ (a)A = ρ (b)A+a − ρ (b)A +O
(
|b|2
)

and the previous 3−dimension argument holds ipsis litteris to show that ρ is closed. At

least locally, then, the functional ϑ descends to the orbit space B.

To obtain the periods of ϑ we have to examine how its value is affected by the gauge

action, so choose g ∈ G and consider some path {A (t)}t∈[0,1] ⊂ A connecting A to g.A. The

5indeed, since only the condition d ∗ ϕ = 0 is required, the discussion extends to cases in which the
G2−structure ϕ is not necessarily torsion-free.
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natural projection p1 :M × [0, 1]→M induces a bundle

Eg
p̃1−→ E

↓ ↓

M × [0, 1]
p1−→ M

and, using g to identify the fibres (Eg)0
g
' (Eg)1, we may think of Eg as a bundle over

M×S1. Moreover, in some local trivialisation, the path A (t) = Ai (t) dxi gives a connection

A = A0dt+Aidx
i on Eg:

(A0)(t,p) = 0

(Ai)(t,p) = Ai (t)p .

The corresponding curvature 2−form is FA = (FA)0i dt ∧ dx
i + (FA)jk dx

j ∧ dxk, where

(FA)0i = Ȧi (t)

(FA)jk = (FA)jk .

The periods of ϑ are then of the form

ϑ (g.A)− ϑ (A) =
∫ 1

0
ρA(t)

(
Ȧ (t)

)
dt

=

∫

M×[0,1]
tr (FA(t) ∧ Ȧi (t) dx

i) ∧ dt ∧ ∗ϕ

=

∫

M×S1
trFA ∧ FA ∧ ∗ϕ

=
〈
c2 (Eg) ` [∗ϕ] ,M × S

1
〉
.

The Künneth formula for the cohomology of M × S1 gives

H4
(
M × S1

)
= H4 (M)⊕H3 (M)⊗H1

(
S1
)

︸ ︷︷ ︸
Z

and obviously H4 (M) ` [∗ϕ] = 0 so, denoting c′2 (Eg) the component lying in H
3 (M) and
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Sg = [c
′
2 (Eg)]

PD its Poincaré dual, we are left with

ϑ (g.A)− ϑ (A) = 〈[∗ϕ] , Sg〉 .

Consequently, the periods of ϑ lie in the set

{∫

Sg

∗ϕ | Sg ∈ H4 (M,R)

}

.

That may seem odd because this set is dense (as ∗ϕ is not, in general, an integral class)

but, as long as our interest remains in the study of the moduli spaceM of G2-instantons, as

the critical set of the Chern-Simons 1−form ρ, there is not much to worry, for the gradient

ρ = dϑ is unambiguously defined on B.

1.4 Yang-Mills theory on G2-manifolds

The G2−structure allows for a 7−dimensional analogue of conventional Yang-Mills theory.

The crucial fact is that one can use ϕ0 to establish a notion of (anti-)self-duality for 2−forms,

by a convenient split of Λ2 = Λ2
(
R7
)∗
in terms of irreducible representations of G2.

1.4.1 Self-duality in dimension 7

Since G2 ⊂ SO (7), we have g2 ⊂ so (7) ' Λ2, under the standard identification of 2−forms

with antisymmetric matrices. Denote Λ2−
.
= g2 and Λ

2
+ its orthogonal complement in Λ

2:

Λ2 = Λ2+ ⊕ Λ
2
−. (1.17)

Then dimΛ2+ = dimΛ
2 − dimΛ2− = 7, and we identify Λ

2
+ ' R7 as the linear span of

the contractions αi
.
= viyϕ0. Indeed the (pull-back) G2−action on Λ2+ corresponds to the

(standard) action on R7:

(g.αi) (u1, u2) = αi (g.u1, g.u2) = ϕ0 (vi, g.u1, g.u2)

= ϕ0
(
g−1.vi, u1, u2

)
=
((
g−1.vi

)
yϕ0

)
(u1, u2) .

It is straightforward to verify that αi ∈ (g2)
⊥ ⊂ so (7); e.g., letting g1 = eα1 ∈ SO (7) one

has (g∗1ϕ0) (v2, v5, ∙) = −e
1 6= e1 = ϕ0 (v2, v5,∙), so g1 /∈ G2. Moreover [Bry, p. 541]:
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Claim 1.12 The space Λ2± has the following properties:

1. Λ2± is an irreducible representation of G2;

2. Λ2± is the
+2
−1−eigenspace of the G2−equivariant linear map

T : Λ2 → Λ2

η 7→ Tη = ∗ (η ∧ ϕ0) .

By analogy with the 4−dimensional case, we will call Λ2+ (resp. Λ
2
−) the space of self-dual

or SD (resp. anti-self-dual or ASD) forms. Still in the light of Claim 1.12, let us establish

a convenient characterisation of the ‘positive’ projection in (1.17). The dual 4−form to the

G2−structure (1.1) in our convention is

∗ ϕ0 =
(
e34 − e12

)
∧ e67 +

(
e42 − e13

)
∧ e75 +

(
e23 − e14

)
∧ e56 + e1234 (1.18)

and we consider the G2−equivariant linear map (between representations of G2):

L∗ϕ0 : Λ
2 → Λ6

η 7→ η ∧ ∗ϕ0.

As Λ2± and Λ
6 are irreducible representations and dimΛ2+ = dimΛ

6, Schur’s Lemma gives:

Proposition 1.13 The above map restricts as L∗ϕ0 |Λ2+
: Λ2+ →̃Λ

6 and L∗ϕ0 |Λ2−
= 0.

Proof It only remains to check that the restriction L∗ϕ0 |Λ2+
is nonzero. Using (1.1)

and (1.18) we find, for instance,

L∗ϕ0α1 = (v1yϕ0) ∧ ∗ϕ0

=
(
e25 + e36 + e47

)
∧ (. . . )

= e234567.

Not only does this prove the statement, but it also suggests carrying out the full inspection

of the L∗ϕ0αi, which yields

L∗ϕ0αi = e
1...̂ı...7.

as a somewhat aesthetical fact.

24



Gauge theory on G2−manifolds

Hence we may think of the orthogonal projection of 2−forms into Λ2+ ' Λ
6 as the

operation ‘wedge product with ∗ϕ0’.

1.4.2 Energy bound from Chern-Weil theory

Given a unitary bundle E → M over a compact G2−manifold (M,ϕ) without boundary,

the curvature FA ∈ Ω2 (gE) of some connection A conforms to the split (1.17):

FA = F
+
A ⊕ F

−
A ,

with F±A ∈ Ω
2
± (gE). The L

2−norm of FA gives the Yang-Mills functional, or ‘energy’,

YM (A)
.
= ‖FA‖

2 =
∥
∥F+A

∥
∥2 +

∥
∥F−A

∥
∥2 . (1.19)

The values of YM (A) can be related to a certain characteristic class of the bundle E,

κ (E) =

∫

M

tr
(
F 2A
)
∧ ϕ.

Using the property dϕ = 0, a standard argument of Chern-Weil theory [M-S] shows that the

de Rham cohomology class
[
tr
(
F 2A
)
∧ ϕ
]
is independent of A, thus the integral is indeed a

topological invariant. Furthermore, by Claim 1.12,

κ (E) = −
∫

M

〈FA ∧ FA〉g ∧ ϕ = −
∫

M

〈FA ∧ (FA ∧ ϕ)〉g

= −
(
FA, 2F

+
A − F

−
A

)

=
∥
∥F−A

∥
∥2 − 2

∥
∥F+A

∥
∥2 . (1.20)

Comparing with (1.19) we get:

YM(A) = 3
∥
∥F+A

∥
∥2 + κ (E) =

1

2

(
3
∥
∥F−A

∥
∥2 − κ (E)

)

It is then clear that YM (A) attains its minimum at a connection whose curvature is either

SD or ASD. Moreover, since YM ≥ 0, the sign of κ(E) obstructs the existence of one type or

the other. Fixing κ(E) ≥ 0, these facts motivate our interest in the G2−instanton equation :

F+A =
(
L∗ϕ|Ω2+

)−1
(FA ∧ ∗ϕ) = 0. (1.21)
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1.4.3 Relation with Hermitian Yang-Mills in complex dimension 3

Given a holomorphic bundle E → W over a Kähler manifold (W,ω), to every Hermitian

metric H on E there corresponds a unique unitary (Chern) connection A = AH compatible

with the holomorphic structure [D-K, §2.1.5], and its curvature satisfies FA ∈ Ω1,1 (g) . Such

a metric is called Hermitian Yang-Mills (HYM) if its curvature has vanishing ω−trace:

F̂A
.
= (FA, ω) = 0. (1.22)

Let nowW be a Calabi-Yau 3−fold. We will see that the Cartesian product M =W ×S1 is

naturally a real 7−dimensional G2−manifold [Kov1, eq. (2.1)], then verify that Hermitian

Yang-Mills connections on some E →W pull back to G2−instantons over M .

Starting with the Kähler 2−form ω ∈ Ω1,1 (W ) and holomorphic volume form Ω on W

[G-H-J, p. 17], define

ϕ = ω ∧ dθ + ImΩ,

∗ϕ = 1
2ω ∧ ω − ReΩ ∧ dθ.

(1.23)

Here dθ is the coordinate 1− form on S1, and the Hodge star on M is given by the product

of the Kähler metric on W and the standard flat metric on S1. Let us check explicitly that

(1.23) is a G2−structure; at any p ∈W , we can choose coordinates zi = xi + iyi so that

ωp =
i

2

∑
dzi ∧ dz̄i

Ωp = dz1 ∧ dz2 ∧ dz3,

hence

ωp ∧ dθ =
(
dx1 ∧ dy1 + dx2 ∧ dy2 + dx3 ∧ dy3

)
∧ dθ,

ImΩp = dx1 ∧
(
dx2 ∧ dy3 + dy2 ∧ dx3

)
+ dy1 ∧

(
dx2 ∧ dx3 + dy3 ∧ dy2

)
.

Setting

e1 = dx2, e2 = dx3, e3 = dy2, e4 = dy3

e5 = dy1, e6 = dθ, e7 = dx1

one finds precisely the canonical form ϕ0 in (1.1). The whole prescription varies smoothly
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with p so ϕ defines indeed a G2−structure. Furthermore, inspection on tangent vectors

using the inner product (1.6) shows that g + dθ ⊗ dθ
.
= g (ϕ) is indeed the metric induced

by ϕ on M . Since dω = 0 and dΩ = 0, the pair (1.23) satisfies dϕ = 0 and d ∗ ϕ = 0 as in

Theorem 1.8, so (M,ϕ) is a G2−manifold. Alternatively, one may notice that the holonomy

of g (ϕ) preserves the ‘dθ’ direction, thus Hol (g (ϕ)) = Hol (g) ⊂ SU (3) ⊂ G2 (since W is

Calabi-Yau) and we obtain the same conclusion, again from Theorem 1.8.

On the other hand, a connection A on E →W pulls back to p∗1E →M via the canonical

projection p1 : W × S1 → W , and similarly do the forms ω and Ω (for simplicity I keep

the same notation for objects on W and their pull-backs to M). In particular, under the

isomorphism L∗ϕ|Ω2+
: Ω2+ →̃Ω

6 [Proposition 1.13], the SD part of curvature maps to

L∗ϕ
(
F+A
)
= FA ∧ ∗ϕ = 1

2FA ∧ (ω ∧ ω − 2ReΩ ∧ dθ) . (1.24)

Proposition 1.14 A Hermitian Yang-Mills connection A on a holomorphic vector bundle

E → W over a Calabi-Yau 3−fold W lifts to a G2−instanton on the pull-back bundle

p∗1E →M =W × S1 induced by the canonical projection.

Proof Recall that A satisfies FA ∈ Ω1,1 (W ) and F̂A = 0. Since Ω ∈ Ω3,0 (W ), the

former implies FA ∧Ω = FA ∧Ω = 0, hence FA ∧ 2ReΩ = FA ∧
(
Ω+ Ω

)
= 0. Replacing

this in (1.24), we check that F+A must be zero, as it maps isomorphically to the origin:

F+A
∼= 1

2FA ∧ ω ∧ ω ∈ Ω3,3 (W )

= (cst.) F̂A.dVol (W )

= 0

by the HYM condition F̂A = 0, using the fact that ω ∧ ω =
(cst.)

‖ω‖2
∗ ω.

Thus, when M is of the form CY 3 × S1, we may obtain G2−instantons by solving the

HYM equation over CY 3. This is the essential motivation for the analysis in Chapter 3.
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1.5 Local model for the moduli space of G2−instantons

In this Section I obtain a local characterisation of the moduli space of solutions to equation

(1.21), away from reducible connections, following [D-K, Chapter 4].

Let E → M be a vector bundle over a compact G2−manifold M , with gauge group6 G

and Lie (G) = Γ (gE). Denote A the set of connections on E and B = A/G the quotient

space by the gauge action of G. Foreseeing the main result in Proposition 1.23, we restrict

attention to irreducible connections and assume, for simplicity, that E is an SU (n)−bundle.

1.5.1 Topology of the orbit space B

The first thing to do is to describe B locally, which means endowing A with slices transverse

to the G−orbits. The G−action on A is given by

G ×A → A

(g,A) 7→ g.A = A− (dAg) g
−1.

In terms of generators: let f ∈ Ω0 (gE) such that g = exp f ; then g.A = A − dAf , so the

derivative of the action with respect to G at a point A ∈ A is the map

− dA : Ω
0 (gE)→ Ω

1 (gE) . (1.25)

A natural transverse slice to the G−orbit at A is the L2−orthogonal complement of imgdA

in Ω1 (gE) = imgdA ⊕ ker d∗A [D-K, p.131], so we model neighbourhoods in A by

Tε (A) =
{
a ∈ Ω1 (gE) | d

∗
Aa = 0, ‖a‖ < ε

}
. (1.26)

Remark 1.15 Here ‖.‖ is the L2k−norm induced by (ϕ, g) for some k ≥ 4:

‖a‖
.
= ‖a‖L2k =

(∫

M

k∑

l=0

∣
∣∇i1 ...∇ila

∣
∣2 dμ

) 1
2

.

This choice has in view the use of Sobolev’s embedding ( Lemma A.89) in Subsection 1.5.4.

6G is a Hilbert Lie group, i.e., an infinite dimensional Lie group modelled on a Hilbert space [Fr-U, p.53].
The bundle of Lie algebras gE ⊂ EndE is given pointwise by the adjoint representation of the structure
group [D-K, p. 33].
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In order to obtain a local structure for the orbit space B from the transverse slices

Tε (A) /G, we need to consider the role of stabilisers. The isotropy group

ΓA = {g ∈ G | g.A = A}

of a connection A under gauge action is a Lie group, as a closed subgroup of G = SU (n),

since it is pointwise isomorphic to the centraliser in G of the holonomy group of A [D-K,

Lemma 4.2.8]. It is clear from (1.25) that Lie (ΓA) = ker dA ⊂ Ω0 (gE); in particular, A

is irreducible if and only if ΓA is discrete, hence finite since SU (n) is compact. The local

model for B is then given by [D-K, Prop. 4.2.9, p.132]:

Proposition 1.16 For small ε the projection from A to B induces a homeomorphism h

from the quotient Tε (A) /ΓA to a neighbourhood of [A] in B. For a ∈ Tε (A), the isotropy

group of a in ΓA is isomorphic to that of h (a) in G.

We may now apply the above principles to our case of interest:

Definition 1.17 The moduli space of (irreducible) G2−instantons on E → M is the set

of gauge-classes of connections on E satisfying the G2−instanton equation (1.21):

ME
.
=
{
[A] ∈ B | F+A

.
= p+ (FA) = 0

}
.

NB.: Recall from Proposition 1.13 that F+A = 0⇔ L∗ϕ (FA)
.
= FA ∧ ∗ϕ = 0.

For the local description ofME , define around a solution A of (1.21) the map

ψ : Tε (A) ⊂ A → Ω2+ (gE)

a 7→ ψ (a)
.
= p+ (FA+a) = p+ (dAa+ a ∧ a)

(1.27)

and write Z (ψ) ⊂ Tε (A) for its zero set. As in Proposition 1.16, h induces a homeomor-

phism from Z (ψ) /ΓA to a neighbourhood of [A] inME , which we proceed to examine.

1.5.2 Fredholm theory

We have just seen that the moduli space ME of G2−instantons on E → M7 is locally

described as the zero set of a map ψ [cf. (1.27)] between the Banach spaces Tε (A) /ΓA ⊂ A

and Ω2+ (gE). This suggests applying Fredholm theory [D-K, 4.2.5] to study the local model:
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Proposition 1.18 A Fredholm map Ξ from a neighbourhood of 0 is locally right-equivalent7

to a map of the form

Ξ̃ : U × F → V ×G

Ξ̃ (ξ, η) = (L (ξ) , σ (ξ, η))

where L = (DΞ)0 : U →̃ V is a linear isomorphism, F = kerL and G = cokerL are

finite-dimensional and (Dσ)0 = 0.

Corollary 1.19 A neighbourhood of 0 in Z (Ξ) is diffeomorphic to Z (χ), where

χ : F → G

χ (η)
.
= σ (0, η) .

So, if we show that our map ψ is Fredholm on Z (ψ), Corollary 1.19 will provide a local

model for a neighbourhood of [A] in ME on the finite-dimensional set χ
−1 (0) /ΓA. Now,

ψ is just the self-dual part of the curvature, so ψ (a)− ψ (0) = (p+ ◦ dA) a+O
(
|a|2
)
and

(Dψ)0 = p+ ◦ dA.

Moreover, by the ‘slicing’ condition (1.26) across orbits, we consider in fact the restriction

p+ ◦ dA : ker d∗A −→ Ω2+ (gE) .

∩

Ω1 (gE)

(1.28)

In the analogous 4−dimensional case, one shows that (1.28) is Fredholm via the map

DA = d
+
A ⊕ d

∗
A : Ω

1 (gE)→ Ω
2
+ (gE)⊕ Ω

0 (gE) , (1.29)

(we denote, for the rest of this Subsection only, d+A
.
= p+ ◦ dA) associated to the complex

Ω0 (gE)
dA→ Ω1 (gE)

d+A→ Ω2+ (gE) . (1.30)

7i.e., there exists a local diffeomorphism g, say, such that Ξ̃ = Ξ ◦ g [D-K, p.136].

30



Gauge theory on G2−manifolds

Whenever A is anti-self-dual, (1.30) is an elliptic complex with cohomology8

H0A = ker dA = Lie (ΓA), H1A =
ker d+A
imgdA

' kerDA, H2A = cokerd
+
A. (1.31)

Consequently DA is elliptic, hence Fredholm, so (1.28) is Fredholm: a neighbourhood of

[A] inME is modelled diffeomorphically on Z(χ)/ΓA, where

χ : H1A → H2A

from Corollary 1.19 is ΓA−equivariant. Notice that H0A does not appear in the image of χ,

again by the ‘slicing’ restriction to ker d∗A [cf. (1.28)].

Remark 1.20 In dimension 4, taking the self-dual part of curvature gives a map

F+ : A → Ω2+ (gE)

equivariant under the gauge group G, which acts linearly (by pull-back) on Ω2+ (gE). There-

fore the map ψ translates into a section Ψ of the bundle of Banach spaces

E = A×G Ω
2
+ (gE)→ B

and Z (Ψ) represents the moduli space ME of (G-classes of irreducible) ASD connections.

1.5.3 The extended elliptic complex

Back to dimension 7, an operador DA as in (1.29) would certainly not be elliptic [e.g.

compare bundle ranks (1→ 7→ 7) in (1.30)], so our analysis requires a further subterfuge.

Since the map L∗ϕ = ‘ ∗ ϕ ∧ .’ now plays the role of ‘SD projection’ [cf. Proposition 1.13],

we denote henceforth

d+A = L∗ϕ ◦ dA : Ω
1 (gE)→ Ω

6 (gE) (1.32)

and consider instead the extended deformation complex

Ω0 (gE)
dA
�
d∗A

Ω1 (gE)

d+A︷ ︸︸ ︷
dA−→ Ω2 (gE)

∗ϕ∧.
−→ Ω6 (gE)

dA
�
d∗A

Ω7 (gE) . (1.33)

8One chooses coker d+A ' ker dA ∩ Ω
2
+ (gE) as a ΓA−equivariant complement.
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Using d ∗ ϕ = 0 [Theorem 1.8],

[L∗ϕ, dA] = 0, (1.34)

so, when A is anti-self-dual, (1.33) is indeed a complex and the identification of the self-dual

2−forms with the 6−forms is consistent with the relevant differential operators9. Moreover:

Lemma 1.21 The operator d+A defined by (1.32) has formal adjoint

(
d+A
)∗
= ∗d+A∗ : Ω

6 (gE)→ Ω
1 (gE) .

Proof For a ∈ Ω1 (gE) and η ∈ Ω6 (gE),

〈
d+Aa, η

〉
(∗1) = (∗ϕ ∧ dAa) ∧ ∗η = (dAa) ∧ ∗ (∗ (∗ϕ ∧ ∗η))

= 〈dAa, ∗ (L∗ϕ ∗ η)〉 = 〈a, d
∗
A (∗L∗ϕ ∗ η)〉 (∗1)

= 〈a, ∗ (dAL∗ϕ) ∗ η〉 (∗1)
(1.34)
= 〈a, ∗ (L∗ϕdA) ∗ η〉 (∗1)

=
〈
a,
(
∗d+A∗

)
η
〉
(∗1)

This is all one needs in order to establish ellipticity of the extended complex for G2−instantons:

Proposition 1.22 When A is anti-self-dual, the complex (1.33) is elliptic.

Proof First of all, since
(
d+A
)∗
= ∗d+A∗ [ Lemma 1.21] and d

∗
A = ∗dA∗, notice that

our complex is self-dual with respect to the Hodge star:

Ω0
dA−→ Ω1

d+A−→ Ω6
dA−→ Ω7

q q q q

∗Ω7 ←−
d∗A

∗Ω6 ←−
(d+A)

∗
∗Ω1 ←−

d∗A

∗Ω0
.

By Corollary A.86, it suffices to show ellipticity at Ω1 (gE), as that is equivalent to the

ellipticity of the dual ∗Ω7
d∗A←− ∗Ω6

(d+A)
∗

←− ∗Ω1, which is just Ω1
d+A−→ Ω6

dA−→ Ω7. Fixing a

section ξ of T
′
M (the cotangent bundle minus its zero section), we have symbol maps

0→ π∗
(
Ω0 (gE)

)
ξ

ξ.(.)
−→ π∗

(
Ω1 (gE)

)
ξ

∗ϕ∧ξ∧(.)
−→ π∗

(
Ω6 (gE)

)
ξ
−→ . . .

9For more on elliptic complexes under the condition d ∗ ϕ = 0, see [Fe-U].
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For α ∈ Ω1 (gE) such that ∗ϕ ∧ ξ ∧ α = 0, exactness means α has to lie in ξ.Ω0 (gE).

Since G2 acts transitively on S
6 (Theorem 1.4), take g ∈ G2 such that g∗ξ = ‖ξ‖ .e1

and denote α̃ = g∗α, so that

∗ϕ ∧ e1 ∧ α̃ = 0.

That is just the statement that e1 ∧ α̃ is anti-self-dual, but this cannot occur unless

e1 ∧ α̃ = 0, as
(
e1 ∧ α̃

)
∧ ϕ = α̃ ∧

(
e1567 − e1345 − e1426 + e1237

)

has non-vanishing components involving e1 and ∗
(
e1 ∧ α̃

)
obviously has not. Therefore

α̃ = f.e1 for some f ∈ Ω0 (gE), and

α = (g∗)−1
(
f.e1

)
=

f

‖ξ‖
.ξ ∈ ξ.Ω0 (gE) .

1.5.4 Reduction to a subbundle of kernels

In the light of Remark 1.20 and the isomorphism L∗ϕ|Ω2+
: Ω2+ →̃Ω

6, the moduli space of

G2−instantons [Definition 1.17] is the zero set of the section Ψ ([A]) = FA ∧ ∗ϕ of

E = A×G Ω
6 (gE)→ B.

As an immediate consequence of (1.34) and the Bianchi identity, we have

Ψ ([A]) ∈ ker dA ⊂ Ω
6 (gE) ,

so, intuitively, the image of Ψ lies in the ‘subbundle Ẽ of kernels of dA’ inside E :

E ⊃ Ẽ = (A ×G ker dA) → B.

∩

Ω6 (gE)

(1.35)

Let us make this idea rigorous in the case where E is an SU (n)−bundle, using the

L2−orthogonal projections pa : ker dA → ker dA0 to trivialise the fibres into ker dA0 over

each neighbourhood Tε ([A0]) ⊂ B, where ε is a small global constant:
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Proposition 1.23 Let E →M be an SU (n)−bundle over a compact G2−manifold (M,ϕ)

and A0 an irreducible connection; then there exists ε > 0 such that the orthogonal projection

pa : ker dA → ker dA0

in Ω6 (gE) is an isomorphism for all A = A0 + a, a ∈ Tε (A0).

Proof The proof consists in showing that the linear map pa is both surjective and

injective. We consider, throughout, the covariant derivatives and respective formal ad-

joints [cf. (1.33)]

Ω6 (gE)
dA0 ,dA

�
d∗A0
,d∗A

Ω7 (gE) .

Moreover, writing ρ = d∗A0f for some f ∈ Ω
7 (gE), we denote an element of Ω

6 (gE) by

η = (η0 ⊕ ρ) ∈
(
ker dA0 ⊕ imgd

∗
A0

)
= Ω6 (gE) .

Surjectivity Given η0 ∈ ker dA0 , write g0
.
= −a ∧ η0; surjectivity of pa means finding

ρ ∈ imgd∗A0 ⊂ Ω
6 (gE) such that η = η0⊕ρ ∈ ker dA, i.e., solving for ρ the equation

dAρ = g0. (1.36)

Notice first that the orthogonal complement of imgdA0 in Ω
7 (gE) is the origin,

since (imgdA0)
⊥ = ker d∗A0 = ∗

(
ker dA0 ⊂ Ω

0 (gE)
)
= {0} (the vanishing is just

Theorem A.87, as A0 is irreducible), so

imgdA0 = Ω
7 (gE) .

This means that we can think of the restriction of dA to imgd
∗
A0
as a map

dA : imgd
∗
A0 → imgdA0 . (1.37)

Bijectivity of linear maps between Banach spaces is an open condition [ Lemma

A.88], so one can show that (1.37) is invertible by checking that, for suitably small

a, this map is arbitrarily close to the isomorphism dA0 : imgd
∗
A0
→̃ imgdA0 . Indeed,
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writing La : η 7→ a ∧ η, we have the estimate

‖dA − dA0‖ = ‖La‖ ≤ ‖a‖ < ε.

Here we have used Lemma A.89, since a ∈ L2k, k ≥ 4, satisfies the hypothesis of

Sobolev’s embedding theorem [Remark 1.15]. So (1.37) is also an isomorphism for

ε small enough, consequently we can find a unique ρ ∈ ker d∗A0 solving (1.36).

Injectivity Let η ∈ ker dA ⊂ Ω6 (gE); then

pa (η) = 0 ⇔ ρ = η ∈ ker dA

⇔ dAρ = 0

⇔ ρ = 0

since ρ ∈ imgd∗A0 and we have just seen that dA : imgd
∗
A0
→̃ imgdA0 is an isomor-

phism (for suitably small a); so η = ρ = 0.

Now, the intrinsic derivative10 of Ψ at [A] is

(DΨ)[A] : ker d
∗
A → ker dA ⊂ Ω

6 (gE)

a 7→ d+Aa.

To see that (DΨ)[A] is Fredholm, consider the extended operator

D̃A : Ω1 (gE)⊕ Ω7 (gE) → Ω0 (gE)⊕ Ω6 (gE)

(a, f) 7→
(
d∗Aa, d

+
Aa+ d

∗
Af
)
.

Claim 1.24 The operator D̃A is elliptic when [A] ∈ Z (Ψ).

Proof By Proposition 1.22, D̃A = d∗A ⊕
(
d+A ⊕ d

∗
A

)
maps even to odd terms in the

elliptic complex

Ω0 (gE)
dA−→ Ω1 (gE)

d+A−→ Ω6 (gE)
dA−→ Ω7 (gE) . (1.38)

10i.e. the component of the total derivative tangent to the gauge-fixing slices in Ω1 (gE).
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Consequently, D̃A is Fredholm, i.e., it has finite-dimensional kernel and cokernel, for all

[A] ∈ Z (Ψ). This shows that (DΨ)[A] is also Fredholm:

ker (DΨ)[A] ↪→ ker D̃A

coker (DΨ)[A] = cokerd+A ∩ coker
(
d∗A|Ω7(gE)

)
↪→ coker D̃A

∩ ‖

ker dA = ker dA

using that Ω6 (gE) = ker dA ⊕ imgd∗A, by Hodge theory. Hence, by Corollary 1.19:

Proposition 1.25 If A ∈ A is ASD, then an ε−neighbourhood of [A] ∈ ME is modelled

on Z(χ)/ΓA, where χ is an invertible map between finite-dimensional spaces defined by

χ : ker
(
d∗A ⊕ d

+
A

)

︸ ︷︷ ︸

∩

Ω1 (gE)

−→ cokerd+A ∩ ker dA︸ ︷︷ ︸

∩

Ω6 (gE)

χ (a) = σ (0, a)

and σ is the non-linear part of the local Fredholm decomposition of ψ.

1.6 An exercise on 7−tori

A 7−torus T 7 = R7/Λ naturally inherits the G2−structure ϕ from R7, setting the canvas

for some less-than-trivial but still illustrative applications of the material in this Chapter.

Recall from Subsection 1.3.2 that a connection A on some bundle over T 7 is a G2−instanton

if and only if it is a zero of the 1−form (1.16):

ρ (b)A =

∫

T 7
tr (FA ∧ bA) ∧ ∗ϕ. (1.39)

The exercise consists in studying, via Chern-Simons formalism, the behaviour of the moduli

space of G2−instantons under perturbations ϕ→ ϕ+φ of the G2−structure. More precisely,

given suitable assumptions, one asks whether (ϕ+ φ)−instantons (if any at all) are ‘nowhere

near’ the initial moduli space, once we deform the lattice. As a working example, the

following class of T 3−fibred 7−tori has all the properties we need:
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Definition 1.26 A G2−fibred torus is a triplet (η, L, α) in which:

• η is a metric on the vector space R4;

• L is a lattice in the subspace Λ2+(R
4, η) of 2−forms self-dual with respect to η;

• α : R4 → Λ2+(R
4, η) is a linear map.

Given the above data, set V
.
= R4 ⊕ Λ2+ and form the torus T = V/L̃, with the lattice

L̃
.
=
{
(μ, ν + αμ) | μ ∈ Z4, ν ∈ L

}
⊂ V.

Then T inherits from V the G2−structure ϕ0 which makes L̃ orthonormal. Although T fibres

over T 4
.
= R4/Z4, the associated metric g(ϕ0) is not, in general, a Riemannian product.

1.6.1 Lifting instantons from T 4

Let T be a G2−fibred torus and Ẽ → T the pull-back from some bundle E → T 4. We obtain

trivial solutions to the instanton equation simply by lifting the moduli space M+ ⊂ B4 of

self-dual connections on E:

Proposition 1.27 Let T be a G2−fibred torus; if [A] ∈ M+ is a self-dual connection on

E → T 4, then its lift
[
Ã
]
by the fibration map f : T→ T 4 is a G2−instanton on Ẽ.

Proof At every point p ∈ T, we have covectors e5, e6, e7 ∈ T ∗p (T ) to complete a

coframe
〈
e1, ..., e4

〉
∈ T ∗f(p)

(
T 4
)
into a coframe in T ∗p (T ), so that the natural 4−form

associated to the G2−structure reads, as usual,

∗ϕ =
(
e34 − e12

)
∧ e67 +

(
e42 − e13

)
∧ e75 +

(
e23 − e14

)
∧ e56 + e1234.

Now, the projection into the self-dual subspace Ω2+ (T) is identified with the map

L∗ϕ : Ω
2 (T)→ Ω6 (T) ' Ω2+ (T)

η 7→ η ∧ ∗ϕ

and, if A is SD we have:

(
FÃ
)
12
=
(
FÃ
)
34
,
(
FÃ
)
13
=
(
FÃ
)
42
,
(
FÃ
)
14
=
(
FÃ
)
23
,
(
FÃ
)
ij
= 0, i, j = 5, 6, 7

which clearly implies L∗ϕFÃ = 0
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Remark 1.28 About the previous Proposition:

1. There is nothing special about tori here; an analogous statement holds indeed for any

Riemannian submersion with associative fibres over a (compact) 4−manifold.

2. The converse raises a natural problem: to describe, if any, the instantons on such

Ẽ → T which are not pull-backs from self-dual connections over T 4. However, such

an investigation is beyond the scope of the present work.

For future reference, I denote the set of such ϕ−instantons obtained by lifts fromM+ by

M̃+ .
=
{[
Ã
]
∈ B7 | [A] ∈M+ ⊂ B4

}
. (1.40)

We know from 4−dimensional gauge theory that there are SU (2)−bundles E → T 4,

say, on which SD connections exist. In such casesM+ is not empty, and we have examples

of G2−instantons on pull-back bundles over the fibred torus.

1.6.2 Persistence of instantons under deformations of T

Working, for simplicity, on an SU(n)−bundle Ẽ → T over a fixed G2−fibred torus, let us

ponder in generality about the behaviour of instantons under a deformation of G2−structure:

ϕ→ ϕ+ φ, ∗ϕ→ ∗ϕ+ ξφ, ξφ
.
= ∗ϕφ ∈ Ω

4 (T) .

Remark 1.29 Notice that an arbitrary φ does not preserve the fibred structure of T. Indeed,

ξφ ∈ Ω4(T) has four orthogonal components, with the following significance:

Λ4(R4 ⊕ Λ2+) = Λ
4(R4)
︸ ︷︷ ︸
(I)

⊕ Λ3(R4)⊗ Λ1(Λ2+)︸ ︷︷ ︸
(II)

⊕ Λ2(R4)⊗ Λ2(Λ2+)︸ ︷︷ ︸
(III)

⊕ Λ1(R4)⊗ Λ3(Λ2+)︸ ︷︷ ︸
(IV )

(I) corresponds to a rescaling of the metric η on R4;

(II) redefines the map α;

(III) splits as
(
Λ2+ ⊗ Λ

2
+

)
⊕
(
Λ2− ⊗ Λ

2
+

)
, where the first factor modifies the lattice L and

the second one affects the conformal class of η;

(IV) parametrises deformations transverse to the fibred structures.
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Wemust examine what happens to the zeroes of (1.39) under the corresponding perturbation

of the Chern-Simons 1−form:

ρ→ ρφ = ρ+ rφ, rφ (b)A =

∫

T 7
tr (FA ∧ bA) ∧ ξφ.

A trivial but crucial observation here is that a ϕ−instanton A is also a (ϕ+ φ)−instanton if

and only if (rφ)A ≡ 0. In general, however, there is no reason to expect such a coincidence;

for example, the topology of the bundle may constrain the persistence of instantons under

certain deformations:

Proposition 1.30 Let Ẽ → (T, ϕ) be the pull-back of an SU(n)−bundle E → T 4. If

c2 (E) 6= 0, then ϕ−instantons over T 4 do not lift to (ϕ+ φ)−instantons on Ẽ, for any

perturbation φ away from a fibred structure [i.e. of type (IV ) in Remark 1.29].

In order to prove this fact, and for later reference, let us briefly digress into the trans-

lation action of some vector v ∈ T on a connection A. The first order variation is given by

the bundle-valued 1−form

(bv)A = vyFA (1.41)

which we interpret as a tangent vector in TAA7. Evaluating rφ on this vector gives

rφ (bv)A =

∫

T
tr (FA ∧ (bv)A) ∧ ξφ

= −12

∫

T
tr (FA ∧ FA) ∧ (vyξφ)

=
〈
c2

(
Ẽ
)
, Sφ (v)

〉
,

where Sφ (v)
.
= −12 [vyξφ]

PD, and this depends only on the topology of Ẽ, not on the base

point A. Hence we may interpret φ as defining a linear functional

Nφ : R7 → R

v 7→
〈
c2

(
Ẽ
)
, Sφ (v)

〉

such that Nφ 6= 0 implies A is not a (ϕ+ φ)−instanton, ∀A ∈ Z (ρ). In other words, Nφ is

an obstruction to the existence of (ϕ+ φ)−instantons inherited from ϕ. This is however a

rather weak negative criterion, since the map φ 7→ Nφ has kernel of dimension at least 28 and

thus, in principle, leaves plenty of possibilities for instantons of perturbed G2−structures.
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Let us focus back on the case when Ẽ is a pull-back via f : T→ T 4. At each point p ∈ T,

φ doesn’t contribute to the integral in (1.39) unless (ξφ)p ∈ Λ
1(R4) ⊗ Λ3(Λ2+) ⊂ Λ

4(TpT),

which means precisely that the perturbed 7−torus is no longer fibred [cf. Remark 1.29].

Thus, denoting T 3 the typical fibre of f (and setting Vol
(
T 3
)
= 1), we may assume

ξφ = −2ε ∧ dVol
(
T 3
)

for some ε ∈ Ω1
(
T 4
)
. Similarly, we only consider (bv)A = vyFA for some v ∈ T

4. Then

rφ (bv)A = −2
∫

T
tr (FA ∧ vyFA) ∧ ε ∧ dVol

(
T 3
)

= −2
∫

T 4
tr (FA ∧ vyFA) ∧ ε

= ε (v) .c2 (E)

again doesn’t depend on the base-point A. Writing Ã4 ⊂ A7 for the set of connections on

Ẽ → T that are lifts from A4, we see right above that, if c2 (E) 6= 0, one can always choose

v ∈ T 4 such that rφ (bv)A 6= 0, ∀A ∈ Ã
4. This proves Proposition 1.30.

1.6.3 Further perturbative investigation

So far we know from Proposition 1.27 that the set M+ of self-dual connections (modulo

gauge) over T 4 lifts to instantons [cf. (1.40)] of the original G2−structure ϕ (i.e. zeroes

of ρ). On the other hand, from Proposition 1.30, we know that there are in general no

zeroes of the perturbed Chern-Simons 1−form ρφ in that same set M̃+. In such cases, it is

a somewhat suggestive next step to ask whether we can find any zeroes of ρφ at least in a

neighbourhood of a point in M̃+ ⊂ Ã4 ∩ Z (ρ) . After establishing some more notation, I

will show that the answer to that question is still negative in Proposition 1.31.

For a real constant h > 0 and a unit vector a ∈ Ω1 (T, gE), we have

FA+ha = FA + h.dAa+ h
2.a ∧ a (1.42)

Since A7 is an affine space modelled on Ω1 (T, gE), for a general vector field b on A7 we

have the first order expansion

bA+ha = bA + h. (Db)A (a) + o
(
h2
)

(1.43)
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where (Db)A (a) is defined by the above formula as the infinitesimal variation of b, in the

direction a, at the point A. Replacing both variation formulas (1.42) and (1.43) in the

Chern-Simons 1−form (1.39) we get

ρ (b)A+ha = ρ (b)A + h.

∫

T
tr [dAa ∧ bA + FA ∧ (Db)A (a)] ∧ ξφ + o

(
h2
)

hence its infinitesimal variation is

D [ρ (b)]A (a) =

∫

T
tr [dAa ∧ bA + FA ∧ (Db)A (a)] ∧ ξφ .

Recall that the translation action of v ∈ T y T induces a vector field (bv)A = vyFA on

A7. In particular, by (1.43), we have (Dbv)A (a) = vy (dAa); so, evaluating ρ on bv gives a

function on A7 with gradient

D [ρ (bv)]A (a) =

∫

T
tr [vy (FA ∧ dAa)] ∧ ∗ϕ.

Proposition 1.31 If c2 (E) 6= 0, then around every point of M̃+ there is an open neigh-

bourhood in A where ρφ is not zero (as a 1−form).

Proof Fix A ∈ M̃+. Any connection in A7 can be written in the form A+ha where

h > 0 is a constant and ‖a‖ = 1. Taking a vector v ∈ T 4 as in Proposition 1.30,

ρφ (bv)A+ha = rφ (bv)A︸ ︷︷ ︸
>0

+ h.

∫
tr [vy (FA ∧ dAa)] ∧ ∗ϕ (ϕ+ φ) +O

(
h2
)
,

which proves the result for a small enough h

Notice that h depends on A so the above Proposition only extends to a neighbourhood

of M̃+ when this moduli space is compact. In other words, if M+ is compact, then M̃+

is disconnected from the set
(
M7

)+
φ
of (ϕ+ φ)−instantons.

Remark 1.32 A next natural question would be whether any (ϕ+ φ)−instantons exist at

all, or if, instead, ρφ (bv)A+ha can be shown to remain non-zero arbitrarily far from M̃
+.

This could lead to a gauge-theoretic criterion as to whether a given 7−torus is a T 3−fibration

in our sense.
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CHAPTER 2

KOVALEV MANIFOLDS

In this Chapter I will give an abbreviated account of the construction of compact Rie-

mannian G2−manifolds developed by A. Kovalev [Kov1][Kov2]. This is achieved by gluing

together, in an ingenious way, a pair of non-compact asymptotically cylindrical 7−manifolds

of holonomy SU (3) along their cylindrical ends. Such components are of the form W ×S1,

where (W,ω) is 3−fold given by a non-compact version of the Calabi conjecture, so we

can anticipate that they will carry G2−structures as discussed in Subsection 1.4.3. The

G2−structures are superposed along the gluing region using cut-off functions to yield a

global G2−structure ϕ on the compact manifold M , which can be chosen to be torsion-free,

by a ‘stretch the neck’ argument. In the process I will establish a few results of relevance

to Chapters 3 and 4 and, as a side exercise, a Lelong-Poincaré equation for the metric ω.

2.1 Asymptotically cylindrical Calabi-Yau manifolds

Let us describe the complete Calabi-Yau 3−folds with cylindrical ends Wi that one intends

to glue together. The next Definition summarises the basic ingredients.

Definition 2.33 A base manifold for our purposes is a compact, simply-connected Kähler

3−fold
(
W̄ , ω̄

)
satisfying the following conditions:

• there is a K3−surface1 D ∈ |−KW̄ | with holomorphically trivial normal bundle ND/W̄ ;

• The complement W = W̄ \D has finite fundamental group π1 (W ).

One wants to think of W as a compact manifold W0 with boundary D × S1 and a

cylindrical end attached there:

W =W0 ∪W∞

W∞ '
(
D × S1 × R+

)
.

(2.1)

1i.e., a simply-connected compact complex surface with c1 (D) = 0.
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2.1.1 Elementary properties

Let s0 ∈ H0
(
W̄ ,K−1

W̄

)
be the defining section of the divisor at infinity D; then, s0 defines a

holomorphic coordinate z on a neighbourhood U ⊂ (W∞ ∪D) of D. Since ND/W̄ is trivial,

we may assume U is a tubular neighbourhood of infinity, i.e.,

U ' D × {|z| < 1} (2.2)

as real manifolds. Denoting s ∈ R+ and α ∈ S1, we pass to the asymptotically cylindrical

picture (2.1) via z = e−s−iα. For later reference, let us establish a straightforward result on

the decay of coordinates induced by z on differential forms:

Lemma 2.34 With respect to the model cylindrical metric,

|dz| , |dz̄| = O
(∣∣e−s

∣
∣) .

Proof In holomorphic coordinates
(
z, ξ1, ξ2

)
on D ⊂ U ⊂ W̄ such that z = e−s−iα

and D = {z = 0} ⊂ U , we have

dz = −z (ds− idα)

dz̄ = −z̄ (ds+ idα)

and |z| = |z̄| = e−s.

Furthermore, the holomorphic coordinate z on U is the same as a local holomorphic

function τ , say. The assumptions that W̄ is simply connected, compact and Kähler imply

the vanishing of Dolbeault cohomology [Huy, Cor. 3.2.12, p.129]

H0,1
(
W̄
)
⊕H0,1

(
W̄
)
= H1(W̄ ,C) = 0,

in which case one can solve Mittag-Leffler’s problem for 1τ on W̄ [G-H, pp.34-35] and τ

extends to a global fibration

τ : W̄
D
−→ CP 1 (2.3)

by K3−surfaces diffeomorphic (though not in general biholomorphic) to D. In fact, this

holomorphic coordinate can be seen as pulled-back from CP 1, i.e., K−1
W̄
is the pull-back of

a degree-one line bundle L→ CP 1 and z = τ∗s0 for some s0 ∈ H0 (L) [Kov2, §3].
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2.1.2 Kovalev’s noncompact Calabi-Yau theorem

The K3 divisor D is a compact complex surface, with complex structure I inherited from

W̄ ; by Yau’s theorem, it admits a unique Ricci-flat Kähler metric in the Kähler class ω̄|D:

κI
.
= ω̄|D +

1
2πdd

cu0 (2.4)

where u0 ∈ C∞ (D,R). Ricci-flat metrics on a surface are hyper-Kähler [G-H-J, §4.6], which

means D admits additional complex structures J and K = IJ satisfying the quaternionic

relations, and the metric is also Kähler with respect to any combination aI + bJ + cK with

(a, b, c) ∈ S2. Let us denote their Kähler forms by κJ and κK . In those terms we may state

Kovalev’s noncompact version of the Calabi conjecture [Kov1, Theorem 2.2]:

Theorem 2.35 For W = W̄ \D as above, the following hold:

1. W admits a complete Ricci-flat Kähler structure ω;

2. along the cylindrical end D × S1α × (R+)s, the Kähler form ω and the corresponding

holomorphic volume form Ω are exponentially asymptotic2 to those of the product Ricci-

flat Kähler metric on D:

ω∞ = κI + ds ∧ dα

Ω∞ = (ds+ idα) ∧ (κJ + iκK) ;
(2.5)

3. Hol (ω) = SU (3), i.e., W is Calabi-Yau.

NB.: The details in the rest of this Section are not essential for Chapter 3.

More precisely, the Ricci-flat structure ω has the form3

ω = ω̄ + μτ∗ω1 + dd
cf0, (2.6)

2This means they can be written along the tubular end as

ω |W∞ = ω∞ + dψ

Ω |W∞ = Ω∞ + dΨ

where the 1−form ψ and the 2−form Ψ are smooth and all derivatives are O
(
e−λt

)
with respect to ω∞, for

any λ < min
{
1,
√
λ1 (D)

}
, and λ1 (D) is the first eigenvalue of the Laplacian on D with the metric κI .

3Set dc = i
2

(
∂̄ − ∂

)
, so that ddc = i∂∂̄.
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where:

• ω̄ is the initial metric on W̄ ;

• ω1 is a Kähler form on CP 1 (which can be assumed to be the Fubini-Study metric) and

μ > 0 is a constant such that μτ∗ω1 is semi-positive on W̄ and positive transversely

to the fibres of τ ;

• Given a certain bundle metric |.|a pulled-back from CP
1 via τ [cf. (2.3)],

f0 =
1

4

(
log |s0|

2
a

)2
+ ũ, (2.7)

where ũ =
u+ u0
2π

, for real functions u ∈ C∞ (W ) and u0 ∈ C∞
(
W̄
)
with the following

properties:

– u|UrD −→s→∞
0 uniformly on D × S1 and its derivatives are bounded (w.r.t. ω∞);

– u0 is an extension to U of a solution of Yau‘s theorem on D [cf. (2.4)], so that

Supp (u0) ⊂ U and
(
ω̄ + 1

2πdd
cu0
)
|D= κI .

In order to understand ω in further detail, we need to take a deeper look into W̄ .

2.1.3 An exercise on density currents

The interesting structure of divisors arising in the construction of (W,ω) and their interplay

with the Kähler metric invite us into a brief exploration from the perspective of the theory

of density currents. Although most of it will have no bearing on any other argument in the

text, this little effort is rewarded by a deeper understanding of Kovalev’s construction, as

well as the somewhat aesthetically pleasing result (2.16).

We produce
(
W̄ , ω̄

)
starting from a compact, simply-connected 3−fold V that is assumed

Fano, i.e., c1 (V ) > 0. A Kähler structure is then given by some representative (1, 1)−form

ωV ∈ c1 (V ). A generic divisor D ∈ |−KW̄ | is always a K3−surface [Sho] but the Fano

condition means D.D
.
= C 6= 0. Our desired 3−fold carrying an anti-canonical divisor with

trivial normal bundle emerges as the blow-up along this self-intersection:

W̄
.
= BlCV. (2.8)
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Example 2.36 Let V = CP 3. In this case, K−1V = O (4) and we may take D to be a

quartic surface given by s0 ∈ H0 (O (4)), hence it is a K3−surface [cf. (2.10) below].

The self-intersection class of D, represented by a curve C = D.D, is Poincaré dual to

c1
(
CP 3

)∣∣
D
= 4 [H]|D 6= 0, so we blow up along C to get a trivial normal bundle ND/W̄ :

σ : W̄
.
= BlC

(
CP 3

)
→ CP 3 (2.9)

For future use in Chapter 4, let us observe that the proper transform restricts to a

biholomorphism of complex surfaces σ : D̃ → D so, by the adjunction formula,

KD̃ ' σ
∗KD = σ

∗ (KP3 |D ⊗ND/P3
)
= OD (2.10)

using ND/P3 = K−1P3
∣
∣
D
. Furthermore, by a generic choice of s0 [G-H, p.594], we may

assume

Pic (D) ' Z. (2.11)

Now, it is possible to find k sufficiently large so that the positive (1, 1)−form

ω̄ = σ∗ωV −
1

k
ωE (2.12)

defines a Kähler structure on W̄ . Here σ denotes the blow-up map,

E = σ−1 (C) ' P
(
NC/V

)
= P (OC (D)⊕OC (D))

' C × CP 1

is the exceptional divisor and ωE is a closed, semi-positive (1, 1)−form representing c1 (E)

[G-H, p.186-187]. On the other hand, the first Chern class of the blow-up along a curve of

complex codimension 2 is c1

(
K−1
W̄

)
= σ∗c1 (V )− c1 (E) [G-H, pp. 608-609], so a represen-

tative is given by

ω̃
.
= ω̄ +

1− k
k

ωE ∈ c1
(
K−1
W̄

)
. (2.13)

The punctured neighbourhood U∗ ' D × {0 < |z| < 1} is sliced by fibres Dz = τ−1 (z)

in the same divisor class |−KW̄ |; let sz ∈ H
0
(
K−1
W̄

)
denote their defining sections. The
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Lelong-Poincaré equation of currents [Dem, (4.4)] for each Dz reads
4

ω̃ = TDz − dd
c log |sz|

2
ω̃ . (2.14)

Similarly, writing E = s−1E (0) for sE ∈ H0 (O (E)) and taking some Hermitian bundle

metric |.|E ,

ωE = TE − dd
c log |sE |

2
E . (2.15)

Substituting (2.13), (2.14) and (2.15), equation (2.6) becomes

ω = TDz +
k−1
k TE + μτ

∗ω1 + dd
c (f0 − fz) (2.16)

where

fz
.
=
1

π

(

log |sz|
2
ω̃ +

k − 1
k
log |sE |

2
E

)

∈ L1loc
(
W̄
)

(2.17)

is a meromorphic function on W̄ with poles along Dz ∪ E.

4 [Op. cit. §2] On an oriented smooth manifold Xn, denote Ωp0(X) ⊂ Ω
p(X) the compactly supported

differential p−forms. A smooth oriented submanifold Y m defines a density current TY ∈ Ωn−m0 (X)∗ by:

TY (η)
.
=

∫

Y

η.
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2.2 A generalised connected sum

Although the gluing itself will not be further discussed in this text, it is instructive to

describe it briefly, in order to get some perspective on future developments [see Remark

2.39 below]. Consider an SU (3)−manifold W ′ satisfying the assertions of Theorem 2.35.

For some S ≥ 1, we prune (W ′, ω′) at s′ = S on the cylindrical end and cut-off5 the Kähler

form ω′ and the holomorphic volume form Ω′ to their asymptotic model (2.5) smoothly

along the interval s′ ∈ [S − 1, S], thus obtaining

W ′
S 'W

′
0 ∪
(
D × S1 × [0, S]

)
. (2.18)

2.2.1 The gluing condition

The 7−dimensional productW ′
S×S

1 has boundary D′×S1×S1. Comparing the asymptotic

model (2.5) with the standard form of the G2−structure on a product CY × S1 (1.23) we

find that W ′
S × S

1 carries a G2−structure on a collar neighbourhood of the boundary that

is asymptotic to:

ϕ′S = κ
′
I ∧ dα+ κ

′
J ∧ dθ + κ

′
K ∧ ds+ dα ∧ dθ ∧ ds. (2.19)

Since the set of all G2−structures P3
(
W ′ × S1

)
⊂ Ω3

(
W ′ × S1

)
is open [Joy, p. 243], ϕ′T

is itself a G2−structure on W ′ × S1 for large enough S.

Condition 2.37 Two manifolds W ′ and W ′′ as above will be suitable for the gluing proce-

dure if there is a hyper-Kähler isometry

f : D′J → D′′

5Given a cut-off function σ : R→ [0, 1], σ (t) =

{
0, t ≤ 0
1, t ≥ 1

, one writes

ω′T
(
t′
)
= ωW ′ − d

(
σ
(
t′ + 1− T

)
ψ′
)

Ω′T
(
t′
)
= ΩW ′ − d

(
σ
(
t′ + 1− T

)
Ψ′
)

where ψ and Ψ are the exponentially decaying forms of Theorem 2.35. Since G2−structures form an open
set, the 3−form

ϕ′T (t)
.
= ω′T (t) ∧ dα

′ + ImΩ′T (t)

is also a G2−structure on W ′ as ψ′ and Ψ′ tend to zero. Note that dϕ′T (t) = 0 by definition.
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between D′′ and the hyper-Kähler rotation of D′ with complex structure6 J . In this case the

(pull-back) action on Kähler forms is

f∗ : κ′′I 7→ κ′J , κ′′J 7→ κ′I , κ′′K 7→ −κ
′
K . (2.20)

Assuming this holds, define a map between collar neighbourhoods of the boundaries by

FS : D
′ × S1 × S1 × [S − 1, S] → D′′ × S1 × S1 × [S − 1, S]

(y, α, θ, s) 7→ (f (y) , θ, α, 2S − 1− s) .

This identification gives a compact oriented 7−manifold

MS =
(
W ′
S × S

1
)
∪FS

(
W ′′
S × S

1
) .
=W ′#̃SW

′′.

The matching of Kähler forms (2.20) guarantees that the respective G2−structures (2.19)

on W ′
S × S

1 and W ′′
S × S

1 agree along the gluing region [S − 1, S]:

F ∗Sϕ
′′
S = F ∗S( κ

′′
I︸︷︷︸
κ′J

∧ dα′′︸︷︷︸
dθ′

+ κ′′J︸︷︷︸
κ′I

∧ dθ′′︸︷︷︸
dα′

+ κ′′K︸︷︷︸
−κ′K

∧ ds′′︸︷︷︸
−ds′

+ dα′′︸︷︷︸
dθ′

∧ dθ′′︸︷︷︸
dα′

∧ ds′′︸︷︷︸
−ds′

)

= κ′I ∧ dα
′ + κ′J ∧ dθ

′ + κ′K ∧ ds
′ + dα′ ∧ dθ′ ∧ ds′

= ϕ′S .

so we obtain a globally well-defined G2−structure ϕS on MS . Thus, for large enough S,

there is a 1−parameter family (MS , ϕS) of compact oriented manifolds MS equipped with

G2−structures ϕS .

However, even though it is possible to arrange dϕS = 0 for any S [Kov2, eq. (4.23)],

a pair (MS , ϕS) is not in principle a G2−manifold, as one has yet to satisfy the second

torsion-freedom condition (see Theorem 1.8):

d ∗ϕS ϕS = 0.

6There is an S1−ambiguity in the choice of J ; in fact one could take any combination bJ + cK, with
b2 + c2 = 1.
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2.2.2 ‘Stretching the neck’ for Hol (ϕ) = G2

The cut-off functions involved in the asymptotic approximations leading to (2.19) add error

terms to d ∗ϕS ϕS , but these are controlled by the estimate [Kov2, Lemma 4.25 ]

‖d ∗ϕS ϕS‖Lpk
≤ Cp,ke

−λS ,

with 0 < λ < 1. This exponential decay suggests that, by ”stretching the neck” up to a

large enough S0, one can make the error so small as to be totally compensated by a suitably

small perturbation of ϕS in P3 (MS), S > S0 [Kov1, Theorem 2.3]:

Theorem 2.38 There exists S0 ∈ R and for every S > S0 a unique ηS ∈ Λ2 (M) such that

1. ‖ηS‖C1 < (const.) e
−μS , for some 0 < μ < 1. In particular, ϕS + dηS ∈ P3 (MS) ;

2. The (closed) 3−form ϕS + dηS satisfies

d ∗ϕS+dηS (ϕS + dηS) = 0,

so it defines a metric of holonomy G2 on MS.

Hence one has achieved a 1−parameter family of compact oriented G2−manifolds:

(MS , ϕS + dηS) , S > S0.

Remark 2.39 The task of obtaining G2−instantons on some bundle

E → (M,ϕ) = (MS , ϕS + dηS)

can thus be structured in three broad steps, as discussed in the Introduction:

1. To show the existence of HYM metrics H ′ and H ′′ respectively on bundles E ′ → W ′
S

and E ′′ → W ′′
S , which in turn pull back to G2−instantons over W

′
S × S

1 and W ′′
S × S

1

[Proposition 1.14].

2. To make rigorous sense, under additional assumptions if necessary, of the bundle

E = E ′#̃E ′′ →M
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and to show that any error term appearing in the G2−instanton equation [cf. (1.21)] as

a result of the gluing can also be dealt with7, by a ‘stretch-the-neck’-type argument, say.

3. In possession of G2−instantons, to study their moduli space, starting from the principles

of deformation theory set up in Section 1.5 and aiming at the foreseeable computation of

an invariant.

7similar problems are treated in [Don1] and in [Tau]
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CHAPTER 3

HERMITIAN YANG-MILLS PROBLEM

Let (W,ω) be an asymptotically cylindrical Calabi-Yau 3−fold as given by Theorem 2.35

and E →W the restriction of a holomorphic vector bundle on W̄ satisfying certain stability

assumptions. The guiding thread of this Chapter is the perspective of obtaining a smooth

Hermitian metric H on E satisfying the Hermitian Yang-Mills (HYM) condition

F̂H
.
= (FH , ω) = 0, (3.1)

which would effectively complete Step 1 of the strategy in Remark 2.39. Considerable

progress will be made in that direction by studying the following analytical problem.

Let WS be the compact manifold (with boundary) obtained by truncating W at length

S down the tubular end [cf. (2.18)]. On each WS we consider the nonlinear ‘heat flow’






H−1
∂H

∂t
= −2iF̂H

H (0) = H0

on WS × [0, T [ (3.2)

with smooth solution HS (t), defined for some (short) T , since (3.2) is parabolic. Here H0

is a fixed Hermitian metric on E →W with ‘good’ asymptotic behaviour, and one imposes

the Dirichlet boundary condition

H |∂WS= H0 |∂WS . (3.3)

Taking suitable t → T and S → ∞ limits of solutions to (3.2) over compact subsets WS0 ,

we obtain a solution H (t) to the evolution equation defined over W , for arbitrary T <∞,

with two key properties:

• each metric H (t) is exponentially asymptotic in all derivatives to the reference metric

H0 over typical finite cylinders along the tubular end;

• if H (t) converges at all as t ≤ T →∞, then the limit is a HYM metric on E .



Hermitian Yang-Mills problem

Moreover, I will show that the infinite-time convergence of H (t) over W , hence the

existence of the smooth HYM metric, can be reduced to a conjectured lower ‘energy bound’

on F̂H(t), over a domain down the tube roughly proportional to ‖H(t)‖C0(W ).

3.1 The evolution equation on W

As outlined above, we start with a holomorphic vector bundle E over the original compact

Kähler 3−fold
(
W̄ , ω̄

)
[cf. Section 2.1] and we ask that its restriction E|D to the divisor

at infinity D be (slope-)stable with respect to [ω̄]. As stability is an open condition, there

exists δ > 0 such that E|Dz is also stable for all |z| < δ. In view of this hypothesis, we

will say colloquially that E|W̄rD, denoted simply E → W , is stable at infinity over the

noncompact Calabi-Yau (W,ω) given by Theorem 2.35; this is consistent since [ω] = [ ω̄|W ].

In summary:

Definition 3.40 A bundle E → W will be called stable at infinity (or asymptotically

stable) if it is the restriction of a holomorphic vector bundle E → W̄ satisfying:

• E is irreducible;

• E|D is stable, hence also E|Dz for |z| < δ.

The last ingredient is a suitable metric for comparison. Fixing a smooth trivialisation

of E|U over the tubular ‘neighbourhood of infinity’ U ' D × {|z| < 1} ⊂ W̄ , we have a

C∞ identification between each E|Dz and E|D. Define H0|D as the Hermitian Yang-Mills

metric on E|D and denote K its pull-back over U . Then, for each 0 ≤ |z| < δ, the stability

assumption gives a self-adjoint element hz ∈ End
(
E|Dz

)
such that H0|Dz

.
= K.hz is the

HYM metric on E|Dz . I claim the family hz varies smoothly with z across the fibres
1. This

can be read from the HYM condition:2

F̂0|z = 0 ⇔ Pz (hz)
.
= ΔKhz + i

(
F̂K .hz + hz.F̂K

)
+ 2iΛz

(
∂̄Khz.h

−1
z .∂Khz

)
= 0

1supposing, for simplicity, that E is an SL(n,C)−bundle and fixing det hz.

2writing F0|z for the curvature of the Chern connection of H0|Dz and Λz for the contraction with the

Kähler form on Dz. Also, by definition, F̂
.
= ΛzF .
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where {Pz} is a family of nonlinear partial differential operators depending smoothly on z.

Linearising [Don2, p.14] and using the assumption F̂0|0 = 0 we find (DzP )|z=0 = Δ0, which

is invertible on metrics with fixed determinant. This proves the claim, by (the implicit

function) Theorem A.82.

Extending H0 in any smooth way over the compact end W̄ \ U , we obtain a smooth

Hermitian bundle metric on E . For technical reasons, I also require H0 to have finite energy :

∥
∥
∥F̂H0

∥
∥
∥
L2(W,ω)

<∞.

Definition 3.41 A reference metric H0 on an asymptotically stable bundle E →W is (the

restriction of) a smooth Hermitian metric on E → W̄ such that:

• H0|Dz are the corresponding Hermitian Yang-Mills metrics on E|Dz , 0 ≤ |z| < δ;

• H0 has finite energy.

Remark 3.42 Denote A0 the Chern connection
3 of H0; then by assumption each A0|Dz

is ASD [D-K, Prop. 2.1.59, p.47]. In particular, A0|D induces an elliptic deformation

complex [cf. Subsection 1.5.2]

Ω0 (g)
dA0→ Ω1 (g)

d+A0→ Ω2+ (g)

where g = Lie (G|D) generates the gauge group G = EndE over D. Thus, the requirement

that E|D be irreducible imposes a constraint on the associated cohomology:

H0A0|D = 0,

as a non-zero horizontal section would otherwise would split E|D [Theorem A.87].

Furthermore, although this will not be essential here, it is worth observing that one might

want to restrict attention to acyclic connections [Don1, Def. 2.4, p.25], i.e., whose gauge

class [A0] is isolated in ME|D
. Such requirement would, in other words, prohibit infinites-

imal deformations of A0 across gauge orbits, which translates simply into the vanishing of

the next cohomology group:

H1A0|D = 0.

3throughout this text the holomorphic structure of E will be fixed.
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The underlying heuristic in our definitions is the analogy between looking for solutions

with finite energy to partial differential equations over a compact manifold, with fixed values

over a hypersurface, say, and over a space with a topologically cylindrical end, imposing

their exponential decay to a suitable boundary condition at infinity.

3.1.1 Short time existence of solutions and C0−bounds

The short-time existence of a solution to our evolution equation is a standard result:

Proposition 3.43 Equation (3.2) admits a smooth solution HS (t), t ∈ [0, ε), for ε suffi-

ciently small.

Proof Using the Kähler identities, (3.2) is equivalent to the parabolic equation

∂h

∂t
= −

{
Δ0h+ i

(
F̂0.h+ h.F̂0

)
+ 2iΛ

(
∂̄0h.h

−1.∂0h
)}

h (0) = I, h|∂WS = I.

for a positive self-adjoint endomorphism h (t) = H−10 HS (t) of a unitary bundle with

Chern connection from H0. The result is an instance of [Ham, Part IV, §11, p.122].

The task of extending solutions to all time will be postponed to the next Subsection.

For now let us introduce some preliminary results and tools that will set the tune of the

whole investigation; we begin by recalling the parabolic maximum principle:

Lemma 3.44 (Maximum principle) Let X be a compact Riemannian manifold with

boundary and suppose f ∈ C∞
(
R+t ×X

)
is a nonnegative function satisfying:

(
d

dt
+Δ

)

ft (x) ≤ 0, ∀ (t, x) ∈ R+t ×X

and the Dirichlet condition:

ft|∂X = 0.

Then either sup
X
ft is a decreasing function of t or f ≡ 0.

The crucial role of the Kähler structure in this type of problem is that it often suffices

to control sup
∣
∣
∣F̂H

∣
∣
∣ in order to obtain uniform bounds on H and its derivatives, hence to

take limits in one-parameter families of solutions. Let us then establish such a bound from

the start; I denote generally ê
.
=
∣
∣
∣F̂H

∣
∣
∣
2

H
and, in the immediate sequel, êt

.
=
∣
∣
∣F̂HS(t)

∣
∣
∣
2

HS(t)
.
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Corollary 3.45 Let {HS (t)}0<T be a smooth solution to (3.2) on WS. Then sup
WS

êt is

non-increasing with t; in fact, there exists B > 0, independent of S and T , such that

sup
WS

∣
∣
∣F̂HS(t)

∣
∣
∣
2
≤ B. (3.4)

Proof Using the Weitzenböck formula [D-K, p. 221], one finds

(
d

dt
+Δ

)

êt = −
∣
∣
∣d∗HS(t)FHS(t)

∣
∣
∣
2
≤ 0. (3.5)

At the boundary ∂WS, for t > 0, the Dirichlet condition (3.3) means precisely that

HS |∂WS is constant, hence the evolution equation gives êt|∂WS =
∣
∣
∣H−1S ḢS

∣
∣
∣
2
∣
∣
∣
∣
∂WS

≡ 0.

Then B = sup
WS

ê0.

In order to obtain C0−bounds and state our first convergence result, let us digress

briefly into two ways of measuring metrics, which will be convenient at different stages in

this Chapter. First, given two metrics H and K of the same determinant4 we write

H = K.eξ

where ξ ∈ Γ (EndE) is traceless and self-adjoint with respect both to H and K, and define

λ̄ : Dom (ξ) ⊆W → R≥0 (3.6)

as the highest eigenvalue of ξ [Don3, §III]. Clearly

|H −K| ≤ (cst). |K| .
(
eλ̄ − 1

)
, (3.7)

so it is enough to control sup λ̄ to get a bound on ‖H‖C0 relatively to K. Except where

otherwise stated, we will assume from now on K = H0 to be the reference metric.

Remark 3.46 The space of continuous (bounded) bundle metrics is complete with respect

to the C0−norm [Rud, Theorem 7.15], so convergence as metrics is equivalent to uniform

convergence in the pointwise norm.

4for the purpose of Yang-Mills theory we may assume detH = 1, since the L2−norm of trFH is minimised
independently by the harmonic representative of [c1 (E)]

dR.
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Second, there is an alternative notion of ‘distance’ [Don2, Def. 12], which is more natural

to our evolution equation, as will become clear in the next few results:

Definition 3.47 Given two Hermitian metrics H,K on a complex vector bundle E, let

τ (H,K) = trH−1K

σ (H,K) = τ (H,K) + τ (K,H)− 2rkE .

The function σ is nonnegative (since a+a−1 ≥ 2, ∀a ≥ 0), it vanishes if and only if H = K

and its expression is symmetric in H and K.

Although σ is not strictly speaking a distance, it compares to λ̄ by increasing functions:

σ = tr
(
eξ + e−ξ − 2.Id

)

≥ eλ̄ + e−λ̄ − 2 = e−λ̄
(
eλ̄ − 1

)2
.

Remark 3.48 A sequence {Hi} converges to H in C0 if and only if supσ (Hi,H)→ 0. The

former because sup eλ̄ → 1 and the latter because obviously limH−1i H = limH−1Hi = Id .

From the previous inequality we deduce, in particular,

eλ̄ ≤ σ + 2. (3.8)

Conversely, it is easy to see that

σ ≤ 2r.e(r−1)λ̄

where r = rkE . Furthermore, in the context of our evolution problem, σ lends itself to

applications of the maximum principle [Don2, Prop. 13]:

Lemma 3.49 If H1 (t) and H2 (t) are solutions of evolution equation (3.2), then

σ (t) = σ (H1 (t) ,H2 (t)) satisfies

(
d

dt
+Δ

)

σ ≤ 0.
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Corollary 3.50 If a smooth solution HS (t) to (3.2) on WS, with Dirichlet boundary con-

ditions, is defined for 0 ≤ t < T , then HS (t)
C0
→ HS (T ) and HS (T ) is continuous.

Proof The argument is analogous to [Don2, Cor. 15]. By Remarks 3.46 and 3.48,

it suffices to show that supσ (HS (t) ,HS (t
′)) converges to zero as t′ > t → T . Clearly

ft = sup
WS

σ (HS (t) ,HS (t+ τ)) satisfies the (boundary) conditions of Lemma 3.44, so it

is decreasing and

sup
WS

σ (HS (t) ,HS (t+ τ)) < sup
WS

σ (HS (0) ,HS (τ))

for all t, τ, δ > 0 such that 0 < T − δ < t < t+ τ < T . Taking δ < ε in Proposition 3.43

we ensure continuity of HS (t) at t = 0, so the right-hand side is arbitrarily small for

all t sufficiently close to T . Hence HS (t) is a uniformly Cauchy sequence as t→ T .

Looking back at (3.2), we may interpret F̂H intuitively as a velocity vector along

1−parameter families H (t) in the space of Hermitian metrics. In this case, Corollary 3.45

suggests an absolute bound on the variation of H for finite (possibly small) time intervals

0 ≤ t ≤ T where solutions exist. A straightforward calculation yields

σ̇ =
d

dt
σ (HS(t),H0)

≤ tr
[(
H−1S ḢS

)
.
(
eξ − e−ξ

)]

≤ 2
∣
∣
∣tr
(
iF̂HS

)
.
(
eξ − e−ξ

)∣∣
∣

≤ (cst.)
∣
∣
∣F̂HS

∣
∣
∣ .eλ̄

≤ B̃.eλ̄

using the evolution equation and Corollary 3.45. Combining with (3.8) and integrating,

eλ̄ ≤ σ + 2 ≤ 2eB̃T
.
= CT , ∀t ≤ T. (3.9)

Consequently, for any fixed S0 > 0, the restriction to WS0 of HS (t) lies in a C
0−ball of

radius logCT about H0 in the space of Hermitian metrics, for all S ≥ S0 and t ≤ T .

Since CT doesn’t depend on S, the next Lemma shows that the HS converge uniformly on

compact subsets WS0 ⊂ W for any fixed interval [0, T ] (possibly trivial) where solutions

exist for all S > S0:
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Lemma 3.51 If there exist CT > 0 and S0 > 0 such that, for all S
′ > S ≥ S0, the evolution

equation 




H−1
∂H

∂t
= −2iF̂H

H (0) = H0, H|∂WS = H0|∂WS

on WS × [0, T ]

admits a smooth solution HS satisfying

σ (HS ,HS′)|WS ≤ CT ,

then the HS converge uniformly to a (continuous) family H defined on WS0 × [0, T ].

Proof It is of course possible to find a function φ :W → R such that






φ ≡ 0, on W0

φ (y, α, s) = s, for s ≥ 1

|Δφ| ≤ L

thus giving an exhaustion of W by our compact manifolds WS ' {p ∈W | φ (p) ≤ S},

S ≥ S0. Taking S0 < S < S′, I claim

σ
(
HS (t)|WS , HS′ (t)|WS

)
(p) ≤

CT
S
(φ (p) + Lt) , ∀ (p, t) ∈WS × [0, T ] ,

which yields our statement, since its restriction to WS0 gives

σ (HS ,HS′)|WS0
≤
CT (S0 + LT )

S
−→
S→∞

0.

The inequality holds trivially at t = 0 and on ∂WS by (3.9), hence on the whole of

WS × [0, T ], by the maximum principle [ Lemma 3.44]:

(
d

dt
+Δ

)(

σ (HS ,HS′)−
CT
S
(φ+ Lt)

)

≤ −
CT
S
(Δφ+ L) ≤ 0,

using |Δφ| ≤ L and Lemma 3.49.

This defines a continuous Hermitian bundle metric over our non-compact W :

H (t)
.
= lim
S→∞

HS (t) , t ≤ T. (3.10)
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It remains of course to show that any HS can be smoothly extended for all t ∈ [0,∞[ and

that the limit metric H (t) is itself a smooth solution of the evolution equation on W , with

satisfactory asymptotic properties along the tubular end.

3.1.2 Smooth solutions for all time

The bound (3.4) allows us to extend solutions HS to t = T , hence past T , for all time

[Sim, Corolary 6.5]. More precisely, we can exploit the features of our problem to control a

Sobolev norm ‖ΔH‖ by sup
∣
∣
∣F̂
∣
∣
∣ and weaker norms of H.

Lemma 3.52 Let H and K be smooth Hermitian metrics on a holomorphic bundle over a

Kähler manifold with Kähler form ω; then, for any submultiplicative pointwise norm ‖.‖,

‖ΔKH‖ ≤ (cst.)
[(∥∥
∥F̂H

∥
∥
∥+ 1

)
‖H‖+ ‖∇KH‖

2
∥
∥H−1

∥
∥
]

(3.11)

where ΔK
.
= 2iΛω∂̄∂K is the Kähler Laplacian and (cst.) depends on K and ‖.‖ only.

Proof Write h = K−1H and ∇K for the Chern connection of K. Since ∇KK = 0,

ΔKH = K.ΔKh.

On the other hand, the Laplacian satisfies [D-K, p.46][Don2, p.15]

ΔKh = h
(
F̂H − F̂K

)
+ iΛω

(
∂̄h.h−1 ∧ ∂Kh

)

so the triangular inequality and again ∇KK = 0 yield the result.

That will be the key to the recurrence argument behind Corollary 3.57, establishing smooth-

ness of HS as t→ T . Let us first collect some preliminary results [Sim, Lemma 6.4].

Lemma 3.53 Let {Hi}0≤i<I be a one-parameter family of Hermitian metrics on a bundle

E → X over a compact Kähler manifold-with-boundary such that

1. Hi
C0
−→ HI , where HI is a continuous metric,

2. sup
X

∣
∣
∣F̂Hi

∣
∣
∣ is bounded uniformly in i,

3. Hi|∂X = H0;

then {Hi} is bounded in L
p
2 (X) uniformly in i, for all p <∞, so HI is of class C

1.

60



Hermitian Yang-Mills problem

Corollary 3.54 If {HS (t)}0≤t<T is a solution of (3.2) with Dirichlet condition on ∂WS,

then the HS (t) are bounded in L
p
2 (WS) uniformly in t, for all 1 ≤ p < ∞, and HS (T ) is

of class C1.

Proof By Corollary 3.50 and (3.4), {HS (t)}0≤t<T satisfies Lemma 3.53.

The Corollary gives, in particular, a time-uniform bound on ‖FHS‖Lp(WS). This can

actually be improved to a uniform bound on all derivatives of curvature:

Lemma 3.55 FHS is bounded in L
∞
k (WS), uniformly in 0 ≤ t < T <∞, for each k ≥ 0.

Proof By induction in k:

k = 1: following [Don2, Lemma 18], we obtain a uniform bound on eS(t)
.
=
∣
∣FHS(t)

∣
∣2,

using the fact that (
d

dt
+Δ

)

eS ≤ (cst.)
(
(eS)

3
2 + eS

)

[Don2, Prop.16, (ii)], and consequently

eS (t) ≤ (cst.)

(

1 +

∫ t

0
‖Kt−τ‖Lp(WS)

∥
∥
∥(eS)

3
2 + eS

∥
∥
∥
Lq(WS)

)

, (3.12)

where Kt is the heat kernel associated to
d
dt + Δ and

1
p +

1
q = 1. On the complete

[Theorem 2.35] 6−dimensional Riemannian manifold WS, Kt satisfies [E-S, §9] the

diagonal condition

Kt (x, x) ≤
(cst.)

t3
, ∀x ∈WS

of Theorem A.90, which gives a ‘Gaussian’ bound on the heat kernel. So, fixing C > 4

and denoting r (., .) the geodesic distance, we have

Kt (x, y) ≤
(cst.)

t3
exp

{

−
r (x, y)2

Ct

}

, ∀x, y ∈WS .

Hence, for each x ∈WS, we obtain the bound

‖Kt (x, .)‖Lp(WS) ≤
(cst.)

t3

(∫

WS

exp

{

−p
r (x, y)2

Ct

}

dy

) 1
p

≤
(cst.)

t3

(∫ ∞

0

(
Ct
p

)3
u5e−u

2
du

) 1
p

≤ c̃p t
3
p
(1−p)

.
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Now, p < 3
2 ⇔

3
p (1− p) > −1, in which case

∫ T

0
‖Kt (x, .)‖Lp(WS) dt ≤ cp (T ) .

Inequality (3.12) gives the desired result provided (eS)
3
2 ∈ Lq (WS) for some q > 3; this

means FHS(t) ∈ L
q̃ (WS) for some q̃ > 9, which is guaranteed by Corollary 3.54.

k ⇒ k + 1: The general recurrence step is identical to [Don2, Cor. 17 (ii)], using the

maximum principle [ Lemma 3.49] with boundary conditions.

We are now in shape to put into use the Kähler setting, combining the L∞k −bounds on

F (hence on F̂ ) with inequality (3.11), via elliptic regularity:

Lemma 3.56 Let {Hi}0≤i<I be a one-parameter family of Hermitian metrics on a holo-

morphic vector bundle E → X over a compact Kähler manifold-with-boundary such that

1. Hi
L
p
2−→

i→I
H, where H is a continuous metric, ∀ (1 ≤ p <∞),

2.
∥
∥
∥F̂Hi

∥
∥
∥
L
p
k(X)

≤ C ′p,k ∀k ∈ N, ∀ (1 ≤ p <∞),

3. ‖Hi‖Lpk(∂X) ≤ Cp,k ∀k ∈ N, ∀ (1 ≤ p <∞);

then {Hi} is C∞−bounded and H is smooth.

Proof Fixing p ≥ 1, I will prove the following statement by induction in k:

‖H‖Lpk+2 and
∥
∥H−1

∥
∥
L
p
k
are bounded, ∀k ≥ 0.

The first hypothesis gives step k = 0. Now, assuming the statement up to step k − 1,

∥
∥H−1

∥
∥
L
p
k
=

∥
∥H−1

∥
∥
Lp
+
∥
∥∇
(
H−1

)∥∥
L
p
k−1

≤
∥
∥H−1

∥
∥
Lp
+
∥
∥H−1

∥
∥2
L
p
k−1
‖∇H‖Lpk−1

≤
∥
∥H−1

∥
∥
L
p
k−1

(
1 +

∥
∥H−1

∥
∥
L
p
k−1
‖H‖Lpk

)

so
∥
∥H−1

∥
∥
L
p
k
is bounded. On the other hand, elliptic regularity on manifolds-with-
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boundary and (3.11), with K = H0, give

‖H‖2Lpk+2 ≤ (cst.)

(

‖ΔH‖2Lpk + ‖H‖
2
L
p
k+1
+ ‖H‖2Lp

k+32

(∂X)

)

≤ (cst.)

[

‖H‖2Lpk+1

(

1 +

(

1 +
∥
∥
∥F̂H

∥
∥
∥
L
p
k

+ ‖H‖Lpk+1

∥
∥H−1

∥
∥
L
p
k

)2)

+ ‖H‖2Lp
k+32

(∂X)

]

where (cst.) depends on H0 and X only, and all those terms are bounded by assumption.

Passing perhaps to a subsequence, {Hi} is bounded in C∞ and its limit H is smooth.

Corollary 3.57 Under the Dirichlet condition, the limit metric HS (T ) is smooth.

Proof Corollary 3.54 gives hypothesis 1., Lemma 3.55 gives 2. and the Dirichlet

condition on ∂WS gives 3., as H0 is smooth.

Since HS (t)
C∞
−→
t→T

HS (T ), the solution can be smoothly extended beyond T , by short-

time existence, hence for all time [Sim, Prop 6.6]:

Proposition 3.58 Given any T > 0, the family of Hermitian metrics H (t) on E → W

defined by (3.10) is the unique, smooth solution of the evolution equation






H−1
∂H

∂t
= −2iF̂H

H (0) = H0

on W × [0, T ]

with sup
W
|H| <∞. Furthermore, sup

W

∣
∣
∣F̂H(t)

∣
∣
∣ ≤ B = sup

W

∣
∣
∣F̂H0

∣
∣
∣.

Proof On any compact subset WS0×[0, T ], HS are C
∞−bounded so, by the evolution

equation, ∂HS∂t
C∞
−→
S→∞

∂H
∂t and H is a solution on WS0 × [0, T ] satisfying the same bounds.

This is independent of the choice of S0.
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3.1.3 Asymptotic behaviour of the solution

We have a solution {H (t)} of the flow on W [Proposition 3.58], giving a Hermitian metric

on E → W for each t ∈ [0, T ]. Let us study the asymptotic properties of H (t) along the

non-compact end. Set

êt =
∣
∣
∣F̂H(t)

∣
∣
∣
2
.

First of all, as a direct consequence of Lemma 2.34, I claim

ê0 ≤ Bε, ε
.
=






1 on W0

e−s on ∂Ws, s ≥ 0
(3.13)

where B = sup
W

ê0 [Corollary 3.45]. In a holomorphic trivialisation of E over the neighbour-

hood of infinity U , with coordinates
(
z, ξ1, ξ2

)
such that D = {z = 0} ⊂ W̄ , the curvature

FH0 is a (1, 1)−form with values in EndE :

FH0 |UrD = Fzz dz ∧ dz̄︸ ︷︷ ︸
0(|z|2)

+
∑

i

(Fzi dz ∧ dξ̄
i

︸ ︷︷ ︸
0(|z|)

+ Fiz dξ
i ∧ dz̄

︸ ︷︷ ︸
0(|z|)

) +
∑

ij

Fij dξ
i ∧ dξ̄j . (3.14)

The terms involving dz or dz̄ decay at least as 0 (|z|) along the tubular end [Lemma 2.34],

and all the coefficients of FH0 are bounded, so FH0 −→
|z|→0

∑
Fijdξ

i ∧ dξj . Consequently,

F̂H0
(
z, ξ1, ξ2

)
−→
|z|→0

F̂H0

∣
∣
∣
D

(
ξ1, ξ2

)
= 0,

i.e., F̂H0 decays exponentially to zero as s→∞. From (3.13) we now obtain the exponential

decay of each êt along the cylindrical end:

Proposition 3.59 Take B and ε as in (3.13); then

êt ≤
(
Bet

)
ε on W.

Proof The statement is obvious onW0. For any s0, t0 ≥ 0, take T = S > max {s0, t0},

let ΣS
.
=WSrW0 and consider on ΣS× [0, T ] the comparison function g (t, s)

.
= Bet−s.

Using the Weitzenböck formula one shows
(
d
dt +Δ

)
êS ≤ 0 [cf. (3.5)], where êS =

∣
∣
∣F̂HS

∣
∣
∣
2

and HS is a solution of our flow (with Dirichlet condition) on WS as in Lemma 3.51.
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For ψ
.
= êS−g, we have5

(
d
dt +Δ

)
ψ ≤ 0 and, by the maximum principle [ Lemma 3.44],

ψ ≤ max
∂([0,T ]×ΣS)

{
êS −Be

t−s} ≤ 0.

To see that the r.h.s. is zero, there are four boundary terms to check:

s = S: the Dirichlet condition implies êS (t, S) = 0 for all t > 0, hence ψ (t, S) ≤ 0;

s = 0: ψ (t, 0) ≤ B
(
1− et

)
≤ 0;

t = 0: (3.13) gives ψ (0, s) ≤ 0;

t = T : again by Corollary 3.45 we have ψ (T, s) ≤ B
(
1− eT−s

)
≤ 0.

This shows that êS (t, s) ≤ Bet−s on ΣS × [0, T ]. Take T = S →∞.

As a result, we may replace pointwise
(
BeT

)
e−s for B̃ in (3.9) to obtain exponential

C0−convergence of H (t) along the cylindrical end:

σ (H (t) ,H0) |∂WS= O
(
e−S

)
. (3.15)

The next Proposition will establish exponential decay of H (t) in C1. I will state it in

rather general terms to highlight the fact that essentially all one needs to control is the

Laplacian, hence F̂ in view of (3.11). The proof emulates the argument in [Don4, Prop.8].

Proposition 3.60 Let V be an open set of a Riemannian manifold X, V ′ ⊂ V an interior

domain and Q → X some bundle with connection ∇ and a continuous fibrewise metric.

There exist constants ε,A > 0 such that, if a smooth section φ ∈ Γ (Q) satisfies:

1. ‖φ‖C0(V ) ≤ ε;

2. |Δφ| ≤ f (|∇φ|) on V , for some non-decreasing function f : R+ → R+;

2’. the above assumption remains valid under local rescalings by a constant, in the sense

that, in every ball Br ⊂ V , it still holds for some function f̃ after the radial rescaling

φ̃ (x̃)
.
= φ (mx), m > 0;

then

‖φ‖C1(V ′) ≤ A ‖φ‖C0(V ) .

5recall that our sign convention for the Laplacian is Δ = −
∑

i

∂2

∂x2
i
, in local coordinates.
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Proof I first contend that φ obeys an a priori bound

|(∇φ)x| r (x) ≤ 1, ∀x ∈ V

where r (x) : V → R is the distance to ∂V . Since the term on the left-hand side is zero

on ∂V , its supremum is attained at some x̂ ∈ V 0 = V (possibly not unique). Write

m
.
= |(∇φ)x̂| , R = r (x̂)

and suppose, by contradiction, that R > 1
m . If that’s the case then we rescale the ball

BR (x̂) by the factor m, obtaining a rescaled local section φ̃ defined in B̃mR ⊃ B̃1. In

this picture, any point in B̃
.
= B̃ 1

2
is further from ∂V than R2 , hence, by definition

of x̂,
∥
∥
∥∇φ̃

∥
∥
∥
C0(B̃)

≤ 2. By assumptions 2. and 2’. there exists L > 0 such that
∥
∥
∥Δφ̃

∥
∥
∥
C0(B̃)

≤ L, and elliptic regularity gives

∥
∥
∥∇φ̃

∥
∥
∥
C0,α(B̃)

≤ cα. (L+ ε)
.
= c̃α

using assumption 1.. Now, the rescaled gradient at x̂ has norm
∣
∣
∣
(
∇φ̃
)

x̂

∣
∣
∣ = 1 so, taking

α = 1
2 (say) in a smaller ball of radius ρ = (

1
2c̃ 1
2

)2,

∣
∣
∣
(
∇φ̃
)

x

∣
∣
∣ ≥ 1− c̃ 1

2
.ρ
1
2 ≥
1

2
, ∀x ∈ B̃ρ.

This means
∣
∣
∣φ̃
∣
∣
∣ varies by some definite δ > 0 inside B̃ρ and we reach a contradiction

choosing ε < δ. So

|(∇φ)x| ≤

(

inf
∂U

r

)−1
, ∀x ∈ U ⊂ V 0

for some open set U containing V ′. To conclude the proof, it suffices to apply Moser’s

estimate [Mos, Theorem 3] and control the L2−norm of ∇φ on U :

(cst.) ‖∇φ‖2C0(V ′) ≤ ‖∇φ‖2L2(U) =
∫

U

(∇φ,∇φ) =
∫

U

(φ,∇∗∇φ) =
∫

U

(φ,Δφ)

≤ ‖∇φ‖2C0(U) ‖φ‖
2
L2(V ′)

and the last term is obviously bounded by (cst.) ‖φ‖2C0(V ).
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Now let EndE = Q in Proposition 3.60, with connection ∇0.

Notation 3.61 Given S > r > 0, write Σr (S) for the interior of the cylinder (WS+r rWS−r)

of ‘length’ 2r. We denote the Ck−exponential tubular limit of an element in Ck (Γ(Q)) by:

φ
Ck
−→
S→∞

φ0 ⇔̇ ‖φ− φ0‖Ck(Σ1(S),ω) = O
(
e−S

)
.

For S ≥ 3, let V = Σ3 (S) and V ′ = Σ2 (S) so that the distance of V ′ to ∂V is always 1.

In view of (3.15), for whatever ε > 0 given by the statement, it is possible to choose S � 0

so that φ = (H (t)−H0)|Σ3(S) satisfies the first condition (for arbitrary fixed t), hence also

the second one by (3.11), with f(x) = (cst.)
[
(B + 1) ε+ x2

]
and (cst.) depending only on

H0 and ε. We conclude, in particular, that H(t) is C
1−exponentially asymptotic to H0 in

the tubular limit:

H(t)
C1
−→
S→∞

H0. (3.16)

Furthermore, in our case the bound on the Laplacian (3.11) holds for any Lpk−norm,

given our control over all derivatives of the curvature [Lemma 3.55], so the argument above

lends itself to the obvious iteration over shrinking tubular segments Σ1+ 1
k
(S):

Corollary 3.62 Let {H (t) | t ∈ [0, T ]} be the solution to the evolution equation on E →W

given by Proposition 3.58; then

H(t)
Ck
−→
S→∞

H0, ∀k ∈ N.

Combining existence and uniqueness of the solution for arbitrary time [Proposition 3.58]

and C∞−exponential decay [Corollary 3.62], one has the main statement:

Theorem 3.63 Let E →W be stable at infinity, with reference metric H0, over an asymp-

totically cylindrical SU (3)−manifoldW as given by the Calabi-Yau-Tian-Kovalev Theorem

2.35; then, for any 0 < T <∞, E admits a 1−parameter family {Ht} of smooth Hermitian

metrics solving 




H−1
∂H

∂t
= −2iF̂H

H (0) = H0

on W × [0, T ] .

Moreover, each Ht approaches H0 exponentially in all derivatives over tubular segments

Σ1(S) along the non-compact end.
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3.2 Another variational formulation

There is a standard way [Don2, §1.2] to build a functional on the space of Hermitian bundle

metrics over a compact Kähler manifold the critical points of which, if any, are precisely

the Hermitian Yang-Mills metrics. This procedure is in fact completely analogous to the

Chern-Simons construction discussed in Subsection 1.3.2, in that it amounts to integrating

along paths a prescribed first-order variation, expressed by a closed 1−form.

In this Section I will adapt this prescription to W , restricting attention to metrics with

suitable asymptotic behaviour, and to the K3 divisors Dz = τ
−1 (z) along the tubular end.

On one hand, the resulting functional NW will illustrate the fact that our evolution equation

converges (if at all) to a HYM metric. On the other hand, crucially, the family NDz will

mediate the role of stability in the time-uniform control of {Ht} over W .

3.2.1 Definition of the functional

I will set up this analogous framework in some generality at first, defining an a priori path-

dependent functional NW on a suitable set of Hermitian metrics on E . When restricted to

the specific 1−parameter family {Ht} from our evolution equation, we will see that NW (Ht)

is in fact decreasing, from which the t→∞ limit, if it exists, must be HYM on E . Let

I0
.
=

{

h ∈ EndE | h is Hermitian, h
C∞
−→
S→∞

0

}

denote the space of fibrewise Hermitian matrices which decay exponentially along the tube.

Definition 3.64 Let H0 be the set of smooth Hermitian metrics H on E →W such that:

H
C∞
−→
S→∞

H0.

Remark 3.65 About the Definition:

1. The exponential decay (3.13) implies H0 ∈ H0. Indeed, H0 is a star domain in the

affine space H0 + I0, in the sense that H0 + ` (H −H0) ∈ H0, ∀ (`,H) ∈ [0, 1] ×H0,

with H −H0 ∈ I0. Thus H0 is contractible, hence connected and simply connected.

2. There is a well-defined notion of ‘infinitesimal variation’ of a metric H, as an object

in the ‘tangent space’

THH0 ' I0.
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3. We know from (3.13) that F̂H0
C0
−→
S→∞

0, hence

∥
∥
∥F̂H

∥
∥
∥
L1(W,ω)

<∞, ∀H ∈ H0.

4. Any ‘nearby’ H ∈ H0, for which ξ = logH
−1
0 H is well-defined,6 is joined to H0 by

γ : [0, 1]→ H0

γ (`) = H0e
`ξ

. (3.17)

Clearly `ξ
C∞
−→
S→∞

0, so γ(`) ∈ H0, ∀` ∈ [0, 1].

5. Given any T > 0, the solutions {Ht}t∈[0,T ] of our flow form a path in H0, since F̂Ht

decays exponentially along the tube for any t [Theorem 3.63].

Let θ ∈ Ω1
(
H0,Ω1,1 (W )

)
be given by

θH : THH0 → Ω1,1 (W )

θH (k) = 2itr
(
H−1.k.FH

) . (3.18)

Then we may, at first formally, write

(ρW )H (k) =

∫

W

θH (k) ∧ ω
2, (3.19)

which will define a smooth 1−form on any domain H0 ∈ U ⊂ H0 where the integral

converges, for all H ∈ U and all k ∈ THH0. The crucial fact for us is that ρ is identically

zero precisely at the HYM metrics:

(ρW )H = 0 ⇔
∫

W

tr
(
H−1k.FH

)
∧ ω2 = 0, ∀k ∈ THH0

⇔ F̂H = (FH , ω) = 0.

Following the analogy with Chern-Simons formalism, this suggests integrating ρW over a

path to obtain a function having the HYM metrics as critical points. Given H ∈ H0, let

γ (`) = H` be a path inH0 connecting H to the reference metric H0, and form the evaluation

6i.e., such that
∥
∥H−10 H − I

∥
∥
C0(W,ω)

< 1.
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of θ along γ:

Φγ (`)
.
= [θγ (γ̇)] (`) = 2itr

(
H−1` .Ḣ`.FH`

)
∈ Ω1,1 (W ) . (3.20)

For instance, with γ as in (3.17), we have H−1` .Ḣ` = H
−1
` .H0

︸ ︷︷ ︸
e−`ξ

.
(
∂
∂`e
`ξ
)
= ξ and

(ρW )H`

(
Ḣ`

)
=

∫

W

Φγ (`) ∧ ω2

= 2i

∫

W

tr ξ.FH` ∧ ω
2

= 2i

∫

W

tr ξ.F̂H` dVolω

is well-defined near H0, since ξ = logH
−1
0 H is bounded and F̂H` is integrable [Remark 3.65].

Thus, in this setting at least, we have a rigorously defined integral:

N γW (H)
.
=

∫

γ

ρW . (3.21)

Before we move on, let us establish a convenient relation between Φγ (`) and the rate of

change of the ‘topological’ charge density trF 2 along γ, in the following Corollary.

Lemma 3.66 Let H be a Hermitian bundle metric, let h ∈ THH0 be an infinitesimal

variation of H and denote τ
.
= hH−1; then the curvature of the Chern connection of H

varies, to first order, by

FH+h = FH + ∂̄∂Hτ +O
(
|τ |2
)
.

Proof Set g = (H + h)H−1 = 1 + τ , so that [D-K, p.46][Don2, p.15]

FH+h = FH + ∂̄
(
g−1∂Hg

)
.

Observing that g−1 = 1− τ +O
(
|τ |2
)
, we expand the variation of curvature to find:

∂̄
(
g−1∂Hg

)
= −

(
g−1.∂̄g.g−1

)
∂Hg + g

−1∂̄∂Hg

= − (1− τ) ∂̄τ (1− τ) ∂Hτ + (1− τ) ∂̄∂Hτ +O
(
|τ |2
)

= ∂̄∂Hτ +O
(
|τ |2
)
.
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Corollary 3.67 Let {γ (`) = H`} ⊂ H0 be a 1−parameter family of metrics on E; then the

evaluation Φγ from (3.20) satisfies

−i∂̄∂Φγ (`) =
d

d`
trF 2H` .

Proof Using the first order variation of F [ Lemma 3.66] and the Bianchi identity:

d

d`
trF 2H` = 2tr

(
d

d`
FH`

)

∧ FH`

= 2tr ∂̄∂H`

(
H−1` .Ḣ`

)
∧ FH`

= −i∂̄∂Φγ (`) .

By the same token, if we restrict attention to our family {γ(t) = Ht} ⊂ H0 satisfying

the evolution equation 




H−1
∂H

∂t
= −2iF̂H

H (0) = H0

, (3.22)

set NW (H0) = 0 and write for short Φt
.
= Φγ(t), we obtain a real smooth function

NW (HT ) =
∫ T

0
(ρW )Ht

(
Ḣt

)
dt =

∫ T

0

(∫

W

Φt ∧ ω
2

)

dt. (3.23)

Proposition 3.68 The function NW (Ht) is well-defined, ∀t ∈ [0,∞[, and

d

dt
NW (Ht) = −

2

3

∥
∥
∥F̂Ht

∥
∥
∥
2

L2(W )
.

Proof Using the evolution equation (3.22):

d

dt
NW (Ht) = (ρW )Ht

(
Ḣt

)
=

∫

W

Φt ∧ ω
2

= 2

∫

W

tr iH−1t .Ḣt︸ ︷︷ ︸
2F̂Ht

.FHt ∧ ω
2

︸ ︷︷ ︸
1
6
F̂HtdVol ω

=
2

3

∫

W

tr F̂ 2Ht .dVolω

= −
2

3

∥
∥
∥F̂Ht

∥
∥
∥
2

L2(W )

and this is finite, as F̂Ht decays exponentially along the tube [ Proposition 3.59].
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The above Proposition confirms that we are on the right track: if the {Ht} converge to

a smooth metric H = H∞ at all, then H must be HYM.

3.2.2 NW is path-independent

Our definition of NW by integration of ρW is a priori path dependent and we have briefly

examined two examples [(3.21) and (3.23)] of such formulation, both of which will be relevant

at different stages in the ensuing analysis. We will now establish that both settings are, in

fact, completely equivalent.

Lemma 3.69 Let H ∈ H0 and h, k ∈ THH0 ∼= I0; in the terms of (3.18), the difference

ηH (h, k)
.
=
1

2i
(θH+h (k)− θH (k))

is anti-symmetric to first order, modulo img∂ + img ∂̄.

Proof In the notation of Lemma 3.66 and setting σ
.
= hK−1, the anti-symmetrisation

of ηH is

ξH (h, k)
.
= ηH (h, k)− ηH (k, h)

= tr
(
(σ.τ − τ.σ) .FH + σ.∂̄∂Hτ − τ.∂̄∂Hσ

)

+ O(|σ| . |τ |2) +O(|τ | . |σ|2).

(3.24)

The curvature of the Chern connection of H obeys FH = ∂̄∂H + ∂H ∂̄, so

σ.∂̄∂Hτ = σ.FH .τ − σ.∂H ∂̄τ

= σ.FH .τ − ∂H
(
σ.∂̄τ

)
− ∂̄ (∂Hσ.τ) + τ.∂̄∂Hσ;

mutatis mutandis,

τ ∂̄∂Hσ = τ.FH .σ − ∂H
(
τ.∂̄σ

)
− ∂̄ (∂Hτ.σ) + σ.∂̄∂Hτ.

Substituting these and using the cyclic property of trace in (3.24) we find

ξH (h, k) =
1
2tr
(
∂H
(
τ.∂̄σ − σ.∂̄τ

)
+ ∂̄ (∂Hτ.σ − ∂Hσ.τ)

)
+ O(|σ| . |τ |2) +O(|τ | . |σ|2)

∈ img∂ + img ∂̄ modulo O(|σ| . |τ |2) +O(|τ | . |σ|2).
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Corollary 3.70 Let U ⊂ H0 be a subset where the integral defining the 1−form ρW in

(3.19) converges, for all H ∈ U and all k ∈ THH0; then ρW |U is closed.

Proof Recall that a 1−form is closed precisely when its infinitesimal variation is

symmetric to first order [p.20]. In view of the previous Lemma, it remains to check that

ξH (h, k) ∧ ω2 integrates to zero modulo terms of higher order:

lim
S→∞

∫

WS

ξH (h, k) ∧ ω
2 = 0.

Taking account of bi-degree and de Rham’s theorem, still modulo O(|σ| . |τ |2)+O(|τ | . |σ|2),

∫

WS

ξH (h, k) ∧ ω
2 = 1

2

∫

∂WS

tr
[(
τ.∂̄σ − σ.∂̄τ

)
+ (∂Hτ.σ − ∂Hσ.τ)

]
∧ ω2

= 1
2

∫

∂WS

tr
[
2τ.∂̄σ + 2∂Hτ.σ −∇H (σ.τ)

]
∧ ω2

=

∫

∂WS

tr
(
τ.∂̄σ + ∂Hτ.σ

)
∧ ω2 −→

S→∞
0

From (the Calabi-Yau-Tian-Kovalev) Theorem 2.35, along the tube we have, as in (2.5),

ω2
∣
∣
∂WS
= κ2I +O

(
e−S

)
.

Consequently, as S →∞, the operation ‘.∧ ω2’ annihilates all components of the 1−form

tr
(
τ.∂̄σ + ∂Hτ.σ

)
except those transversal to Dz (|z| = e−S) in ∂WS ' Dz × S1:

∫

∂WS

tr
(
τ.∂̄σ + ∂Hτ.σ

)
∧ ω2 =

∫

∂WS

tr

(

τ.
∂σ

∂z̄
dz̄ + ((∂Hτ)z .σdz) ∧

(
κ2I + 0

(
e−S

))
)

=

∫

|z|=e−S
O (|z|) ∧

(
κ2I + 0 (|z|)

)
−→
|z|→0

0.

Here we used that |dz| , |dz̄| = O
(
e−S

)
= O (|z|) [ Lemma 2.34], while τ and σ also decay

exponentially in all derivatives [Definition 3.64].

Since H0 is simply connected, we conclude that

NW =
∫

γ

ρW (3.25)

doesn’t depend on the choice of path γ.
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3.2.3 A conjectured lower bound on ‘energy density’ via NDz

In view of the analysis in the next Section, one would like to derive, for small enough |z|, a

time-uniform lower bound on the ‘energy density’ given by the ω−trace of the restriction

of curvature FHt |Dz :

F̂t|z
.
= F̂Ht |Dz =

(
FHt |Dz , ω|Dz

)
.

Recalling that ξt ∈ Γ (EndE) is defined by Ht = H0eξt (hence is self-adjoint with respect to

both metrics), write λ̄t for its highest eigenvalue as in (3.6) and set

Lt
.
= sup
W

λ̄t.

One would like to prove:

Conjecture 3.71 For every t ∈ ]0,∞[, there exists an open set At ⊂ τ(W∞) ⊂ CP 1 of

parameters along the tubular end [cf. (2.1) and (2.3)] such that:

1. ∀z ∈ At, |z| < δ as in Definition 3.40, i.e., E|Dz is stable;

2. ∀z ∈ At,
∥
∥
∥F̂t|z

∥
∥
∥
L2(Dz)

≥
c

2

(

1−
c′

Lt

)

;

3. in the measure μ∞ induced on τ(W∞) by the asymptotically cylindrical metric ω,

μ∞(At) = c
′′
√
Lt

for some c, c′, c′′ > 0 independent of t and z.

Together with a uniform upper ‘energy bound’ on FHt overW , this should suffice to establish

the time-uniform C0−bound on λ̄t.

At last, the asymptotic stability assumption on E intervenes via a restriction of the

‘norm’ functional NW (Ht) just discussed to transversal K3−divisors Dz = τ−1 (z) far

enough along the tube. Setting each NDz (H0) = 0, we write [cf. (3.19) and (3.25)]

NDz
.
=

∫

γ

(ρ)Dz =

∫

γ

∫

Dz

θ ∧ ω (3.26)
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where the objects involved are the obvious analogues over Dz of those defined over W ; e.g.,

γ (`) = H`|Dz is a curve of Hermitian metrics on E|Dz . Each Dz being a compact complex

surface, the definition of NDz is standard [Don2, pp.8-11], and it shares the analogous prop-

erties of NW discussed in this Section (e.g. path-independence), dispensing with asymptotic

considerations. Stability then enters the picture by an instance of [Don3, Lemma 24]:

Lemma 3.72 Suppose E|Dz is stable with Hermitian Yang-Mills metric H0|Dz ; then there

exists a [positive] constant cz such that

NDz (Ht) ≥ cz
(
‖ξt‖

L
4
3 (Dz)

− 1
)
.

Intuitively, the argument goes as follows: on a fixed Dz far enough along the tube, the

quantity NDz (Ht) is controlled, in a certain sense, by the ω−traced restriction of curvature

F̂t|z [Lemma 3.73 below]. On the other hand, the stability assumption implies that the

same NDz (Ht) controls ‖ξt‖L 43 (Dz)
[Lemma 3.72], so ξt|Dz arbitrarily ‘big’ would imply on

F̂t|z being at least ‘somewhat big’. Moreover, if this happens at some z0 then it must still

hold over a ‘large’ set At ⊂ CP 1 of parameters z, roughly proportional to the supremum

Lt =
∥
∥λ̄t
∥
∥
C0(Dz0)

[Conjecture 3.71].

Adapting the archetypical Chern-Weil technique [cf. Subsection 1.4.2], I establish an

absolute ‘energy bound’ on FHt over W [estimate (3.28) below], so that the set At, carrying

a ‘proportional amount of energy’, cannot be too large in the measure μ∞. Hence the

supremum Lt, roughly of magnitude μ∞(At), can only grow up to a time-uniform value.

I will start by proving essentially ‘half’ of Conjecture 3.71:

Lemma 3.73 There exists a constant c1 > 0, independent of t and z, such that

NDz (Ht) ≤ c1 Lt ‖F̂t|z‖L2(Dz) ∀t ∈ ]0,∞[ .

Proof Fixing t > 0 and |z| < δ, we simplify notation by ξ = ξt and ‖.‖ = ‖.‖L2(Dz)
and consider the curve

γ : [0, 1]→ H0|Dz
γ (`) = H0e

`ξ

with γ (1) = Ht and γ
−1
` .γ̇` = ξ. Using the first variation of curvature [ Lemma 3.66] we

obtain d
d`F` = ∂̄∂`ξ, with ∂`

.
= ∂H` and F`

.
= Fγ(`).
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Form

m (`)
.
=

∫ `

0

∫

Dz

Φγ (`) ∧ ω = 2i
∫ `

0

(∫

Dz

ξ.F` ∧ ω

)

d`

so that m (1) = NDz (Ht) and m (0) = 0; differentiating along γ we have

m′ (`) = 2i

∫

Dz

ξ.F` ∧ ω.

The function m (`) is in fact convex:

m′′ (`) = 2i

∫

Dz

tr ξ.
(
∂̄`∂`ξ

)
∧ ω = 2 ‖∂`ξ‖

2 = ‖∇`ξ‖
2 ≥ 0

since ξ is real, and so |∂`ξ|
2 =

∣
∣∂̄`ξ

∣
∣2 = 1

2 |∇`ξ|
2. Now, by the mean value theorem, there

exists some ` ∈ [0, 1] such that

NDz (Ht) = m (1) = m(0) +m′ (`) ≤ m′(1) ≤ 2
∫

Dz

|ξ.F1 ∧ ω|

≤ c1 Lt ‖ F̂1|Dz‖

using convexity and Cauchy-Schwarz, with c1
.
= 2 sup

|z|<δ

√
Vol (Dz) and F1 = FHt .

Remark 3.74 Convexity implies that NDz (Ht) = m (1) is positive for all t, because

m′ (0) = 0 gives an absolute minimum at ` = 0, so m (1) ≥ m (0) = 0.

Finally, let us assume7, for the sake of argument, that the following statement can be

made rigorous:

“In the terms of Conjecture 3.71, there exists a set At, ‘proportional’ to c
′′√Lt,

such that

‖ξt‖
L
4
3 (Dz)

≥ c2 Lt ∀t ∈ ]0,∞[ ,

where c2 is independent of t and z.”

Then, together with Lemma 3.72 and Lemma 3.73, this would prove Conjecture 3.71, with

c =
2c2
c1

(

inf
|z|<δ

cz

)

and c′ =
1

c2
.

7It can be shown that Δλ̄ is (weakly) uniformly bounded [Don3, p.246], hence the maximum principle
suggests that |ξt| cannot ‘decrease faster’ than a certain concave parabola along the cylindrical end.
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3.3 Towards time-uniform convergence

Let {Ht} be the family of smooth Hermitian metrics on E → W given for arbitrary finite

time by Proposition 3.58. In order to obtain a HYM metric as H = lim
t→∞

Ht it would suffice

to show that {Ht} is C0−bounded, for then it is actually C∞−bounded on any compact

subset and the limit H is smooth [Lemmas 3.51, 3.53 and 3.56]. Concretely, this would

mean improving the constant CT in (3.9) to a time-uniform bound C∞ or, what is the same,

controlling the sequence λ̄t of highest eigenvalues of ξt = logH
−1
0 Ht [cf. (3.6)]:

∥
∥λ̄t
∥
∥
C0(W )

≤ C∞. (3.27)

I will show that this task reduces essentially to Conjecture 3.71, as the problem (3.27)

amounts in fact to controlling the size of the set At where the ‘energy density’ F̂t|z is bigger

than a definite constant. I begin by stating the announced upper bound:

E(t)
.
=

∫

W

(
|FHt |

2 − |FH0 |
2
)
dVolω ≤ 0 ∀t ∈ ]0,∞[ . (3.28)

The curvature of a Chern connection splits orthogonally as F = F̂ .ω ⊕F⊥ in Ω1,1 (EndE),

so |F |2 =
∣
∣F⊥

∣
∣2 +

∣
∣
∣F̂
∣
∣
∣
2
(setting |ω| = 1). On the other hand, the Hodge-Riemann equation

(A.2) reads

trF 2 ∧ ω =

(∣
∣
∣F⊥

∣
∣
∣
2
−
∣
∣
∣F̂
∣
∣
∣
2
)

ω3.

Comparing we find |F |2 ω3 = trF 2 ∧ ω + 2
∣
∣
∣F̂
∣
∣
∣
2
ω3 [cf. Subsection 1.4.2], so

E(t) =

∫

W

(
trF 2Ht − trF

2
H0

)
∧ ω + 2

∫

W

(êt − ê0)ω
3

d
dt=⇒ Ė(t) ≤

∫

W

(
−i∂̄∂Φt

)
∧ ω + 2

∫

W

(−Δêt)ω
3

≤ lim
S→∞

∫

∂WS

2

[

∂tr
(
F̂Ht .FHt

)
∧ ω +

∂êt

∂ν
dVolω|∂WS

]

= 0

using Corollary 3.67 along with its Proof and
(
d
dt +Δ

)
êt ≤ 0 as in (3.5), then complex

integration by parts [Lemma A.81] and the Gauss-Ostrogradsky theorem, and finally the

exponential decay F̂Ht
C∞
−→
S→∞

0, a direct consequence from Proposition 3.59 and Corollary

3.62. Since obviously E(0) = 0, this proves the upper bound (3.28).
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From now on I will write, in cylindrical coordinates, Ds for Dz when |z| = e−s. Reason-

ing as above we find, for the curvature of a Chern connection on E|Ds ,

|F |2 ω2 = trF 2 + 2
∣
∣
∣F̂
∣
∣
∣
2
ω2. (3.29)

Also recall, for immediate use, that

dVolω =
1
6ω
3 = 1

2ds ∧ dα ∧ (κI + dψ)
2 + d̃ψ

dVolω |Ds =
1
2

(
ω|Ds

)2
= 1
2 (κI + dψ)

2
∣
∣
∣
Ds
.

with d̃ψ = O (e−s). In the terms of Conjecture 3.71, denote Σt
.
= At×Ds the finite cylinder

τ−1 (At) along the tubular end W∞. Then, isolating the component of curvature along Ds,

the Hodge-Riemann property (3.29) gives a lower estimate on the curvature over Σt:

∫

Σt

|Ft|
2
{
dVolω − d̃ψ

}
≥

∫

Σt

∣
∣Ft|s

∣
∣2
{
dVolω − d̃ψ

}

=

∫

At

{∫

Ds

∣
∣Ft|s

∣
∣2 dVolω |Ds

}

ds ∧ dα

≥
∫

At

{
〈
c2
(
E|Ds

)
, [Ds]

〉
+ 2

∫

Ds

|F̂t|s|
2 dVolω |Ds

}

ds ∧ dα.

On the other hand, the asymptotia of F0 (3.14) give |F0|
2 =

∣
∣F0|s

∣
∣2 + R0 over W∞, where

the remainder is obviously positive and satisfies R0 = O (e
−s), so

∫

Σt

(
|F0|

2 −R0
){

dVolω − d̃ψ
}
=

∫

At

{∫

Ds

∣
∣F0|s

∣
∣2 dVolω |Ds

}

ds ∧ dα

=

∫

At

YMDS (H0) ds ∧ dα

and, by Definition 3.41, YMDS (H0) =
〈
c2
(
E|Ds

)
, [Ds]

〉
. Comparing and cancelling the

topological terms:

∫

Σt

(
|Ft|

2 − |F0|
2 +R0

){
dVolω − d̃ψ

}
≥ 2

∫

At

‖F̂t|s‖
2
L2(Ds)

ds ∧ dα. (3.30)

This discussion culminates at the following result:
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Proposition 3.75 Under the hypotheses of Conjecture 3.71, there exists a constant C∞,

independent of t and z, such that

Lt ≤ C∞, ∀t ∈ ]0,∞[ .

Proof Since μ∞ (At) = c
′′√Lt, then either Lt is uniformly bounded in t and there is

nothing to prove, or (a subsequence of) the sequence of sets {At}0<t<∞ gets arbitrarily

μ∞−large as t → ∞. In the latter case, the factor of c′ in Conjecture 3.71 becomes

negligible, as does the d̃ψ term in (3.30) along the tube W∞, so:

c.μ∞ (At) ≤
∫

Σt

(
|Ft|

2 − |F0|
2 +R0

){
dVolω − d̃ψ

}

t�0
'

∫

Σt

(
|Ft|

2 − |F0|
2 +R0

)
dVolω.

That integral, in turn, approaches the tail of E(t) + ‖R0‖L1(W ) and we know from the

negative energy condition (3.28) that this is bounded above, uniformly in t. Hence the

tail cannot grow indefinitely and, by contradiction, there must exist C∞ '

(
‖R0‖L1(W )
c.c′′

)2

yielding the statement.

Finally, replacing the uniform bound for CT in (3.9), this control cascades into the

exponential C0−decay in (3.15) and hence the C∞−decay in Corollary 3.62. We have thus

proved the following reduction of the HYM problem on E →W :

Theorem 3.76 Let E →W be stable at infinity, equipped with a reference metric H0, over

an asymptotically cylindrical SU (3)−manifold W as given by the Calabi-Yau-Tian-Kovalev

Theorem 2.35, and let
{
Ht = H0e

ξt
}
be the 1−parameter family of Hermitian metrics on E

given by Theorem 3.63; then Conjecture 3.71 implies that the limit H = lim
t→∞

Ht exists and

is a smooth Hermitian Yang-Mills metric on E, exponentially asymptotic in all derivatives8

to H0 along the tubular end of W :

F̂H = 0, H
C∞
−→
S→∞

H0.

8cf. Notation 3.61.
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CHAPTER 4

CONSTRUCTION OF AN ASYMPTOTICALLY

STABLE BUNDLE

It is fair to ask whether there are any holomorphic bundles at all satisfying the asymptotic

stability conditions of Definition 3.40, thus providing concrete instances for the analysis in

Chapter 3. Fixing the base manifold1 W̄ = BlCP3 [cf. Example 2.36], we will see that the

pull-back of the null-correlation bundle on P3 [O-S-S][Bar] gives exactly such a case.

4.1 Null-correlation bundles

Let n ∈ Z be odd and take a holomorphic symplectic (2, 0)−form ω relative to the standard

complex structure on Cn+1 ∼= H
n+1
2 . This defines a null-correlation [Bar, §7.1], i.e., an

isomorphism

Pn → (Pn)∗

l 7→ El

such that l ⊂ El, ∀l ∈ Pn, where (Pn)
∗ denotes the (projective) space of hyperplanes through

the origin in Cn+1. Specifically, such (non-degenerate) ω defines the n−planes

El = l
ω .
=
{
u ∈ Cn+1 | (lyω) (u) = 0

}

and, forming the linear quotients El/l, one obtains a (n− 1)−plane bundle N → Pn.

4.1.1 The bundle N as kernel of a surjective map

Following [O-S-S, pp. 76-81], we will now see that the graph of the null-correlation in

Pn × (Pn)∗ determines precisely a non-vanishing, O (2)−valued section of Ω1Pn = (TPn)
∗.

Equivalently, the corresponding (holomorphic) null-correlation bundle N → Pn can be seen

1we denote henceforth Pn
.
= CPn.



Construction of an asymptotically stable bundle

as the kernel of a surjective bundle map

TPn (−1)
s
� O (1) . (4.1)

For every point l ∈ Pn, seen as a line in Cn+1, contraction with ω defines an n−plane

El = lω. Clearly l ⊂ lω, so lω cuts out a hyperplane in the tangent space (TPn)l, which

corresponds (as its null-space) to a line in
(
Ω1Pn

)
l
. Such data, for all l ∈ Pn, determine a

holomorphic line subbundle2 of Ω1Pn . Since Pic (P
n) = Z, this must be of the form

O (k)
s
↪→ Ω1Pn

for some k ∈ Z. To see that in fact k = −2, notice that the above inclusion defines a

non-vanishing section s ∈ H0
(
Ω1Pn (−k)

)
, therefore

cn
(
Ω1Pn (−k)

)
= 0.

Applying Cartan’s formula for the total Chern class of a bundle splitting to the O (1)−twisted

Euler sequence of Pn, we find ci (Pn) =
(
n+1
i

)
, so:

0 = cn
(
Ω1Pn (−k)

)
= −cn (TPn (k))

= −
n∑

i=0

(
n+1
i

)
kn−i.

Certainly k 6= 0, for otherwise O ↪→ Ω1Pn would give a non-vanishing section, contradicting

cn
(
Ω1Pn

)
= − (n+ 1) 6= 0; thus we can meaningfully multiply the above equation by k:

(1 + k)n+1 = 1

⇔ k = −2 (or k = 0).

Hence the non-vanishing section s ∈ H0
(
Ω1Pn (2)

)
defines a bundle map of the form (4.1).

2as we know from the Euler sequence, the fibre of TPn = Hom
(
O(−1),O⊕(n+1)/O(−1)

)
at l consists

of ‘linear deformations’ of the form v : l → O⊕(n+1)/l, so a hyperplane in (TPn)l can be regarded as

E
.
= span

〈
v1, . . . , î, . . . , vn

〉
' span

〈
l, img (v1), . . . , î, . . . , img (vn)

〉
⊂ Cn+1 for some basis {vi}. All such

E form a bundle
P
(
Ω1Pn

)
' {(l, E) ⊂ Pn × (Pn)∗ | l ⊂ E} → Pn.
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Construction of an asymptotically stable bundle

4.1.2 Properties and geometric interpretation

From the short exact sequence

0 −→ N −→ TPn (−1) −→ O (1) −→ 0 (4.2)

we read, again by Cartan’s formula, the Chern classes of N :

c1 (N) = 0, c2 (N) = 1. (4.3)

Furthermore, N is simple [O-S-S, pp.77-78], hence irreducible. Indeed, from the long exact

sequence associated to (4.2), one finds h0(N) = 0 and so N is stable [O-S-S, p.180].

For some geometric intuition, let us restrict attention to the case n = 3. A point l ∈ P3

corresponds to a line through the origin in C4, so it determines a 3−dimensional ω−null

space lω containing l as a subspace. Dualising (4.2), we get

0 −→ O (−1) −→ Ω1Pn (1) −→ N∗ −→ 0

where we may think of the fibre of N∗ over l as the (self-dual) 2−plane given by the quotient

N∗l '
lω

l
' Nl ∈ GrC (2, 4) .

4.2 Asymptotic stability of Ñ → P̃3

Having seen that N is irreducible, our aim in this Subsection is to prove that Ñ = σ∗N → P̃3

satisfies the asymptotic stability condition of Definition 3.40:

Proposition 4.77 The pull-back Ñ = σ∗N of the null-correlation bundle N → P3 by the

blow-up (2.9) is stable at infinity.

Here our working definition of (Mumford-Takemoto or slope-) stability is [D-K, §6.1.1]:

Definition 4.78 A holomorphic SL (2,C)-bundle E over a compact Kähler surface (D,ω)

is stable if and only if any F ∈ Pic (D) receiving a nontrivial holomorphic map E → F has

strictly positive slope:

μ (F)
.
= 〈c1 (F)^ [ω] , [D]〉 > 0.
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Construction of an asymptotically stable bundle

As σ : D̃ → D is an isomorphism, it suffices to show stability for N |D. In view of (4.3),

c1 (N |D) = 0,

so N |D is topologically trivial; it is, in fact, holomorphically trivial, since H
0,1(D) = 0

implies the Jacobian is trivial, thus indeed N |D is an SL (2,C)−bundle. Moreover, as

Pic (D) = Z [cf. (2.11)], line bundles on D are classified by their degree. Hence we are in

position to apply a simple stability criterion derived from [O-S-S, p.165]:

Lemma 4.79 A rank 2 vector bundle E → X with c1(E) = 0 and Pic (X) = Z is stable if

and only if it has no sections.

Proving Proposition 4.77 reduces therefore to showing that h0 (N |D) = 0. Since D is

cut-out by a section s of K−1P3 = O(4), the restriction of N to D induces the exact sequence

0 −→ N(−4) −→ N −→ N |D −→ 0.

Considering the associated long exact sequence in cohomology, I contend

h0(N(−4)) = h1(N(−4)) = 0, (4.4)

which implies h0 (N |D) = h
0(N) = 0, as desired. To check (4.4), we write theO(−4)−twisted

defining sequence of N [cf. (4.2)] over P3:

0 −→ N(−4) −→ TP3 (−5) −→ O (−3) −→ 0.

On one hand, sinceKP3 = O(−4), Serre duality [Huy, Cor. 4.1.16, p.171] and Bott’s formula

[O-S-S, p.8] give:

H0 (TP3(−5)) = H0
(
Ω1P3(1)

∗ ⊗KP3
)

' H2
(
Ω1P3(1)

)∗
= {0}

so h0(N(−4)) = 0. Similarly,

H1 (TP3(−5)) ' H1
(
Ω1P3(1)

)∗
= {0}

and, obviously, H0 (O(−3)) = {0}. Thus h1(N(−4)) = 0 and Proposition 4.77 is proved.
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APPENDIX A

BACKGROUND MATERIAL

A.1 Special holonomy

I cite Berger’s theorem from [Joy, Th.3.4.1, p.55]; the original reference is [Ber, Th.3, p.318].

Theorem A.80 (Berger) Suppose (M, g) is a simply-connected Riemannian n−manifold

such that g is irreducible and nonsymmetric; then exactly one of the following holds:

• Hol (g) = SO (n)

• n = 2m,m ≥ 2 Hol (g) = U (m) ⊂ SO (2m)

• n = 2m,m ≥ 2 Hol (g) = SU (m) ⊂ SO (2m)

• n = 4m,m ≥ 2 Hol (g) = Sp (m) ⊂ SO (4m)

• n = 4m,m ≥ 2 Hol (g) = Sp (m)Sp (1) ⊂ SO (4m)

• n = 7,m ≥ 2 Hol (g) = G2 ⊂ SO (7)

• n = 8,m ≥ 2 Hol (g) = Spin (7) ⊂ SO (8) .

A.2 Bundle-valued differential forms

A.2.1 Inner product

Let G be a semi-simple Lie group, E →M a principal G−bundle over a smooth Riemannian

n−manifold M ; we denote g = Lie (G) and gE ' EndE.

We use throughout the inner product of endomorphism-valued p−forms α, β ∈ Ωp (gE)

(α, β) =

∫

M

〈α ∧ ∗β〉g , (A.1)

where 〈., .〉 denotes the Killing metric on g acting on the endomorphism part of the com-

position α ∧ ∗β ∈ Ωn (gE) and the standard inner product (from the Riemannian metric

on M) acting on the differential form part. In local coordinates, let α = αI ⊗ dxI and



Background material

β = βI ⊗ dxI , with αI , βI ∈ g; then

〈α ∧ ∗β〉g =I 〈αI , βI〉g dμ

where dμ is the volume form.

In particular, the curvature of a connection A is formally written as FA = dA+A ∧A,

which means locally:

FA =
1

2

(
dxi ∧ dxj

)
⊗ (FA)ij ∈ Ω

2 (gE)

with (FA)ij = ∂iAj − ∂jAi + [Ai, Aj ]. In those terms we define, pointwise,

|FA|
2 =

n∑

i,j

∣
∣
∣(FA)ij

∣
∣
∣
2

g
= |FA|

2
g .

A.2.2 Complex integration by parts on manifolds with boundary

Lemma A.81 (Integration by parts) Let Xn ⊆W be a compact complex (sub)manifold

(possibly n = 3), Φ a (1, 1)−form, Ω a closed (n− 2, n− 2)−form and f a meromorphic

function on X; then

∫

X

Φ ∧ ddcf ∧ Ω =
∫

X

f.
(
−i∂̄∂Φ

)
∧ Ω+ i

∫

∂X

(
Φ ∧ ∂̄f + f.∂Φ

)
∧ Ω.

Proof By the Leibniz rule and Stokes’ theorem, using d = ∂ + ∂̄ and taking account

of bi-degree, we have

∫

X

Φ ∧ ddcf ∧ Ω =

∫

X

Φ ∧ i∂∂̄f ∧ Ω

= i

∫

∂X

Φ ∧ ∂̄f ∧ Ω−
∫

X

i∂Φ ∧ ∂̄f ∧ Ω
︸ ︷︷ ︸

(∗)

and again

(∗) = i
∫

∂X

f.∂Φ ∧ Ω+
∫

X

f.
(
−i∂̄∂Φ

)
∧ Ω.
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A.2.3 The Hodge-Riemann bilinear relation

The curvature on a Kähler n−fold splits as F = F̂ .ω ⊕ F⊥ ∈ Ω1,1 (EndE), so:

F 2 ∧ ωn−2 = F̂ 2.ωn +
(
F⊥
)2
∧ ωn−2.

The Hodge-Riemann pairing (α, β) 7−→ α ∧ β ∧ ω on Ω1,1 (W ) is positive-definite along

ω and negative-definite on the primitive forms in 〈ω〉⊥ [Huy, pp.39-40] (with respect to

the reference Hermitian bundle metric); since the curvature F is real as a bundle-valued

2−form, we have:

trF 2 ∧ ωn−2 =

(∣
∣
∣F⊥

∣
∣
∣
2
−
∣
∣
∣F̂
∣
∣
∣
2
)

ωn (A.2)

using that tr ξ2 = − |ξ|2 on the Lie algebra part.

A.3 Banach analysis

A.3.1 The implicit function theorem

The following two theorems are taken from [D-K, Appendix I]. Recall that a map f : U ⊂

E → F between Banach spaces is differentiable at p ∈ U if there is a bounded linear

functional (Df)p : E → F such that

lim
h→0

f (p+ h)− f (p)− (Df)p h

‖h‖
= 0.

If f is differentiable for all p then Df : E → Hom (E,F ) is a map between Banach spaces

and we can iterate the definition to Cr and C∞ maps.

Theorem A.82 (Implicit function theorem in Banach spaces) Let E = E1 × E2 be

a product of Banach spaces and f : E → F a smooth map such that f
(
ξ̂1, ξ̂2

)
= 0 for

some fixed
(
ξ̂1, ξ̂2

)
; if (D2f)(ξ̂1,ξ̂2) : E2 → F is an isomorphism, then there exist open

neighbourhoods ξ̂1 ∈ U ⊂ E1 and ξ̂2 ∈ V ⊂ E2 and a smooth h : U → V such that

f (ξ1, h (ξ1)) = 0, ∀ξ1 ∈ U.

Moreover, for (ξ1, ξ2) ∈ U × V , f (ξ1, ξ2) = 0⇒ ξ2 = h (ξ1).
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Theorem A.83 (Inverse function theorem) Let f : E → F be a smooth map between

Banach spaces; if (Df)η̂ is surjective and admits a bounded right inverse, then there exist

open neighbourhoods W and W̃ of η̂ in E and a local homeomorphism g : W → W̃ such

that

f (η) =
[
(Df)η̂ ◦ g

]
(η) , ∀η ∈W.

In particular, f is right-invertible on W̃ and, for θ near f (η), the equation f (η) = θ has a

solution η near η̂.

We want to think about equations on E2 parameterised by E1 of the form

Ψξ1 (ξ2)
.
= f (ξ1, ξ2) = 0. (A.3)

The following Corollary sets sufficient conditions to perturb (A.3) with respect to the pa-

rameter ξ1 keeping solutions under control:

Corollary A.84 If f
(
ξ̂1, ξ̂2

)
= 0 and (D2f)(ξ̂1,ξ̂2) is surjective and admits a bounded right

inverse then, for every ξ1 near ξ̂1, there is a solution ξ2 to the (perturbed) equation

Ψξ1 (ξ2) = 0.

Moreover, ξ2 is near ξ̂2 for ξ1 sufficiently near ξ̂1.

Proof For fixed ξ1, the derivative at ξ2 of Ψξ1 : E2 → F is:

(DΨξ1)ξ2 (v) = (Df)(ξ1,ξ2) (0, v) = (D2f)(ξ1,ξ2) (v)

(Theorem A.83)
⇒ ∃ξ2 ∈ (Ψξ1)

−1 (0) .

Moreover, ξ2 = h (ξ1) [Theorem A.82], so ξ2 varies smoothly with ξ1.
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A.3.2 Ellipticity of the dual complex

In this Subsection and the next one I collect a few results that are used mostly in the proofs

of Proposition 1.22 and Proposition 1.23.

Lemma A.85 For a sequence A
S
→ B

T
→ C of bounded linear operators on Hilbert spaces:

kerT = imgS ⇔ kerS∗ = imgT ∗.

Proof I claim B = imgS ⊕ kerS∗:

b ∈ (imgS)⊥ ⊂ B ⇔ 〈b, Sa〉 = 0, ∀a ∈ A

⇔ 〈S∗b, a〉 = 0, ∀a ∈ A

⇔ b ∈ kerS∗.

Since S∗ is continuous (as it is bounded), kerS∗ ⊂ B is a closed subspace and so

B = (kerS∗)⊥ ⊕ kerS∗.

Mutatis mutandis, B = kerT ⊕ imgT ∗, so:

B = imgS ⊕ kerS∗

‖ ⇔ ‖

= kerT ⊕ imgT ∗

by the uniqueness of the orthogonal complement.

Corollary A.86 Let F
L1→ G

L2→ H be a complex of differential operators between vector

bundles over a compact manifold M with respective inner products on the fibres; if the

associated symbols satisfy σ (L∗i ) = (σ (Li))
∗, then

F
L1→ G

L2→ H is elliptic ⇔ H
L∗2→ G

L∗1→ F is elliptic.

Proof Apply the Lemma to the associated sequence of symbol maps

π∗F
σ(L1)−→ π∗G

σ(L2)−→ π∗H.
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A.3.3 Irreducible connections have no constant sections

The following is a slight improvement of [Fr-U, 3.1, p.54]:

Theorem A.87 Let E → M be an SU (n)−bundle over a compact Riemannian manifold

M and A a non-flat connection; then

A is irreducible ⇒ ker
(
dA : Ω

0 (gE)→ Ω1 (gE)
)
= {0}.

Proof Suppose 0 6= f ∈ ker dA ⊂ Ω0 (gE . Since gE = su (n) are the traceless skew-

symmetric matrices, in a local trivialisation over U ⊂ M the section f is pointwise

diagonalisable and admits a local basis of smooth (unit) eigenvectors
{
ei ∈ Γ (U)

}
:






fei =
(
iλi
)
.ei

∥
∥ei
∥
∥ = 1

(A.4)

where the λi are smooth real functions on U such that
(∑

λi
)
|U= 0 . I claim that the

λi are constant; to see this, apply dA to equations (A.4):






(dAf)︸ ︷︷ ︸
0

ei + f
(
dAe

i
)
= i

(
dλi
)
⊗ ei +

(
iλi
)
.dAe

i

Re
〈
dAe

i, ei
〉
= 0.

(A.5)

Taking the inner product with ei and then the imaginary part in the first line gives:

dλi = Im
〈
f
(
dAe

i
)
, ei
〉
− λiRe

〈
dAe

i, ei
〉

︸ ︷︷ ︸
0

(A.6)

= −Im
〈
dAe

i, fei
〉
= −λiRe

〈
dAe

i, ei
〉
= 0.

Hence the functions λi are constant and the corresponding eigenspaces are globally de-

fined. Since
∑
λi = 0, the

{
ei
}
split the bundle E into at least two distinct (distribu-

tions of) eigenspaces. Furthermore, replacing (A.6) in (A.5) shows that dA preserves

each eigenspace:

f
(
dAe

i
)
=
(
iλi
)
.dAe

i

which leads to a contradiction when A is irreducible.
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A.3.4 Bound on the norm of the multiplication operator

The next result, from [Fin], is essentially the generalisation to Banach spaces of the fact

that the determinant of a linear map is continuous.

Lemma A.88 Let D : B1 → B2 be a bounded invertible linear map of Banach spaces with

bounded inverse Q. If L : B1 → B2 is another linear map with

‖L−D‖ ≤ (2 ‖Q‖)−1 ,

then L is also invertible with bounded right inverse P satisfying

‖P‖ ≤ 2 ‖Q‖ .

For its application in the proof of Proposition 1.23 we are also going to need the following

Lemma, saying that the norm of the operator ”multiplication by a function” on L2 (in fact, a

similar claim holds for general Lp) is controlled by a suitable Sobolev norm of that function.

Lemma A.89 On a compact n−manifold M , fix f ∈ L2k (M) with k ≥
n

2
; then there exists

a constant c = c (M) such that

‖Lf‖ ≤ c ‖f‖L2k ,

where

Lf : L
2 (M) → L2 (M)

g 7→ f.g
.

Proof This is an immediate consequence of Sobolev’s embedding theorem, since

‖f.g‖L2 =
(∫
M |f |

2 .
∣
∣g2
∣
∣ dμ

) 1
2
≤ ‖f‖C0 . ‖g‖L2 and so

‖Lf‖ = sup
‖g‖L2=1

‖f.g‖L2 ≤ ‖f‖C0 .
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A.4 Gaussian upper bounds for the heat kernel

The following instance of [Gri, Theorem 1.1] stems from a long series1 of generalised ‘Gaus-

sian’ upper bounds (i.e., given by a Gaussian exponential on the geodesic distance r) for

the heat kernel Kt of a Riemannian manifold.

Theorem A.90 Let M be an arbitrary connected Riemannian n−manifold, x, y ∈M and

0 ≤ T ≤ ∞; if there exist suitable [see below] real functions f and g satisfying the ‘diagonal’

conditions

Kt(x, x) ≤
1

f(t)
and Kt(y, y) ≤

1

g(t)
, ∀t ∈ (0, T ) ,

then, for any C > 4, there exists δ = δ(C) > 0 such that

Kt(x, y) ≤
(cst.)

√
f(δt)g(δt)

exp

{

−
r(x, y)2

Ct

}

, ∀t ∈ (0, T )

where (cst.) depends on M and its metric only.

For all purposes in the present text one may assume simply f(t) = g(t) = t
n
2 , but in fact

f and g can be much more general, provided they have subpolynomial or superpolynomial

growth in the sense of the following conditions [Op. cit. p.37]:

• f, g : (0, T )→ R+ are monotonically increasing;

• ∃ A,B ≥ 1, α, β > 1 such that, ∀ 0 < t1 < t2,

f (αt1)

f (t1)
≤ A

f (αt2)

f (t2)
and

g (βt1)

g (t1)
≤ B

g (βt2)

g (t2)
.

1going back to J. Nash (1958) and D. Aronson (1971) [Op. cit., pp.1-2].
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APPENDIX B

ADDENDUM: PROOF OF CONJECTURE 3.71

The original thesis sets up a general framework for the study of G2−instantons on suit-

able (i.e. asymptotically stable) holomorphic bundles over exponentially asymptotically

cylindrical (EAC) Calabi-Yau 3−folds, as constructed by A. Kovalev [Kov1, Kov2]. An

existence theorem is announced [Theorem 3.76], based on smooth t→∞ convergence of a

nonlinear ‘heat flow’ {Ht} on the space of Hermitian metrics, for which a necessary uniform

C0−bound is left pending on the validity of Conjecture 3.71.

This Addendum provides a rigorous restatement as well as a proof of that necessary

result, therefore establishing the existence of a Hermitian Yang-Mills (HYM) metric on any

asymptotically stable holomorphic bundle over such an EAC Calabi-Yau 3−fold.

B.1 Preliminaries

In B.1.1 I will derive a certain number of analytical facts to be used in the main proof. As

the relevance of some of these may seem unclear at first, the reader might prefer to skip

this part and refer back to it at a later stage.

Then, in B.1.2, I will provide a proper statement of the desired result and give some

intuition on the proof to follow.

B.1.1 Analytical lemmas

Definition B.91 Given a Lipschitz function f : W → R, smooth away from a set of

codimension at least 3, and β ∈ R, denote

Δf
w
≤ β ⇔̇

∫

W

fΔϕ ≤ β ‖ϕ‖C0(W ) , ∀ϕ ∈ C∞c (W ).

The constant β will be referred to as a weak bound of the Laplacian.

Recalling that ξt ∈ Γ (EndE) is defined by Ht = H0eξt (hence is self-adjoint with respect

to both metrics), write λ̄t for its highest eigenvalue; then:



Addendum: Proof of Conjecture 3.71

Lemma B.92 The Laplacian of λ̄ admits a weak bound β > 0:

Δλ̄t
w
≤ β.

Proof This is a direct consequence of the weak inequality [Don3, p.243]:

Δλ̄ ≤ 2

(∥
∥
∥F̂Ht

∥
∥
∥
Ht
+
∥
∥
∥F̂H0

∥
∥
∥
H0

)

,

in view of the time-uniform bound on F̂Ht [Corollary 3.45].

Lemma B.93 (weak maximum principle) In the terms of Definition B.91, if f
w
≤ 0

over a (bounded open) domain U ⊂W , then f |U ≤ max
∂U

f .

Proof Let M
.
= max

∂U
f and suppose, by contradiction, that a local maximum occurs

at (an interior point) q ∈ U . Then, working in local coordinates, take then a (small)

neighbourhood U ⊃ V 3 q such that the gradient field ∇f ‘points inwards’ to q, and

choose a smooth positive bump function ϕ ∈ C∞c (W ), peaking at q, with supp(ϕ) ⊂ V

and such that (∇f,∇ϕ) > 0 almost everywhere on V . Then

0 ≥
∫

W

fΔϕ =

∫

V

fΔϕ
(∗)
=

∫

V

(∇f,∇ϕ) ≥ 0

which either iterates all over U to imply f ≡M or contradicts the assumption that q is

an interior point. Note that step (∗) is only rigorous under the assumption that ∇f is

defined away from a singular set of high enough codimension that an ε−neighbourhood

Nε of it has dVolω|∂Nε = O(ε
2). This guarantees that boundary terms in the integration

by parts over V \Nε vanish when ε→ 0, since f is Lipschitz [Don3, p.244].

Lemma B.94 Let (D, g) be a compact Riemannian manifold, f ∈ L∞ (D,R+), p > 1 and

x > 0; then there exists a constant kp = kp (D, g) > 0 such that

‖f‖p ≥
kp

F x

∥
∥f1+x

∥
∥
1

with ‖.‖q
.
= ‖.‖Lq(D,g) , 1 < q ≤ ∞, and F

.
= ‖f‖∞.
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Addendum: Proof of Conjecture 3.71

Proof It suffices to write

‖f‖p
.
=

(∫

D

fp dVol g

) 1
p

≥

(∫

D

fp
(
f

F

)xp
dVol g

) 1
p

= F−x
∥
∥f1+x

∥
∥
p

then apply Hölder’s inequality, finding kp = (Vol gD)
( 1
p
−1).

B.1.2 Restatement of the Conjecture and partial proof

The original statement of Conjecture 3.71, although heuristically plausible, turns out not

to hold ipsis litteris, in the sense that the claimed lower bound on L2−norms of F̂H over

transverse slices only holds in a weak sense, i.e., its integral along a tubular segment is

bounded below by the tube’s length. Nonetheless, this is exactly what is necessary to

obtain the C0−bound in Proposition 3.75.

Recalling that discussion, one would like to derive, for small enough |z|, a time-uniform

lower bound on the ‘energy density’ given by the ω−trace of the restriction of curvature

FHt |Dz :

F̂t|z
.
= F̂Ht |Dz =

(
FHt |Dz , ω|Dz

)
,

in the sense that its L2−norm over a cylindrical segment Σ far enough down the tubular

end is bounded below by a scalar multiple of VolΣ. Moreover, the length of such a cylinder

Σ can be assumed roughly proportional to Lt
.
= sup

W
λ̄t, so that Lt � 0 implies a large

‘energy’ contribution. Explicitly:

Conjecture B.95 (rephrased 3.71) There are constants c, c′, c′′ > 0 independent of t

and z such that, for every t ∈ ]0,∞[, there exists an open set At ⊂ τ(W∞) ⊂ CP 1 of

parameters along the tubular end satisfying:

1. ∀z ∈ At, |z| < δ as in Definition 3.40, i.e., E|Dz is stable;

2. in the measure μ∞ induced on τ(W∞) by the cylindrical metric (2.5), with z = e
−s+iα,

∫

At

‖F̂t|z‖
2
L2(Dz)

ds ∧ dα ≥
c

2
μ∞ (At)

(

1−
c′

Lt

)2
;

3. moreover, when Lt � 0, one has

μ∞(At) ≈ c
′′
√
Lt.
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Following Subsection 3.2.3, suppose that the following claim could be made rigorous:

“In the terms of Conjecture B.95, there exists a set At, ‘proportional’ to c
′′
√
Lt,

such that

‖ξt‖
L
4
3 (Dz)

≥ c2 Lt ∀t ∈ ]0,∞[ ,

where c2 is independent of t and z.”

Then, together with Lemma 3.72 and Lemma 3.73, this would prove Conjecture B.95, with

c = 2

(
c2

c1
inf
|z|<δ

cz

)2
and c′ =

1

c2
.

Now, in what follows, this will not be, strictly speaking, the right formulation, due to some

analytical idiosyncrasies, but it conveys the relevant intuition behind the proof.

B.2 Completion of the proof

The strategy consists, on one hand, of using the weak control over the Laplacian from

Lemma B.92 to show that, around the furthest point down the tube where Lt = max
W

λ̄t is

attained, the slicewise supremum of λ̄t is always on top of a certain concave parabola Pt.

On the other hand, the integral along the tube of the slicewise norms
∥
∥λ̄
∥
∥
L
4
3 (Dz)

, which

bounds below NDz(Ht) [Lemma 3.72], can be shown to be itself bounded below by those

slicewise suprema, using again the weak bound on the Laplacian to apply Moser’s estimate

on ‘balls’ of a standard shape, which fill essentially ‘half’ of the corresponding tubular

volume.

Since NDz(Ht) is controlled above by F̂Ht , in the sense of Lemma 3.73, this leads to

the desired minimal ‘energy’ contribution, ‘proportional’ to the length (roughly
√
Lt) of the

tubular segment underneath the parabola Pt.

B.2.1 A concave parabola as lower bound

In tubular coordinates |z| = e−s, the supremum of λ̄t over a transversal slice along W∞

defines a smooth function

`t : R+ → R+

`t(s)
.
= sup

∂Ws

λ̄t.
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Addendum: Proof of Conjecture 3.71

Moreover, for each t > 0, denote St the ‘furthest length’ down the tube at which Lt is

attained, i.e., St = max
Lt=`t(s)

s, and set

It
.
=
[
St, St + δ

+
t

]
⊂ R+

with δ+t
.
= 1
2

(√
1 + 8βLt − 1

)
and β as in Lemma B.92.

Lemma B.96 For each t > 0, the transversal supremum `t is bounded below by the concave

parabola Pt(s− St)
.
= Lt −

β
2 (s− St)(s− St + 1) over It, i.e.,

`t(s) ≥ Pt(s), ∀s ∈ It.

Proof Fix t > 0, δ+t ≥ δ > 0 and set Jt (δ)
.
= ]St − 1, St + δ[ (I suppress henceforth

the t subscript everywhere, for clarity). The parabola takes the value P (−1) = P (0) = L

at the points S− 1 and S, and its concavity is precisely the weak bound on Δλ̄ [ Lemma

B.92], so we have Δ
(
λ̄− P

) w
≤ 0 on J(δ) and Lemma B.93 gives

(
λ̄− P

)∣∣
J(δ)

< max

{

sup
s=S−1

(
λ̄− P

)
, sup
s=S+δ

(
λ̄− P

)
}

⇒ 0 = `(S)− P (S) < `(S + δ)− P (S + δ), ∀0 < δ < δ+

since by assumption `(S − 1) ≤ L = P (−1). Hence ` ≥ P, ∀s ∈ I.

Remark B.97 Fixing 0 < ε < 1 and setting δ+ε,t
.
= 1
2

(√
1 + 8β (1− ε)Lt − 1

)
,

`t(s) ≥ εLt, ∀s ∈ Iε,t
.
=
[
St, St + δ

+
ε,t

]
. (B.1)

Moreover, for Lt � 0, one has δ
+
ε,t ≈ c

′′
ε

√
Lt, with c

′′
ε =

√
2(1−ε)
β .
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Addendum: Proof of Conjecture 3.71

B.2.2 Moser’s estimate over transversal slices

The goal of this Subsection is to establish the following inequality:

Lemma B.98 Given t > 0 and 0 < ε < 1, let Σt(ε)
.
= Iε,t × D ' WSt+δ+ε,t

\WSt be the

finite cylinder along W , under the parabola Pt of Lemma B.96, determined by the interval

of length δ+ε,t on which (B.1) holds, and suppose 2πδ
+
ε,t ∈ N; then, for each x > 0, there

exists a uniform constant kx,ε > 0 such that

∫

Σt(ε)
λ̄1+xt dVolω∞ ≥ kε,x.δ

+
ε,t.L

1+x
t . (B.2)

Again let me suppress the t subscript, for tidiness, and work all along in the cylindrical

metric ω∞. For each s ∈ Iε, let ps ∈ ∂Ws ' Ds × S1 be a point on the corresponding

transversal slice such that the maximum `(s) = λ̄(ps) is attained, and form the ‘unit’ open

cylinder Bs ⊂ Σε of length1 1
2π , centered on ps, such that

VolBs = Vol (Bs ∩Ds) =
1

2
VolD,

where VolD ≡ VolDs denotes the (same) four-dimensional volume of (all) Ds.

Under the weak bound Δλ̄
w
≤ β [Lemma B.92], Moser’s estimate [Mos] over Bs gives

1

VolBs

∫

Bs

λ̄1+x ≥ k′x

(

max
Bs

λ̄

)1+x
≥ k′x (εL)

1+x (B.3)

where k′x > 0 is a uniform constant (as all Bs are congruent by translation) and the second

inequality comes from property (B.1). In particular, one can choose at most 2πδ+ε ∈ N

values sj ∈ Iε such that the corresponding Bsj are necessarily disjoint, and form their union

B (ε)
.
=

2πδ+ε∐

j=1

Bsj .

Clearly VolB(ε) ≥ 1
2 (2πδ

+
ε )VolD. Now, the statement about averages (B.3) goes over to

the disjoint union, which proves the Lemma, with kx,ε
.
= πk′x ε

1+x VolD:

∫

Σ(ε)
λ̄1+x ≥

∫

B(ε)
λ̄1+x ≥ VolB(ε) k′x (εL)

1+x .

1so that the volume integral over Bs along the S
1 × Iε directions is 1.
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B.2.3 End of proof

It is now just a matter of putting together the previous results. At the end of Subsection

B.1.2 we knew

L‖F̂‖2 ≥ k
′
(∥
∥λ̄
∥
∥
4
3

− 1
)

over each Dz sufficiently far down the tube, for a uniform constant k
′ > 0. Choosing

0 < ε < 1 and x > 0, integrating over Aε
.
= Iε × S1 and applying Lemma B.94 we have

∫

Aε

‖F̂‖2 ds ∧ dα ≥ k
′′ 1

L1+x

∫

Aε

∥
∥λ̄1+x

∥
∥
1
ds ∧ dα− k′

δ+ε
L

where k′′
.
= k′.k 4

3
is still a uniform constant. Moreover, by Lemma B.98, the integral term

is bounded below by k′′.kε,x.δ
+
ε , so Hölder’s inequality gives

(VolAε)
1
2

(∫

Aε

‖F̂‖22 ds ∧ dα

) 1
2

≥ δ+ε

(

k′′.kε,x.−
k′

L

)

.

Since the interval Iε has length precisely δ
+
ε , we finally have

∫

Aε

‖F̂‖22 ds ∧ dα ≥
δ+ε
2π

(

k′′.kε,x.−
k′

L

)2

which yields the Conjecture, choosing e.g. ε = 1
2 , x = 1 and [cf. Remark B.97]

c =

(
k′′.k 1

2 ,1√
2π

)2
, c′ = k′

k′′.k 1
2 ,1

and c′′ = 2π
√
1
β .
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