Modelagem simultânea da média e da dispersão (MLG's duplos)

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's du

Modelo linear generalizado duplo

Um MLG duplo (na sua forma mais simples) é dado por:

$$\begin{array}{lll} Y_i \stackrel{ind.}{\sim} \mathcal{FE}(\theta_i, \phi_i) &, \quad \theta_i = h(\mu_i), i = 1, ..., n, \\ g(\mu_i) &= & \eta_i = \mathbf{X}_i' \boldsymbol{\beta} = \sum_{j=1}^p X_{ji} \boldsymbol{\beta}_j; \mathbf{X}_i = (X_{1i}, ..., X_{pi})', \\ h(\phi_i) &= & \lambda_i = \mathbf{Z}_i' \boldsymbol{\gamma} = \sum_{j=1}^q Z_{ji} \boldsymbol{\gamma}_j; \mathbf{Z}_i = (Z_{1i}, ..., X_{qi})', \end{array}$$

em que $\beta \in \mathcal{R}^p, \gamma \in \mathcal{R}^q$, g(.) e h(.) são chamadas de função de ligação e η_i , λ_i são preditores lineares (relacionados ao indivíduo i). Eventualmente, X_i e Z_i podem ser iguais, ou ter elementos em comum (i=1,2,...,n).

Cont.

Note que se $Y_i \sim FE(\theta_i, \phi_i)$, i = 1, 2, ..., n, então:

$$f_{Y_i}(y_i;\theta_i,\phi_i) = \exp\left\{\phi_i\left[y_i\theta_i - b(\theta_i)\right] + c(y_i,\phi_i)\right\} \mathbb{1}_A(y_i),$$

em que, com as devidas adaptações, as funções da fdp acima são como descritas aqui.

 Das distribuições (pertencentes à família exponencial) vistas no curso, faz sentido considerar essa estrutura somente para a normal, gama e normal inversa. Nesse caso, temos que (exercício):

$$c(y_i;\phi_i)=d(\phi_i)+\phi_ia(y_i)+u(y_i).$$

Modelagem simultânea da média e da dispersão (MLG's duplos)

Cont.

Algumas propriedades (exercícios). Defina

$$T_i = Y_i \theta_i - b(\theta_i) + a(Y_i),$$

então

$$\mathcal{E}(T_i) = -\frac{d}{d\phi_i} d(\phi).$$
$$\mathcal{V}(T_i) = -\frac{d^2}{d\phi_i^2} d(\phi).$$

Modelagem simultânea da média e da dispersão (MLG's duplos

- (Cont.) em que d(.), a(.) e u(.) são funções duplamente diferenciáveis que dependem da distribuição escolhida (exercício).
- Verossimilhança (defina $\vartheta = (\beta', \gamma'))$, assim, temos que:

$$L(\vartheta) = \exp\left\{\sum_{i=1}^{n} \left\{\phi_i \left[y_i \theta_i - b(\theta_i)\right] + d(\phi_i) + \phi_i a(y_i) + u(y_i)\right\}\right\}$$
$$= \exp\left\{\sum_{i=1}^{n} \left\{\phi_i t_i + d(\phi_i) + u(y_i)\right\}\right\}.$$

Log-verossimilhança

$$I(\vartheta) = \sum_{i=1}^{n} \left\{ \phi_i t_i + d(\phi_i) + u(y_i) \right\}.$$

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplos

크

• Temos que obter $S(\beta_j) = \frac{\partial}{\partial \beta_j} I(\vartheta), j = 1, 2, ..., p$ e $S(\gamma_r) = \frac{\partial}{\partial \gamma_r} I(\vartheta), r = 1, 2, ..., q$ e resolver o que seguinte sistema de equações

 $\left\{ egin{array}{ll} oldsymbol{S}\left(\widetilde{oldsymbol{eta}}
ight) = oldsymbol{0}_{(p imes 1))} & \ oldsymbol{S}\left(\widetilde{oldsymbol{\gamma}}
ight) = oldsymbol{0}_{(q imes 1))} & , \end{array}
ight.$

em que
$$\boldsymbol{S}\left(\widetilde{\boldsymbol{\beta}}\right) = (S\left(\beta_{1}\right), ..., S\left(\beta_{p}\right))' \in \boldsymbol{S}\left(\widetilde{\boldsymbol{\gamma}}\right) = (S\left(\gamma_{1}\right), ..., S\left(\gamma_{q}\right))'.$$

Como o sistema acima não tem solução analítica, podemos usar algum algoritmo, com o Escore de Fisher, para obter as emv.

Adicionalmente, pode-se provar que $\boldsymbol{S}(\boldsymbol{\vartheta}) = (\boldsymbol{S}(\boldsymbol{\beta}), \boldsymbol{S}(\boldsymbol{\gamma}))'$:

$$\begin{split} \mathbf{S}\left(\boldsymbol{\beta}\right) &= \mathbf{X}' \boldsymbol{\Phi} \mathbf{W}^{1/2} \mathbf{V}^{-1/2} \left(\mathbf{y} - \boldsymbol{\mu}\right), \\ \mathbf{S}\left(\boldsymbol{\gamma}\right) &= \mathbf{Z}' \mathbf{H}_{\boldsymbol{\gamma}}^{-1} \left(\mathbf{t} - \boldsymbol{\mu}_{\mathbf{t}}\right), \end{split}$$

em que
$$\mathbf{X} = (\mathbf{X}_1, ..., \mathbf{X}_n)', \ \mathbf{W} = \text{diag}(\omega_1, ..., \omega_n),$$

 $\omega_i = (d\mu_i/d\eta_i)^2/V_i, \ \mathbf{\Phi} = \text{diag}(\phi_1, ..., \phi_n), \ \mathbf{y} = (y_1, ..., y_n)',$
 $\boldsymbol{\mu} = (\mu_1, ..., \mu_n)', \ \boldsymbol{H}_{\boldsymbol{\gamma}} = \text{diag}(h'(\phi_1), ..., h'(\phi_n)), \ \mathbf{t} = (t_1, ..., t_n)',$
 $\boldsymbol{\mu}_{\mathbf{t}} = (\mathcal{E}(T_1), ..., \mathcal{E}(T_n))' = (-d'(\phi_1), ..., -d'(\phi_n)).$

Com relação à informação de Fisher, temos que:

$$I(\vartheta) \begin{bmatrix} I(\beta,\beta) & I(\beta,\gamma) = \mathbf{0}_{(p \times q)} \\ I(\gamma,\beta) = \mathbf{0}_{(q \times p)} & I(\gamma,\gamma) \end{bmatrix},$$

em que

$$I(\beta,\beta) = X' \Phi WX; I(\gamma,\gamma) = Z' PZ,$$

$$\mathsf{e}\; \boldsymbol{P} = \boldsymbol{V}_{\!\boldsymbol{\gamma}} \boldsymbol{H}_{\!\boldsymbol{\gamma}}^{-2}, \; \boldsymbol{V}_{\!\boldsymbol{\gamma}} = \mathsf{diag} = (-d''\left(\phi_1\right), ..., -d''\left(\phi_n\right)).$$

Modelagem simultânea da média e da dispersão (MLG's duplos

 Similarmente aos MLG's (usuais) pode-se desenvolver um processo iterativo escore de Fisher para encontrar as estimativas de máxima verossimilhança (β̃', γ̃')', ou seja:

$$\begin{aligned} \boldsymbol{\beta}^{(m+1)} &= \left(\boldsymbol{X}' \boldsymbol{\Phi}^{(m)} \boldsymbol{W}^{(m)} \boldsymbol{X} \right)^{-1} \boldsymbol{X}' \boldsymbol{\Phi}^{(m)} \boldsymbol{W}^{(m)} \boldsymbol{y}^{*(m)}, \\ \boldsymbol{\gamma}^{(m)} &= \left(\boldsymbol{Z}' \boldsymbol{P}^{(m)} \boldsymbol{X} \right)^{-1} \boldsymbol{Z}' \boldsymbol{P}^{(m)} \boldsymbol{z}^{*(m)}, \end{aligned}$$

m=0,1,2... (até que algum critério de convergência seja alcançado), em que $m{y}^*=m{X}m{eta}+m{W}^{-1/2}m{V}^{-1/2}(m{y}-m{\mu}),$

$$oldsymbol{z}^{*}=oldsymbol{Z}\gamma+oldsymbol{V}_{oldsymbol{\gamma}}^{-1}oldsymbol{H}_{oldsymbol{\gamma}}\left(oldsymbol{t}-oldsymbol{\mu}_{oldsymbol{t}}
ight)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Sob certas condições de regularidade (veja Seção 1.6.3 de Paula (2024)) temos, para n suficientemente grande, que:

$$\widehat{oldsymbol{eta}} pprox oldsymbol{\mathcal{B}} pprox oldsymbol{N}_{oldsymbol{
ho}}\left(oldsymbol{eta},oldsymbol{I}^{-1}(oldsymbol{eta},oldsymbol{eta})
ight), \widehat{oldsymbol{\gamma}} pprox oldsymbol{N}_{oldsymbol{q}}\left(oldsymbol{\gamma},oldsymbol{I}^{-1}(oldsymbol{\gamma},oldsymbol{\gamma})
ight), \widehat{oldsymbol{eta}}oldsymbol{eta}]$$

- Testes de hipótese, com as devidas adaptações, podem ser implementados com visto aqui.
- Seleção e comparação de modelos, com as devidas adaptações, podem ser implementadas como visto aqui.

Prof. Caio Azevedo

イロト 不得 ト イヨト イヨト

- Na classe dos MLGs duplos pode-se definir desvios para tanto para a média e para a precisão.
- O desvio para a média assume a mesma expressão da classe dos
 MLGs em que somente a média é ajustada (aqui), com φ_i no lugar de φ, ou seja

$$D_1^*(\boldsymbol{y}; \widehat{\boldsymbol{\mu}}, \boldsymbol{\phi}) = \sum_{i=1}^n d_1^*(y_i; \widehat{\mu}_i, \phi_i), \qquad (1)$$

em que
$$d_1^*(y_i; \widehat{\mu}_i, \phi_i) = 2\phi_i \left[y_i \left(\widehat{\theta}_i^{(0)} - \widehat{\theta}_i \right) + \left(b \left(\widehat{\theta}_i \right) - b \left(\widehat{\theta}_i^{(0)} \right) \right) \right].$$

|▲□▶▲□▶▲□▶▲□▶ = のへの

- Para φ_i grande ∀i o desvio (Equação (1)) pode ser comparado com os quantis da distribuição qui-quadrado com (n − p) graus de liberdade.
- O resíduo componente do desvio para a média fica dado como

$$T_{D_{1i}} = \operatorname{sinal}(Y_i - \widehat{\mu}_i) \sqrt{rac{d_1^*\left(Y_i; \widehat{\mu}_i, \widehat{\phi}_i
ight)}{1 - \widehat{h}_{ii}}},$$
m que $\widehat{h}_{ii} = \widehat{\phi}_i \widehat{\omega}_i X_i' \left(X' \widehat{\Phi} \widehat{W} X\right)^{-1} X_i, i = 1, 2..., n.$

е

Sob o bom ajuste do modelo e, sob certas condições, espera-se que

$$T_{D_i} \xrightarrow[n \to \infty]{D} N(0,1).$$

 Pode-se fazer, essencialmente, os mesmos gráficos considerados para o caso do RCD para o MLG usual (aqui).

Modelagem simultânea da média e da dispersão (MLG's duplos

・ロト ・伺 ト ・ ヨ ト ・ ヨ ト

Por outro lado, o desvio para a precisão é dado por

$$D_2^*\left(\boldsymbol{y};\boldsymbol{\mu},\widehat{\boldsymbol{\phi}}\right) = \sum_{i=1}^n d_1^*\left(y_i;\mu_i,\widehat{\phi}_i\right),\tag{2}$$

em que $d_2^*\left(y_i; \mu_i, \widehat{\phi}_i\right) = 2\left[t_i\left(\widehat{\phi}_i^{(0)} - \widehat{\phi}_i\right) + \left(d\left(\widehat{\phi}_i\right) - d\left(\widehat{\phi}_i^{(0)}\right)\right)\right]$ e $\widehat{\phi}_i^{(0)}$ é o estimador para ϕ sob o modelo saturado.

■ Aqui também, para φ_i grande ∀i o desvio (Equação (2)) pode ser comparado com os quantis da distribuição qui-quadrado com (n − q) graus de liberdade.

O resíduo componente do desvio para a precisão fica dado como

$$T_{D_{2i}} = \operatorname{sinal}(\widehat{T}_i + d''\widehat{\phi}_i) \sqrt{\frac{d_2^*\left(Y_i; \widehat{\mu}_i, \widehat{\phi}_i\right)}{1 - \widehat{r}_{ii}}},$$

em que $\widehat{r}_{ii} = \widehat{p}_i Z_i' \left(Z'\widehat{P}Z\right)^{-1} Z_i, \ \widehat{p}_i = -d'' \left(\widehat{\phi}_i\right) \left\{h'\left(\widehat{\phi}_i\right)\right\}^{-2}$
 $i = 1, 2..., n.$

- ▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 - りんの

Sob o bom ajuste do modelo e, sob certas condições, espera-se que

$$T_{D_2} \xrightarrow[n \to \infty]{D} N(0,1).$$

 Pode-se fazer, essencialmente, os mesmos gráficos considerados para o caso do RCD para o MLG usual (aqui).

Modelagem simultânea da média e da dispersão (MLG's duplos

(日)

Análise de influência

 Para avaliar a sensibilidade das estimativas dos parâmetros que modelam a média pode-se usar a medida vista aqui com \$\hat{\omega}_i\$ no lugar de \$\hat{\omega}\$, ou seja:

$$LD_i^{oldsymbol{eta}} = \left\{ rac{\widehat{h}_{ii}}{1 - \widehat{h}_{ii}}
ight\} T^2_{S_i},$$

em que
$$T_{S_i}^2 = rac{\sqrt{\widehat{\phi}_i}\left(Y_i - \widehat{\mu}_i
ight)}{\sqrt{\widehat{V}_i\left(1 - \widehat{h}_{ii}
ight)}}.$$

Pode-se considerar um gráfico índice $\times LD_i^{\beta}$.

・ロト ・四ト ・ヨト

Análise de influência

 Por outro lado, para avaliar a sensibilidade das estimativas dos parâmetros que modelam a precisão pode-se usar

$$LD_{i}^{\gamma} = \left\{\frac{\widehat{r_{ii}}}{1-\widehat{r_{ii}}}\right\} T_{T_{i}}^{2},$$

em que $T_{T_{i}}^{2} = \frac{\sqrt{\widehat{\phi}_{i}}\left(T_{i}+d'\left(\widehat{\phi}_{i}\right)\right)}{\sqrt{-d''\left(\widehat{\phi}_{i}\right)\left(1-\widehat{r_{ii}}\right)}}.$

- Pode-se considerar um gráfico índice $\times LD_i^{\gamma}$.
- Em ambos os casos, assim como no caso dos MLGs usuais, não há um ponto de corte. A ideia e avaliar as observações com valores de LD^(.) que se destacam em relação as demais.

Análise no R

No R, com uma sintaxe bem parecida com a da função glm, podemos usar a função dglm do pacote dglm. Com efeito $dglm(Y^X1 + X2 + ... + Xp)$ ~Z1 + Z2 + ... + Zq, family=Gamma(link="log"), dlink = "log") (sem intercepto) $dglm(Y^{-1}+X1 + X2 + ... + Xp)$

~-1+ Z1 + Z2 + ... + Zq, family=Gamma(link="log"),

dlink = "log")

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Análise no R

No gamlss

gamlss(Y~X1 + X2 + ... + Xp, sigma.formula~Z1 + Z2 + ... + Zq, family=GA(mu.link="log",sigma.link ="log"))

```
(sem intercepto)
gamlss(Y~-1+X1 + X2 + ... + Xp,
sigma.formula~-1+Z1 + Z2 + ... + Zq,
family=GA(mu.link="log",sigma.link ="log"))
```

Análise no R

- Observação, tanto no pacote dglm quanto no gamlss modela-se φ⁻¹ (dispersão), ao invés de φ (precisão).
- Nos desenvolvimentos apresentados se, por exemplo, $h \equiv \ln(.)$, então

$$\ln(\phi) = \sum_{j=1}^{q} Z_{ij}\gamma_j,$$

$$\ln(\phi^{-1}) = -\ln(\phi) \rightarrow \ln(\phi) = \sum_{j=1}^{q} Z_{ij}(-\gamma_j).$$

Para mais detalhes veja (aqui), (aqui) e (aqui).

Exemplo 13: diferentes de um novo tipo de snack

- Os dados aqui considerados são parte de um experimento desenvolvido no Departamento de Nutrição da Faculdade de Saúde Pública da USP em que 5 (cinco) formas diferentes de um novo tipo de snack ("lanche"), com baixo teor de gordura saturada e de ácidos graxos, foram comparados ao longo de 20 semanas.
- Neste novo produto a gordura vegetal hidrogenada, responsável pela fixação do aroma do produto, foi substituída, total ou parcialmente, por óleo de canola.

Prof Caio Azevedo

3

イロト イヨト イヨト ・

Exemplo 13: diferentes de um novo tipo de snack

- As formas são as seguintes: A (22% de gordura, 0% de óleo de canola), B (0% de gordura, 22% de óleo de canola), C (17% de gordura, 5% de óleo de canola), D (11% de gordura, 11% de óleo de canola) e E (5% de gordura, 17% de óleo de canola).
- O experimento foi conduzido de modo que nas semanas pares, 15 embalagens de cada um dos produtos A, B, C, D e E fossem analisadas em laboratório e observadas diversas variáveis.

Exemplo 13: diferentes de um novo tipo de snack

- Em particular, temos o interesse de estudar o comportamento da textura dos produtos através da força necessária para o cisalhamento (resposta).
- As variáveis explicativas são: 1) formas do snack (qualitativa nominal), 2) semana na qual ocorreu a medição (quantitativa)
- Os dados referentes a esta variável estão disponíveis no arquivo snack.txt.
- Veja também Paula (2024).

イロト 不得 トイヨト イヨト

Medidas resumo por formas de snack

snack	média	dp	var.	cv (%)	са	curt	min	max
А	66,20	18,71	349,97	28,26	0,21	2,68	29,02	118,83
В	55,29	13,14	172,73	23,77	0,37	2,44	30,29	87,08
С	61,63	19,60	384,21	31,80	0,94	3,95	30,06	132,62
D	51,03	10,96	120,13	21,48	0,81	4,33	29,48	95,95
Е	50,26	11,40	130,00	22,69	0,92	3,94	26,69	91,17

▲□▶▲圖▶▲≣▶▲≣▶ ≣ めんの

Modelagem simultânea da média e da dispersão (MLG's duplos

Medidas resumo pelas semanas

semana	média	dp	var.	cv (%)	са	curt	min	max
2	50,95	13,12	172,22	25,76	0,65	2,90	26,69	86,32
4	44,66	9,76	95,22	21,85	1,86	7,06	32,73	82,19
6	50,08	15,97	255,00	31,88	1,42	4,51	29,48	101,15
8	55,57	16,28	265,06	29,30	0,71	2,91	30,06	104,70
10	60,15	14,72	216,65	24,47	1,01	4,02	32,89	104,24
12	57,84	13,61	185,26	23,53	0,74	3,64	30,91	99,90
14	71,57	20,17	406,76	28,18	0,52	3,56	29,02	132,62
16	65,18	16,95	287,36	26,01	1,09	3,78	40,31	120,20
18	60,37	10,25	105,03	16,97	0,80	3,16	42,80	87,84
20	52,46	12,58	158,37	23,99	0,70	3,32	30,09	91,17

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Modelagem simultânea da média e da dispersão (MLG's duplos

Gráficos de perfis médios (amostrais)

Modelagem simultânea da média e da dispersão (MLG's duplos

Variâncias amostrais

Modelagem simultânea da média e da dispersão (MLG's duplo

Coeficientes de variação amostrais

Modelagem simultânea da média e da dispersão (MLG's duplo

Coeficientes de assimetria amostrais

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplos

Coeficientes de curtose amostrais

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplos

Box plots por snack e semana

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplo

Box plots por snack \times semana

Modelagem simultânea da média e da dispersão (MLG's duplos

Modelagem

Modelo 1

$$\begin{array}{lll} Y_{ijk} & \stackrel{ind.}{\sim} & \text{gama}(\mu_{ijk}, \phi) \\ & \ln \mu_{ijk} & = & \alpha + \beta_i + (\gamma + \gamma_i) \, x_{ijk} + (\delta + \delta_i) \, x_{ijk}^2 \\ & \beta_1 & = & \gamma_1 = \delta_1 = 0 \\ & i & = & 1(A), 2(B), 3(C), 4(D), 5(E)(\text{snack}), \\ & j & = & 1(2), 2(4), 3(6), 4(8), 5(10), 6(12), 7(14), 8(16), 9(18), \\ & & 10(20)(\text{semana}) \end{array}$$

$$k = 1, 2, ..., 15$$

Modelagem simultânea da média e da dispersão (MLG's duplos

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Modelagem

- Y_{ijk}: força de cisalhamento relativa à unidade experimental (UE) k, do tipo de snack i, no índice da semana j.
- x_{ijk} = x^{*}_{ijk} − 2: em que x^{*}_{ijk} é a semana (2,4,....,20) relativa à unidade experimental (UE) k, do tipo de snack i, no índice da semana j.
- Exercício: obter interpretações para os parâmetros e/ou funções deles.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Gráficos de diagnóstico: modelo 1

Resíduo Componente do Desvio

< □ > < □ > < □

Envelope para os resíduos: modelo 1

Modelagem simultânea da média e da dispersão (MLG's d

Worm plot para os resíduos: modelo 1

Modelagem simultânea da média e da dispersão (MLG's duplos

Comentários

- O modelo não se ajustou bem (heterocedastididade do RCD e uma certa tendência no RQ), apesar do desvio indicar um bom ajuste (p = 0,2820) e o TSW indicar normalidade do RCD (p=0,0976), assim como o gráfico de envelopes.
- Resultados para φ: 18,74(0,96) [16,86; 20,62].
- Esses resultados indicam que um modelo (gama) com dispersão (precisão) variável, possa ser apropriado (melhor do que o modelo de precisão não variável).
- As estimativas indicam que os efeitos quadráticos não são significativos.

Estimativas

Par.	Est.	EP	IC(95%)	Estat. Z_t	p-valor
α	4,023	0,047	[3,931 ; 4,115]	85,786	< 0,0001
β_2	-0,203	0,066	[-0,333 ; -0,073]	-3,057	0,0022
β_3	-0,198	0,066	[-0,328 ; -0,068]	-2,979	0,0029
β_4	-0,329	0,066	[-0,459 ; -0,199]	-4,961	< 0,0001
β_5	-0,394	0,066	[-0,524 ; -0,264]	-5,936	< 0,0001
γ	0,053	0,012	[0,029 ; 0,077]	4,354	< 0,0001
δ	-0,003	0,001	[-0,004 ; -0,001]	-4,176	< 0,0001
γ_2	-0,012	0,017	[-0,045 ; 0,022]	-0,685	0,4931
γ_3	0,017	0,017	[-0,017 ; 0,050]	0,977	0,3284
γ_4	<-0,001	0,017	[-0,034 ; 0,033]	-0,028	0,9773
γ_5	0,002	0,017	[-0,031 ; 0,036]	0,141	0,8879
δ_2	0,001	0,001	[-0,001 ; 0,003]	1,225	0,2205
δ_3	< - 0,001	0,001	[-0,002 ; 0,002]	-0,281	0,7783
δ_4	0,001	0,001	[-0,001 ; 0,002]	0,678	0,4980
δ_5	0,001	0,001	[-0,001 ; 0,003]	0,872	0,3832
				Image:	◆문▶ ◆문▶ - 문

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplos

Modelagem

Modelo 2

I

$$\begin{split} \mathbf{Y}_{ijk} & \stackrel{ind.}{\sim} & \mathsf{gama}(\mu_{ijk}, \phi_{ijk}^{-1}) \\ & \mathsf{n} \, \mu_{ijk} & = & \alpha^{(\mu)} + \beta_i^{(\mu)} + \left(\gamma^{(\mu)} + \gamma_i^{(\mu)}\right) x_{ijk} + \left(\delta^{(\mu)} + \delta_i^{(\mu)}\right) x_{ijk}^2 \\ & \mathsf{n} \, \phi_{ijk} & = & \alpha^{(\phi)} + \beta_i^{(\phi)} + \left(\gamma^{(\phi)} + \gamma_i^{(\phi)}\right) x_{ijk} + \left(\delta^{(\phi)} + \delta_i^{(\phi)}\right) x_{ijk}^2 \\ & \beta_1^{(\mu)} & = & \gamma_1^{(\mu)} = \delta_1^{(\mu)} = \beta_1^{(\phi)} = \gamma_1^{(\phi)} = \delta_1^{(\phi)} = 0 \\ & i & = & 1(A), 2(B), 3(C), 4(D), 5(E)(\mathsf{snack}), \\ & j & = & 1(2), 2(4), 3(6), 4(8), 5(10), 6(12), 7(14), 8(16), 9(18), \\ & & 10(20)(\mathsf{semana}) \end{split}$$

$$k = 1, 2, ..., 15$$

æ

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Gráficos de diagnóstico (média): modelo 2

Gráficos de diagnóstico (dispersão): modelo 2

Envelope para os resíduos (média): modelo 2

Modelagem simultânea da média e da dispersão

Envelope para os resíduos (precisão): modelo 2

Modelagem simultânea da média e da dispersão (MLG's duplos

Worm plot para os resíduos: modelo 2

Modelagem simultânea da média e da dispersão (MLG's duplos

Estimativas (μ)

Par.	Est.	EP	IC(95%)	Estat. Z_t	p-valor
α	4,015	0,052	[3,912;4,117]	76,710	< 0,0001
β_2	-0,309	0,089	[-0,483;-0,134]	-3,466	0,0006
β_3	-0,223	0,086	[-0,391;-0,055]	-2,599	0,0095
β_4	-0,481	0,090	[-0,657;-0,306]	-5,372	< 0,0001
β_5	-0,387	0,067	[-0,519;-0,256]	-5,779	< 0,0001
γ	0,055	0,013	[0,029;0,081]	4,184	< 0,0001
δ	-0,003	0,001	[-0,004;-0,001]	-4,052	0,0001
γ_2	0,011	0,020	[-0,029;0,050]	0,529	0,5969
γ_3	0,024	0,020	[-0,015;0,064]	1,196	0,2322
γ_4	0,036	0,020	[-0,003;0,074]	1,828	0,0679
γ_5	0,001	0,017	[-0,033;0,034]	0,038	0,9694
δ_2	0,000	0,001	[-0,002;0,002]	0,190	0,8497
δ_3	-0,001	0,001	[-0,003;0,001]	-0,614	0,5396
δ_4	-0,001	0,001	[-0,003;0,001]	-1,092	0,2754
δ_5	0,001	0,001	[-0,001;0,003]	0,983	0,3260

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplos

E

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

Estimativas (ϕ)

Par.	Est.	EP	IC(95%)	Estat. Z_t	p-valor
α	-2,782	0,284	[-3,339;-2,226]	-9,799	< 0,0001
β_2	0,429	0,401	[-0,357;1,215]	1,069	0,2850
β_3	0,203	0,401	[-0,583;0,990]	0,507	0,6123
β_4	0,218	0,402	[-0,570;1,005]	0,542	0,5880
β_5	-1,246	0,403	[-2,036;-0,456]	-3,090	0,0020
γ	0,080	0,073	[-0,063;0,224]	1,096	0,2730
δ	-0,004	0,004	[-0,012;0,003]	-1,143	0,2529
γ_2	-0,256	0,104	[-0,460;-0,052]	-2,464	0,0137
γ_3	-0,031	0,104	[-0,235;0,172]	-0,302	0,7626
γ_4	-0,240	0,104	[-0,444;-0,036]	-2,306	0,0211
γ_5	0,021	0,104	[-0,183;0,225]	0,200	0,8418
δ_2	0,012	0,006	[0,001;0,023]	2,230	0,0258
δ_3	0,001	0,006	[-0,010;0,012]	0,132	0,8951
δ_4	0,010	0,006	[-0,001;0,021]	1,769	0,0769
δ_5	0,001	0,006	[-0,010;0,012]	0,183	0,8551
				< □ > < □	▶ ★ 臣 ▶ ★ 臣 ▶

Modelagem simultânea da média e da dispersão (MLG's duplos

E

Comentários

- Ajustou-se vários modelos reduzidos (retirando-se parâmetros tanto relativos à μ quanto à φ não significativos).
- Em todos os casos o ajuste piorou (tendo, em muitos casos, ficando ruim) em termos de resíduos, predição e critérios de informação.
- Portanto, optou-se por utilizar o modelo (duplo) inicial, que mostrou um ajuste muito bom (resíduos e predição).
- A seguir, comparemos as médias observadas com as preditas pelo modelo em questão. Em geral, as previsões pontuais e intervalares foram muito boas.
- Exercício: fazer uma análise de influência dos pontos destacados.

snack A

Modelagem simultânea da média e da dispersão (MLG's duplos

snack B

Modelagem simultânea da média e da dispersão (MLG's duplos

snack C

Modelagem simultânea da média e da dispersão (MLG's duplos

snack D

Modelagem simultânea da média e da dispersão (MLG's duplos

snack E

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplos

Análise de influência

Prof. Caio Azevedo

Modelagem simultânea da média e da dispersão (MLG's duplo