1. J.H. Lopes, G Planas, Local strong solution for a nonhomogeneous incompressible cell-fluid Navier-Stokes model with chemotaxis, Acta Applicandae Mathematicae, 193:9, 2024.
  2. H.L. López-Lázaro, P. Marín-Rubio, G. Planas, Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions, Communications in Nonlinear Science and Numerical Simulation, 138, 108204, 2024.
  3. M. Ikeda, L. Kosloff, C.J. Niche, G. Planas, Algebraic decay rates for 3D Navier-Stokes and Navier-Stokes-Coriolis equations in \dot{H}^{1/2}, Journal of Evolution Equations, 24(58), 2024.
  4. L. Kosloff, C.J. Niche, G. Planas, Decay rates for the 4D energy-critical nonlinear heat equation, Bulletin of the London Mathematical Society, 56, 1468–1482, 2024.
  5. J.H. Lopes, G Planas, Existence of weak solutions for a nonhomogeneous incompressible cell-fluid Navier-Stokes model with chemotaxis, Mathematical Methods in the Applied Sciences, 46(13), 13695–13715, 2023.
  6. A.F. Pereira, G. Planas, Mathematical analysis of a model describing solute trapping during solidification of binary alloys, Applicable Analysis, 102(1), 104-123, 2023.
  7. J.H. Lopes, G Planas, Existence of solutions for a non-isothermal Navier-Stokes-Allen-Cahn system with thermo-induced coefficients, Electronic Journal of Differential Equations Vol. 2022, 72, 1-22, 2022.
  8. J.H. Lopes, G Planas, On a non-isothermal incompressible Navier-Stokes-Allen-Cahn system, Monatshefte für Mathematik, 195, 687–715, 2021.
  9. C. Pinheiro, G. Planas, On the α-Navier-Stokes-Vlasov and the α-Navier-Stokes-Vlasov-Fokker-Planck equations, Journal of Mathematical Physics, 62(3), 031507, 2021.
  10. H.L. López-Lázaro, P. Marín-Rubio, G. Planas, Pullback attractors for non-Newtonian fluids with shear dependent viscosity, Journal of Mathematical Fluid Mechanics, 23(2), Art. 30, 2021.
  11. A.F. Pereira and G. Planas, Analysis of a Three-Dimensional Phase-field Model for Solidification Under a Magnetic Field EffectJournal of Mathematical Analysis and Applications 482(1), 123494, 2020.
  12. M. Chipot, J. Droniou, G. Planas, J.C. Robinson and W. Xue, Limits of the Stokes and Navier–Stokes equations in a punctured periodic domainAnalysis and Applications (Singapore)  18(2), 211-235, 2020.
  13. J. García-Luengo, P. Marín-Rubio, G. Planas, Some regularity results for a double time-delayed 2D-Navier-Stokes model, Discrete and Continuous Dynamical Systems – Series B 24(8), 3929-3946, 2019.
  14. L. Kosloff, C.J. Niche, G. Planas, Inviscid limit for SQG equation in different dispersive regimes via relative energy inequality, Applied Mathematics Letters 88, 243–249, 2019.
  15. L.H. de Miranda, G. Planas, Parabolic p-Laplacian revisited: Global regularity and fractional smoothness, Communications in Contemporary Mathematics 21(1) 1850020 (30 pages) 2019.
  16. J.H. Lopes, G Planas, Well-posedness for a non-isothermal flow of two viscous incompressible fluids, Communications on Pure and Applied Analysis 17(6): 2455-2477, 2018.
  17. L.C.F. Ferreira, C.J. Niche, G. Planas, Decay of solutions to dissipative modified quasi-geostrophic equations, Proceedings of the American Mathematical Society 145, 287-301, 2017.
  18. P.M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional Navier-Stokes equations in RN, Journal of Differential Equations 259(7), 2948–2980, 2015.
  19. J.L. Boldrini, L.H. de Miranda, G. Planas, A mathematical analysis of fluid motion in irreversible phase-transitions, Zeitschrift für Angewandte Mathematik und Physik – ZAMP 66(3), 785-817, 2015.
  20. S.M. Guzzo, G. Planas, Existence of solutions for a class of Navier-Stokes equations with infinite delay, Applicable Analysis 94(4) 840-855, 2015.
  21. J. García-Luengo, P. Marín-Rubio, G. Planas, Attractors for a double time-delayed 2D Navier-Stokes model, Discrete and Continuous Dynamical Systems 34(10) 4085-4105, 2014.
  22. G. Planas, F. Sueur, On “viscous incompressible fluid + rigid body” system with Navier conditions, Annales de l’Institut Henri Poincaré (C) Analyse Non Linéaire 31(1) 55–80, 2014.
  23. E.R. Aragão-Costa, A.N. Carvalho, P. Marín-Rubio, G. Planas, Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems, Topological Methods in Nonlinear Analysis 42(2) 345-376, 2013.
  24. L.C.F. Ferreira, G. Planas, E.J. Villamizar-Roa, On the non-homogeneous Navier-Stokes system with Navier friction boundary conditions, SIAM Journal on Mathematical Analysis 45(4) 2576-2595, 2013.
  25. J.L. Boldrini, L.H. de Miranda, G. Planas, Existence and fractional regularity of solutions for a doubly nonlinear differential inclusion, Journal of Evolution Equations 13(3) 535-560, 2013.
  26. C.J. Niche, G. Planas, Existence and decay of solutions to the dissipative quasi-geostrophic equation with delays, Nonlinear Analysis 75(9), 3936-3950, 2012.
  27. J.L. Boldrini, L.H. de Miranda, G. Planas, On singular Navier-Stokes equations and irreversible phase transitions, Communications on Pure and Applied Analysis 11(5), 2055-2078, 2012.
  28. P. Marín-Rubio, G. Planas, Global attractor and omega-limit sets structure for a phase-field model of thermal alloys, Nonlinear Analysis: Real World Applications 13(4), 1676–1691, 2012.
  29. S.M. Guzzo, G. Planas, On a class of three dimensional Navier-Stokes equations with bounded delay, Discrete and Continuous Dynamical Systems – Series B 16(1), 225-238, 2011.
  30. C.J. Niche, G. Planas, Existence and decay of solutions in full space to Navier–Stokes equations with delays, Nonlinear Analysis 74(1), 244-256, 2011.
  31. F. Guillén-González, G. Planas, On the asymptotic behaviour of the 2D Navier-Stokes equations with Navier friction conditions towards Euler equations, ZAMM – Zeitschrift für Angewandte Mathematik und Mechanik 89(10), 810-822, 2009. Corrigendum ZAMM 95(3) 329–330, 2015
  32. P. Marín-Rubio, G. Planas, J. Real, Asymptotic behaviour of a phase-field model with three coupled equations without uniqueness, Journal of Differential Equations 246(12), 4632-4652, 2009.
  33. G. Planas, E. Hernández, Asymptotic behaviour of two-dimensional time-delayed Navier-Stokes equations, Discrete and Continuous Dynamical Systems 21(4), 1245-1258, 2008.
  34. J.L. Boldrini, G. Planas, Some thoughts on mathematical modeling of solidification and melting, Boletín de la Sociedad Española de Matemática Aplicada v. 41, p. 77-89, 2007.
  35. G. Planas, Existence of solutions to a phase-field model with phase-dependent heat absorption, Electronic Journal of Differential Equations Vol. 2007, 28, 1-12, 2007.
  36. D. Iftimie, G. Planas, Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions, Nonlinearity 19, 899-918, 2006.
  37.  J.L. Boldrini, G. Planas, A tridimensional phase-field model with convection for phase change of an alloy, Discrete and Continuous Dynamical Systems 13(2), 429-250, 2005.
  38. M.C. Lopes Filho, H.J. Nussenzveig Lopes, G. Planas, On the inviscid limit for 2D incompressible flow with Navier friction condition, SIAM Journal on Mathematical Analysis 36(4), 1130-1141, 2005.
  39. G. Planas, J.L. Boldrini, A Bidimensional phase-field model with convection for change phase of an alloy, Journal of Mathematical Analysis and Applications 303(2), 669-687, 2005.
  40. G. Planas, J.L. Boldrini, Weak solutions of a phase-field model with convection for solidification of an alloy, Communications in Applied Analysis 8(4), 503-532, 2004.
  41. J.L. Boldrini, G. Planas, Weak solutions of a phase-field model for phase change of an alloy with thermal properties, Mathematical Methods in the Applied Sciences 25(14), 1177-1193, 2002.

If you would like to receive a copy of any of these papers, please contact me by e-mail.