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Abstract. This paper presents a study on a compartmental epidemic model

for COVID-19, examining the stability of its equilibrium points upon vaccina-

tion introduction as a strategy to mitigate the spread of the disease. Initially,

the Susceptible-Infectious-Quarantine-Recovered (SIQR) mathematical model

and its technical aspects are introduced. Subsequently, vaccination is incor-

porated as a control measure within the model scope. Equilibrium points

and the basic reproductive number are determined followed by an analysis of

their stability. Furthermore, controllability characteristics and optimal control

strategies for the system are investigated, supplemented by numerical simula-

tions.
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1. Introdution

Mathematical modeling has long been used as a tool in several areas

of public health, including epidemiology, an area that developed significantly

during the 20th century. Models in mathematical epidemiology, in particular,

have been studied since the 18th century but had a development leap arguable

from the work of Kermark and Mckendrick (1927). Since then, many other

advances were made and many types of models were created and studied. Most

of these models are compartmental models, which divide the population into

categories with a particular behavior. Some examples are SIS, SIR, SIRS, SEIR,
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SIQR, among others. More details about some of these models can be seen in

Brauer et al. (2019). One important point to observe is that a mathematical

model is always a simplification of reality. Some aspects are disregarded, so we

can focus on the variables that really matter to the problem. No model can

consider all aspects of a complex real problem, as the spread of an infectious

disease, hence the importance of each model type. Just to exemplify this reality

simplification, the model studied in this paper does not consider population

heterogeneity, i.e, all individuals are equally susceptible to the disease, and

there are models that take these differences into account, as can be seen in

Britton et al. (2020).

We are currently living through the COVID-19 pandemic, a disease

caused by the sars-cov-2 virus, which has already caused thousands of deaths

around the world and continues to plague the population. Many researchers

believe that COVID-19 will become an endemic disease in the future, but un-

til the present date, World Health Organization keeps classifying COVID-19’s

threat level as a pandemic. An interesting discussion about predicting the pan-

demic contention is done by Achaiah et al. (2020). Several strategies have been

adopted by governments to combat the spread of the disease, such as quaran-

tine, lockdown, closing borders, using masks, hand hygiene with alcohol gel,

etc. But no measure is as effective as vaccination, and since its development

in 2021, many countries have implemented a vaccination schedule as part of

disease-fighting strategies. Vaccination is the most effective and safe way we

know to combat infectious diseases, and it was responsible, for instance, for

eradicating smallpox.

Our objective in this work is to consider and analyze the SIQR model

properties by adding vaccination as a strategy to control the growth of the dis-

ease, study constant solution stability, calculate the basic reproductive number

of disease propagation, study system controllability and the conditions to ob-

tain the optimal control and apply the model in some numerical simulations (us-

ing MATLABTM software) to reach some conclusions about the control method

(vaccination).

This analysis, via theoretical modeling, is very important to complement

the models that work with empirical data to compare, complement and adjust

possible strategies to face the disease, given that empirical data is not entirely

trustful, as can be seen in Liu et al. (2020), due to the number of unreported

cases and the low number of tests in many countries.
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2. SIQR mathematical model

In this section, we will describe the mathematical model used to study

the spreading of COVID-19, its elements, and technical features.

In order to study the spread of infectious disease, we have to consider a

population whose size varies with time, representing this population as N(t) –

see equation (2.1). The mathematical model we will use is a SIQR compartmen-

tal model that divides the total population into four groups, such as susceptible

(S(t)), infected (I(t)), quarantined (Q(t)) and recovered (sometimes also called

removed) (R(t)), thus:

N(t) = S(t) + I(t) +Q(t) +R(t) (2.1)

The model is the following system (2.2) of ordinary differential equations:



























dS
dt

= ∆− αSI − µS

dI
dt

= αSI − (γ + µ+ η)I

dQ
dt

= (η − ǫ)I − (ρ+ µ)Q

dR
dt

= γI + ρQ− µR

(2.2)

Such as:

Table 1: Model parameters

Variable definition

T Time

α Effective contact rate between susceptible and infectious class

γ Natural recovery rate

µ Natural death rate

ρ Removed rate from quarantine to recovered

ǫ Disease-related death rate

η Infectious class quarantine rate

∆ Population recruitment rate

The model works with the following dynamics:each compartment has an

initial portion proportional to the population N , and if we want to encourage

the start of the pandemic, for example, we can put Q(0) = 0, R(0) = 0 and even

I(0) = I/N (representing patient zero). After that, the parameters will change

the population amounts in each compartment at each time interva, adding or
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subtracting some portions. In the first equation, the susceptible population

is increased by ∆, then some portion (determined by α) is subtracted from

the susceptible and added to the infectious group. Still in the first equation,

another portion is subtracted due to µ, the natural death rate. The population

in the second group is also decreased by µ and by γ and η, natural recovery rate

and quarantine rate, respectively. The third and fourth equations follow the

same dynamics. In the third, a portion (due to ǫ) is subtracted, representing

the disease-related death rate, and another portion is subtracted from there

and added to the recovered group (ρ), representing the quarantine recovery

rate.

Figure 1 shows a schematic diagram showing the model dynamics:

Figure 1: SIQR dynamic flow

Some important observations about this model are

– As already mentioned, this is a homogeneous-mixing model;

– It uses only one disease-related death rate (some models have different

death-related rates for infected and quarantine individuals, such as Lisboa

and Rodrigues (2023));
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– This model does not consider an incubation period;

– It does not differentiate infected individuals with symptoms and without

symptoms. They are all in the same group;

– In the quarantine compartment, isolated individuals are those who are

infected, and it does not consider the isolation of healthy individuals.

More details about the SIQR model properties can be found in Lu et al.

(2021), Ma et al. (2018) and Odagaki (2020). Lisboa and Rodrigues (2023)

they use a slightly different SIQR model and even make simulations based on

empirical data from local healthcare authorities.

Now we complete our model by adding vaccination as a control agent

for the system:



























dS
dt

= ∆− αSI − µS − vS

dI
dt

= αSI − (γ + µ+ η)I

dQ
dt

= (η − ǫ)I − (ρ+ µ)Q

dR
dt

= γI + ρQ− µR

(2.3)

In system (2.3) the v parameter represents the presence of vaccination,

and the portion of the population who are vaccinated is subtracted from the

susceptible group and added directly to the recovered group. It is easy to

observe that the higher the percentage of vaccinated individuals, the lower the

proportion of infected individuals and, consequently, the lower the number of

disease-related death. We now proceed to a qualitative analysis of the system

of differential equations, presented in (2.3).

3. Methodology

To study and analyze disease-free equilibrium and endemic equilibrium

point stability, we used the Routh-Hurwitz criteria, Lyapunov method and La

Salle’s invariance principle.

To study and analyze control system controllability, we used Kalman cri-

teria, studies the control problem with linear dynamics and quadratic objective

function and used a Riccati equation to obtain the corresponding optimal con-

trols. To solve the problems, we used the fourth order Runge-Kutta method,

and in numerical simulations, we used MATLABTM software.
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4. Equilibrium points and basic reproductive num-

ber

In this section, we found the constant solutions (equilibrium points) of

system (2.3) and showed the formula for the basic reproductive number.

We will call R0 the basic reproductive number of a disease, which indi-

cates how contagious an infectious disease is. This number is very important

to healthcare authorities and governments to devise strategies to combat the

disease. To learn more about R0, one can look at Achaiah et al. (2020) and

Ma (2020).

Theorem 4.1. The closed region Ω =
{

(S, I,Q,R) ∈ R
4
+ : N(t) ≤ ∆

µ

}

is pos-

itive invariant ste for the model (2.3).

Proof. To initiate our analysis, we have to establish boundaries to our variables

and parameters. All parameters described in table 1 are non-negative real

numbers. For our variables, we used the derivative of N(t) in expression (2.1):

N ′(t) = ∆− µN − ǫI ≤ ∆− µN

Multipling by integration factor eµt:

N ′(t)eµt ≤ ∆eµt − µNeµt

N ′(t)eµt ≤ ∆eµt − µNeµt

Integrating both sides:

∫ t

o

[N ′(t)eµt + µNeµt] dt ≤

∫ t

o

∆eµt dt

N(t)eµt
∣

∣

∣

∣

t

0

≤ ∆
eµt − 1

µ

∣

∣

∣

∣

t

0

eµtN(t)−N(0) ≤ ∆

(

eµt − 1

µ

)

N(t) ≤ N(0)e−µt +
∆

µ
(1− e−µt)

When x → ∞, we have:

lim
x→∞

Sup[N(t)] =
∆

µ
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This shows us that we have to study the problem in region D:

D =

{

(S, I,Q,R)|S ≥ 0, I ≥ 0, Q ≥ 0, R ≥ 0, S + I +Q+R ≤
∆

µ

}

4.1. Positivity and boundedness

Theorem 4.2. Let (S(0), I(0), Q(0), R(0)) be non negative initial conditions,

then the solutions (S(t), I(t), Q(t), R(t)) of the proposed model (2.3) are positive

for all t > 0.

Proof. Consider the following from the model’s first equation (2.3)

dS

dt
= ∆− αSI − µS − vS

dS

dt
≥ −(αI + µ+ v)S

S(t) ≥ Ce−(αI+µ+v)t

where C = eC1 is a constant determined by the initial conditions. Now, if S(0)

is the initial condition, then S(0) = C, so we can state that:

S(t) ≥ S(0)e−(αI+µ+v)t

Therefore, the solution S(t) is bounded above by S(0).

By using the same justification, we can demonstrate that:

Q(t) ≥ Q(0)e−(ρ+µ)t

and

R(t) ≥ R(0)e−µt, for all t > 0.

We have proved the lemma technical by showing that I(t) is bounded. In fact:

Lemma 4.3. Let the solution S(t) be bounded below by S(0)e−(αI(t)+µ+v)t for

all t > 0, where S(0) is the initial condition. Then, the solution I(t) of the

differential equation
dI

dt
= αSI − (γ + µ+ η)I

is bounded for all t > 0.
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Proof. We are given the constraint that S(t) ≥ S(0)e−(αI(t)+µ+v)t. This con-

straint means that the S(t) value will never decrease below

S(0)e−(αI(t)+µ+v)t. Under this condition, any increase in I(t) that would cause

S(t) to decrease below the specified limit contradicts the imposed constraint

on the S(t) dynamics. This is a direct consequence of the interdependence

between S(t) and I(t), as described by equations (2.3). Therefore, the solution

I(t) is bounded, ensuring that S(t) remains above the specified limit for all

t > 0.

This demonstrates that the soluton of system (2.3) is positive for all t >

0. As a result, the model is epidemiologically significant and mathematically

placed in the Ω domain.

By setting the right side of system (2.3) to zero, we have:



























∆− αSI − µS − vS = 0

αSI − (γ + µ+ η)I = 0

(η − ǫ)I − (ρ+ µ)Q = 0

γI + ρQ− µR = 0

. (4.4)

We established the existence of a disease-free constant solution and an

endemic constant solution:

Theorem 4.4. For system (4.4), there is always a disease-free equilibrium E0,

and there is also an unique endemic equilibrium E∗.

Proof. By observing the second equation in system (4.4), we have the product:

I[αS − (γ + µ+ η)] = 0 (4.5)

If we have I = 0 ⇒ Q = 0, S = ∆
µ+v

and R = 0

Thus, the point E0 =

(

∆
µ+v

, 0, 0, 0

)

is a solution called free-disease solu-

tion.

If [αS − (γ + µ+ η)] = 0, then:

S∗ =
γ + µ+ η

α

By replacing S∗ in the first equation of (4.4), we have:

∆− (γ + µ+ η)

(

I∗ +
µ+ v

α

)

= 0
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I∗ =
∆

γ + µ+ η
−

µ+ v

α

I∗ =
µ+ v

α

(

∆

µ+ v

α

γ + µ+ η
− 1

)

By proceeding in the same way in the third and fourth equations, we

have:

Q∗ =
(η − ǫ)I∗

ρ+ µ

R∗ =
γI∗ + ρQ∗

µ

E∗ = (S∗, I∗, Q∗, R∗) is called endemic solution.

By looking at expression of I∗, it is important to note that equilibrium

point E∗ only occurs if:

(

∆

µ+ v

α

γ + µ+ η
− 1

)

> 1

Thus, we defined:

Definition 4.5. The basic reproduction number for system (2.3), denoted by

R0, is given as:

R0 =

(

∆

µ+ v

α

γ + µ+ η

)

. (4.6)

which represents the mean number of new infections generated by an infectious

case in a susceptible population.

Expression (4.6) is essential to system (2.3). If R0 > 1, then the solution

converge to the endemic equilibrium. On the other hand, if R0 < 1, then the

solution converge to free-disease equilibrium.

The R0 value for COVID-19 is estimated to be between 1.9 and 6.5

according to Achaiah et al. (2020).

5. Equilibrium point stability

In this section, we will state and prove the theorems that establish the

stability of the solutions found in the previous section.

Theorem 5.1. If R0 < 1, disease-free equilibrium E0 of system (2.3) is locally

asymptotically stable. If R0 > 1, the disease-free equilibrium E0 is unstable.
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Proof. The Jacobian matrix of system (2.3) at E0 is:

J(E0) =











−µ− v − α∆
µ+v

0 0

0 α∆
µ+v

− (γ + µ+ η) 0 0

0 (η − ǫ) −(ρ+ µ) 0

0 γ ρ −µ











The four eigenvalues of matrix J(E0) are:

λ1 = −µ− v, λ2 =
α

γ + µ+ η
(R0 − 1), λ3 = −(ρ+ µ), λ4 = −µ

If R0 < 1 ⇒ λ2 < 0, therefore, all eigenvalues have negative real parts

and E0 is locally asymptotically stable. If R0 > 1 ⇒ λ2 > 0, thus E0 is

unstable.

Theorem 5.2. If R0 < 1, the disease-free equilibrium E0 of the system (2.3)

is globally asymptotically stable.

Proof. Consider the following Lyapunov function:

L(t) = I(t)

By calculating the derivative of L(t) along the positive solution of system

(2.3), we have that:

dL(t)

dt

∣

∣

∣

∣

(3)

=
dI

dt

∣

∣

∣

∣

(3)

= αSI − (γ + µ+ η)I

= [αS − (γ + µ+ η)]I

=

[

α
∆

µ+ v
− (γ + µ+ η)

]

I

= [(γ + µ+ η)(R0 − 1)]I

≤ 0

Furthermore, L′ = 0 only if I = 0. The maximum invariant set in

{(S, I,Q,R)|L′ = 0} is the singleton E0. When R0 < 1, according to La Salle’s

invariance principle, we have that:

lim
t→∞

I(t) = 0
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Then, we obtain the limit equations of system (2.3):















dS
dt

= ∆− µS − vS

dQ
dt

= −(ρ+ µ)Q

dR
dt

= ρQ− µR

.

Thus, disease-free equilibrium is globally attractive in region D. There-

fore, disease-free equilibrium of system (2.3) is globally asymptotically stable

when R0 < 0.

Theorem 5.3. If R0 > 1, endemic equilibrium E∗ of system (2.3) is locally

asymptotically stable.

Proof. The Jacobian matrix of system (2.3) at E∗ is:

J(E∗) =











−αI∗ − µ− v −αS∗ 0 0

αS∗ 0 0 0

0 (η − ǫ) −(ρ+ µ) 0

0 γ ρ −µ











The two eigenvalues of matrix J(E∗) are:

λ3 = −(ρ+ µ), λ4 = −µ

The other two eigenvalues are also the eigenvalues of the following ma-

trix:

J∗(E∗) =

[

−(αI∗ + µ+ v) −αS∗

αS∗ 0

]

which has the characteristic polynomial:

λ2 + (αI∗ + µ+ v)λ+ α2S∗
2

= 0

which has all coefficients positive. By applying the Routh-Hurwitz criterion,

we obtained that all eigenvalues of matrix J(E∗) have negative real parts and

endemic equilibrium E∗ is locally asymptotically stable.

Theorem 5.4. If R0 > 1, endemic equilibrium E∗ of system (2.3) is globally

asymptotically stable.
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Proof. If R0 > 1 we have that endemic equilibrium point values are given by

E∗ =

(

γ + µ+ η

α
,
µ+ v

α
(R0 − 1),

(η − ǫ)I∗

ρ+ µ
,
γI∗ + ρQ∗

µ

)

.

Consider the following Liapunov function:

L(t) =
1

2
[(S − S∗) + (I − I∗) + (Q−Q∗) + (R−R∗)]

2
.

By calculating the derivative of L(t) with respect to t, we have that

dL

dt
= [(S − S∗) + (I − I∗) + (Q−Q∗) + (R−R∗)]

d

dt
[S + I +Q+R] ,

since N(t) = S + I +Q + R, and according to Theorem 4.1, we have N ′(t) ≤

(∆− µN) and consequently N(t) ≤
∆

µ
. So,

dL

dt
= [(S − S∗) + (I − I∗) + (Q−Q∗) + (R−R∗)]

dN

dt
≤ [(S − S∗) + (I − I∗) + (Q−Q∗) + (R−R∗)] (∆− µN)

≤ (N −
∆

µ
)(∆− µN)

Finally, we have:

dL

dt
≤ −

1

µ
(∆− µN)2.

We can clearly determine that L′(t) is negative definite and L(t) is pos-

itive definite. Furthermore, dL
dt

= 0 if and only if S = S∗, I = I∗, Q = Q∗, R =

R∗. Therefore, the largest compact invariant set of {L′(t) = 0} is the single-

ton E∗. This shows that, according to the classical Lyapunov and La Salle’s

invariance principle, E∗ is globally asymptotically stable. Thus, system (2.3)

has a globally asymptotically stable solution (S∗, I∗, Q∗, R∗).

6. Finite dimensional linear system control

Let T > 0 be a real fixed number. We should consider the following

finite dimensional system:

x′(t) = Ax(t) +Bu(t), t ∈ [0, T ] (6.7)

x(0) = x0,
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where A ∈ R
n,n, B ∈ R

n,m are a real matrix, and x0 is a vector in R
n. The

function x : [0, T ] → R
n represents the state, and u : [0, T ] → R

m, the control.

Both are vector functions of m and n components, respectively, depending

exclusively on time t.

Given an initial datum x0 ∈ R
n and a vector function u ∈ L1([0, T ];Rm),

system (6.7) has a unique solution C([0, T ];Rn) characterized by the variation

of constants formula:

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds, ∀t ∈ [0, T ].

6.1. Kalman’s controllability rank condition

The following classical result is due to Micu and Zuazua (2004) and gives

a complete answer to the problem of exact controllability of finite dimensional

linear systems. It shows, in particular, that the control time is irrelevant.

We considered that A ∈ R
4,4 is the Jacobian matrix of system (2.2) at

E0 without coontrol perturbation; B ∈ R
4,2 is a real matrix; and x0 is a vector

in R
4. The function x : [0, T ] → R

4 represents the state, and u : [0, T ] → R
2,

the control. Both are vector functions of 4 and 2 components, respectively,

depending exclusively on time t. We will use the shorthand notation (A,B) to

denote control system (6.7).

Definition 6.1. A system (A,B), for which the Kalman criterion condition is

satisfied, is termed completely controllable.

Theorem 6.2. System (6.7) is completely controllable in some time T if and

only if

rank[B,AB,A2B,A3B] = 4.

Consequently, if system (6.7) is controllable in some time T > 0, it is control-

lable in any time.

Proof. In fact, from (6.7), we have

A =











−µ 0 0 0

0 −(γ + µ+ η) 0 0

0 (η − ǫ) −(ρ+ µ) 0

0 γ ρ −µ










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and

B =











1 0

0 1

0 0

0 0











.

with µ, γ, η, ǫ and ρ being positive constants. To determine system con-

trollability, we calculated the controllability matrix Wc = [B,AB,A2B,A3B].

Consequently, we have

rank Wc = 4.

Therefore, the system is controllable.

In conclusion, Algorithm 1 shows the matrix calculation.

Algorithm 1. Solving the matrix Wc

1: Constant values

2: mu = 0.02;

3: alpha = 0.2;

4: Delta = 0.2;

5: gamma = 0.1;

6: eta = 0.2;

7: epsilon = 0.1;

8: rho = 0.3;

9: Definition of matrix A

10: A = [-mu , 0, 0, 0; 0, -(gamma + mu + eta), 0, 0;

11: 0, eta - epsilon, -(rho + mu), 0;

12: 0, gamma, rho, -mu];

13: Definition of matrix B

14: B = [1 0;0 1;0 0;0 0];

15: Controllability check

16: Wc = [B,AB,A2B,A3B];

17: rankW c = rank(Wc);

18: Show the position of the Wc matrix

19: disp([′Posto da matriz Wc : ′num2str(rankW c)])

Figure 2 shows, that the number of columns in Matrix Wc equals the

order of the system, indicating complete controllability. However, columns 1
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and 2 exhibit singular values significantly different from zero, suggesting their

importance in system controllability. Thus, the presence of these significant

singular values implies that columns 1 and 2 of the controllability matrix are

crucial for system controllability.

0

0.2

0.4

0.6

0.8

1

1.2

S
in

gu
la

r 
va

lu
es

c
 controllability matrix

1 1.5 2 2.5 3 3.5 4

Columns

Figure 2: Controllability matrix

In the context of working with an epidemiological model that provides

insights into the spread of COVID-19, it is highly advantageous to employ

output feedback and State Feedback Strategies to modify the free system dy-

namics, aiming to achieve properties such as full controllability, asymptotic

stability, BIBO-stability, etc. At this stage of the research, we are interested

in demonstrating that, in the case of autonomous linear control system, given

A ∈ R
n,n and B ∈ B

n,m, we have:

x′ = Ax+Bu. (6.8)

We can utilize the state feedback strategy, where we assume that the control u

is derived from the state x through a linear law, denoted as

u = −Fx, (6.9)

where F ∈ R
m,n is a state feedback Gain Matrix. By replacing them (6.8), we
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obtained:

x′ = (A+BF )x.

The subsequent outcome facilitates our examination of controllability

concerns in the presence of disturbances within a completely controllable au-

tonomous system.

Theorem 6.3. Let (A,B) be a completely controllable autonomous system.

Then, for every matrix F ∈ R
2,4, system (A + BF,B) is also completely con-

trollable.

Proof. Note that

A =











−µ 0 0 0

0 0− (γ + µ+ η) 0 0

0 (η − ǫ) −(ρ+ µ) 0

0 γ ρ −µ











and

B =











1 0

0 1

0 0

0 0











.

Given

F = −

[

v α∆
µ+v

0 0

0 − α∆
µ+v

0 0

]

by (6.9) assuming that the control u is

u = −

[

v α∆
µ+v

0 0

0 − α∆
µ+v

0 0

]











S

I

Q

R











,

that result in

u =

[

−vS − α∆
µ+v

I
α∆
µ+v

I

]

.

Consequently, we obtain

(A+BF ) =











−µ− v − α∆
µ+v

0 0

0 α∆
µ+v

− (γ + µ+ η) 0 0

0 (η − ǫ) −(ρ+ µ) 0

0 γ ρ −µ











,
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noting that (A+BF ) is the Jacobian matrix of system (2.3) at point E0 with

the presence of control perturbation. To prove the given theorem, we will use

the Kalman criterion for linear system controllability.

The Kalman criterion states that a linear system is completely control-

lable if its controllability matrix:

C = [B AB A2B A3B]

And has full rank, meaning its rank equals state-space dimension.

Now, we will use the Kalman criterion to prove the given theorem. Given

a system (A,B) that is completely controllable, we know that the controllability

matrix C has full rank, which means the rank of C equals state-space dimension.

The dimension state-space dimension equals 4. Then, the rank of C is 4.

Now, considering system (A+BF,B), F is a control matrix.

The controllability matrix of this system is:

Cnew = [B (A+BF )B (A+BF )2B (A+BF )3B]

Now, we need to show that the rank of Cnew equals to 4, i.e., full rank.

If we can show this, then system (A+ BF,B) will be completely controllable.

To do this, we will use the property that the rank of a matrix does not change

when we multiply the matrix by another left-invertible matrix. We will use

this property to show that the rank of Cnew equals 4.

We will consider the matrix T defined as:

T =











I 0 0 0

F I 0 0

F 2 2BF I 0

F 3 3BF 2 3B(F 2 +BF + I) I











where I is the identity matrix. It is easy to see that T is an invertible matrix.

Furthermore, if we multiply T by the matrix Cnew, we obtain C.

TCnew = [B AB A2B A3B] = C

Since C has full rank (equal to n), then TCnew also has full rank.

Therefore, the rank of Cnew equals 4, and thus system (A + BF,B) is

completely controllable.

Thus, using the Kalman criterion, we have proven that, for every ma-

trix F , system (A+BF,B) is completely controllable, provided that (A,B) is
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completely controllable. In conclusion, Algorithm 1 shows the calculation of

the matrix (A + BF ) with the appropriate changes to the input values. This

concludes the proof of the theorem.

7. Optimal control model

In this section, we associated the control problem (2.3) with a function

that is intrinsically related to solving the system problem. This relationship is

described through the optimality principle of a dynamic system. We wanted

to find a control function that minimizes or maximizes a cost functional while

satisfying the constraints imposed by the system. Thus, the following optimal

control variable is given: the variable u(t) represents vaccination, as seen pre-

viously. In this context, optimal control theory provides a powerful framework

for designing control strategies that minimize the spread of infectious diseases

while considering various constraints and objectives. By formulating the prob-

lem as an optimization task, optimal control theory allows us to determine the

most effective allocation of control measures over time to achieve specific ob-

jectives, such as minimizing the number of infections, reducing economic losses,

or optimizing the use of healthcare resources.

We treated a special case in optimal system control, in which state differ-

ential equations are linear in x and u and the objective functional is quadratic.

Let T > 0 be a fixed real number, given t0 ∈ [0, T ] and x0 ∈ R
n,

considering a dynamic system described by the following differential equations:

x′(t) = Ax(t) +Bu(t), t ∈ [0, T ] (7.10)

x(t0) = x0,

considering cost functional

J(u, x) =
1

2

[

∫ T

0

xT(t)G(t)x(t) + uT(t)R(t)u(t)dt

]

(7.11)

in which the matrices G(t) and R(t) are sizes n × n, m × m, respectively,

with G(t) being positive semidefinite and R(t) being positive definite for all

t ∈ [0, T ]. The positive definite property guarantees that R(t) is invertible.

The superscript T refers to transpose of a matrix.

Considering the set of admissible control

Uad :=
{

u ∈ L1([0, T ];Rm);u(t) ∈ X ⊂ R
m a.e in [t0, T ].

}
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Definition 7.1. The optimal value function refers to the application V :

[0, T ]× R
n → R, defined by

V (t0, x0) := inf {J(t0, x0;u); u ∈ Uad} .

Definition 7.2. The optimal control problem is to find, for a given initial

condition x0, the control u∗ ∈ Uad that minimizes the cost functional (7.11).

Furthermore,

V (t0, x0) = J(t0, x0;u
∗).

With the objective of illustrating the ideas presented here, we considered

the control problem (7.10) to (7.11). The Hamiltonian becomes

H(t, x, u, λ) :=
1

2
xT(t)Gx(t) +

1

2
uTRu+ λT (Ax(t) +Bu).

From the Hamiltonian, we have the optimality equation, derived from

the term uTRu with respect to u:

∂

∂u

(

uTRu
)

=
∂

∂u





n
∑

i=1

n
∑

j=1

uiRijuj





=
∂

∂u





n
∑

i=1

n
∑

j=1

ui

1

2
(Rijuj +Rjiui)





=
1

2

(

R+RT
)

u

= Ru

Derived from the term λT(Ax(t) +Bu), with respect to u:

∂

∂u

(

λT(Ax(t) +Bu)
)

=
∂

∂u

(

λTBu
)

= BTλ

Therefore, the partial derivative of H with respect to u is:

∂H

∂u
= Ru+BTλ,

hence it follows that

u∗ = −R−1BTλ
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we have that

H(t, x, λ) =
min

u ∈ X

{

〈

λT, Ax+Bu
〉

+
1

2

[

xTGx+ uTRu
]

}

,

using the Hamilton-Jokobi-Bellman optimality equation

∂V

∂t
+

〈

∂V

∂x
,Ax

〉

−
1

2

〈

∂V

∂x
,BR−1BT

∂V

∂x

〉

+
1

2

〈

xT, Gx
〉

= 0

We will now make the most important hypothesis-driven development,

which allows us to determine V . Assuming that the value function for the

linear quadratic problem has the form:

V (t, x) :=
1

2
〈x, P (t)x〉 , (t, x) ∈ [0, T ]× R

n,

assuming that P : [0, T ] → R
n,n is continuously differentiable, as the cost

function is non-decreasing, and we can state that P (t) is positive defined for

all t ∈ [0, T ]. The assumptions of symmetry for G, R are buried in the above

calculations. Instead of using λ, wen found a matrix function P(t) such that

λ(t) = ∂V
∂x

= P (t)x(t).

Substituting the expression for V into the HJB equation, we obtained

〈x, Y (t)x〉 = 0,

in which

Y (t) = P ′(t) + P (t)A+ATP (t)− P (t)BR−1BTP (t) +G.

the problem now is to find a matrix function P such that Y (t) ≡ 0. The

following theorem guarantees this result.

Theorem 7.3. Let P (t) be a continuous and differentiable symmetric matrix

with respect to time t on an interval [0, T ], considering the Riccati equation:

∂P (t)

∂t
= −ATP (t)− P (t)A+ P (t)BR−1BTP (t)−G

in which A is a constant matrix of size n × n; B is a constant matrix of size

n × m; R is a positive definite matrix of size m × m; and G is a constant

symmetric matrix of size n× n. Optimal control is the form

u∗ = −R−1BTλ.

Then, for each initial condition P (0) = P0, there is a unique solution P (t) to

the Riccati equation defined by [0, T ], associated with control systems (7.10) to

(7.11).
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Simple ODE techniques can be used to solve the problem because, once

the Riccati matrix equation for P is solved, the control is given by an equation

in x, and x is given by an ODE in u. The proof for this theorem can be seen

in detail in Baumeister and Leitão (2008).

We considered the control system (7.10), whose governing matrix is

A =











−µ 0 0 0

0 −(γ + µ+ η) 0 0

0 (η − ǫ) −(ρ+ µ) 0

0 γ ρ −µ











The control operator is assumed to be

B =











1 0

0 1

0 0

0 0











,

and R =

[

2 0

0 2

]

,
G =











1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0











.

The (7.10) system is added to a control measure to decrease COVID-19

transmission, in which the optimal control policy u∗ = −R−1BTλ determines

how the system should be controlled to minimize the cost functional. The main

objective of optimal control is to reduce the number of individuals susceptible

S(t) to and infected I(t) with COVID-19 in the population and the overall cost

of controlling the disease dynamics. Then, the cost functional (7.11) can be

rewritten as the following eq. (7.12)

J(u, x) =
1

2

[

∫ T

0

(S2 + I2 + u2)dt

]

, (7.12)

with, u∗ = −[1/2λ 1/2λ]T.

By solving the Riccati equation for internal control u∗(t), we obtained

eq. (7.13)

∂P (t)

∂t
= −ATP (t)− P (t)A+ P (t)BR−1BTP (t)−G. (7.13)
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For this example, we specified the ingredients as follows: T = 30; µ =

0.02; α = 0.2; ∆ = 0.2; γ = 0.1; η = 0.2; ǫ = 0.1; ρ = 0.3; λ = 1.5. And by

using the fourth order Runge-Kutta method we solved the equation, as shown

figure 3.
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 n
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Evolution of the P matrix over time

Figure 3: Evolution of the P norm.

The P (t) matrix, obtained as the solution of the Riccati equation, is

directly related to optimal control. This tool is used to find the control input

that minimizes system costs over time. The P (t) matrix norm in the context

of the Riccati equation provides information about controlled system stability,

indicating whether or not it has stabilized, as it converges to a constant value

over time. The graph shows, according to figure 3, this evolution by indicating

how optimal control also converges and ensures both stability and adequate

performance for the entire controlled system. In the next section, we will show

optimal control numerically.

8. Numerical simulations

We will see numerical simulations in this section to demonstrate the

model dynamic characteristics, equilibrium point stability and optimal control.
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Using MATLABTM software, we performed numerical simulation in model (2.3)

and estimated the basic values of the model parameters. We will see the results

of stabilization to endemic and disease-free equilibrium points. We showed how

to solve the suggested optimal control problem. We simulated and compared

different situations to control the spread of COVID-19. The results of simula-

tion are shown in the following diagram.

In system (2.3), γ = 0.1, µ = 0.02, ρ = 0.3, ǫ = 0.1, η = 0.2, ∆ = 0.2,

and v = 0.05. When α = 0.08, we have R0 = 0.7143 < 1, and with the

initial condition (9, 1, 0, 0), the solution converged to the free-disease solution

(2.8571, 0, 0, 0.0041). Figure 4 shows numerical simulation. From Theorem 5.2,

we noticed that E0 is globally asymptotically stable.
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Figure 4: Variational curves of S, I, Q, and R

In system (2.3), γ = 0.1, µ = 0.02, ρ = 0.3, ǫ = 0.1, η = 0.2, ∆ =

0.2, and v = 0.05. When α = 0.2, we have R0 = 1.7857 > 1, and with

the initial condition (9, 1, 0, 0), the solution converges to the endemic disease

solution (1.6, 0.275, 0.0859, 2.6660). Figure 5 shows numerical simulation. From

Theorem 5.4, we noticed that E∗ is globally asymptotically stable.
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Figure 5: Variational curves of S, I, Q, and R

Additionally, we set the same initial conditions and parameters as in

the previous simulation, and we had the following examples. The quarantine-

free (η = 0) and vaccination-free (v = 0) model reproduction number R0 is

16.6667 > 1, as shown in numerical simulation figure 6. The reproduction

number R0 vaccination-free (v = 0) model is R0 = 6.2500 > 1, as shown in

numerical simulation in figure 7. The reproduction number R0 quarantine-free

(η = 0) model is R0 = 4.7619 > 1, as shown in numerical simulation in figure

8.
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Figure 6: Variational curves of S, I, Q, and R with R0 = 16.6667 > 1
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Figure 7: Variational curves of S, I, Q, and R with R0 = 6.2500 and v = 0
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Figure 8: Variational curves of S, I, Q, and R with R0 = 4.7619 and η = 0

Moreover, we have the evolution of the state variables without the pres-

ence of the optimal control strategy. Considering the Riccati equation (7.13),

T = 30, γ = 0.1, µ = 0.02, ρ = 0.3, ǫ = 0.1, η = 0.2, ∆ = 0.2, and v = 0.05.

When α = 0.2, we have R0 = 1.7857 > 1, and with the initial condition

(9, 1, 0, 0), figure 9 shows numerical simulation.
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Figure 9: Variational curves of S, I, Q, and R without optimal control

In this next simulation, we will perform numerical simulations for an

optimal control strategy given by theorem 7.3. Considering the Riccati equation

(7.13), T = 180, γ = 0.1, µ = 0.02, ρ = 0.3, ǫ = 0.1, η = 0.2, ∆ = 0.2, and

v = 0.05 and λ = 0.5. When α = 0.2, we have R0 = 1.7857 > 1, and with the

initial condition (9, 1, 0, 0), figure 10 shows numerical simulation.
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Figure 10: Variational curves of S, I, Q, and R with optimal control
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9. Results

In this section, we will discuss and analyze the COVID-19 spread waves

patterns presented in the numerical simulations previously. To do this analysis,

we will take as a parameter the basic reproduction number R0.

We have from Theorem 5.1 that if R0 < 1, the solutions converge to

disease-free equilibrium of system (2.3), as we can see in figure 4. This means

that, when the number of newly infected I(t) is zero in the system, the disease-

free equilibrium point occurs. This can occur when the number of individuals

susceptible to S(t) is small as a result of vaccination or when the amount

of infected I(t) recovered R(t) is small enough to prevent the disease from

continuously spreading in the population. This confirms the fact that the

system is also controllable (Theorem 6.3). Besides that, a system is controllable

if, and only if it is stabilized (Micu and Zuazua (2004)).

On the other hand, when R0 > 1, we have a system converging to

endemic equilibrium solution of system (1.6, 0.275, 0.0859, 2.6660), as in figure

5. In system (2.3), the endemic stabilization point occurs when the number of

people entering the I(t) compartment is equal to the number of people leaving

the compartment for reasons of Q(t) quarantine, R(t) recovery, or death.

In other words, at endemic equilibrium point, the number of new cases is

equal to the number of recovered or quarantined cases, thus providing a balance

in the number of infected cases in the population over time. Actually,

αSI = µI + γI + ηI = 0.088.

Note that R0 depends as much on v as on η and
∂R0

∂v
>

∂R0

∂η
. In fact,

∂R0

∂v
=

∆α

(µ+ v)2(γ + µ+ η)

and
∂R0

∂η
=

∆α

(µ+ v)(γ + µ+ η)2
(9.14)

in which ∂R0

∂v
= 1.0449 and ∂R0

∂η
= 0.0234.

Continuing our analysis, we can see in the simulation presented in figure

7 that, when a system presents v = 0 and η 6= 0, the number of reproductions

increases approximately 1.3 more than when considered η = 0 and v, with a 5%

vaccination rate (simulation 8). We noticed that the number of basic reproduc-

tion increases very quickly when we consider v = 0 and η = 0 (simulation 6),
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in which we do not consider any kind of control over the spread of the disease.

From this, we concluded that the presence of the vaccine is more effective as a

control strategy than just control of infectious individuals.

From the analysis, we noted that isolating infected individuals can be

considered as a disease spread control strategy but as our main objective is

to verify the effectiveness of the vaccine use strategy, we will take the isola-

tion rate of constantly infected individuals equal to η and vary the population

vaccination rate for optimal control simulations.

Finally we showed optimal control, taking into account 7.3, which pro-

vides us with an optimal control strategy u∗ = −R−1BTλ, minimizing the

functional cost (7.11), which gives us the system performance over time. Con-

sidering R0 > 1, we have here a context of spread of the disease, so we analyzed

this scenario without the presence of an optimal control strategy (figure 9). We

can see how state variables are unstable, and it is only possible to obtain a sys-

tem stability by increasing the percentage of the vaccinated population, i.e.,

from 35% of the population immunized we can maintain spread curves sta-

ble. On the other hand, when we used the optimal control strategy u∗, it was

possible to see a better system performance and consequently a reduction in

coststhat we can obtain the same results with less effort in applying control

(figure 10). Therefore, the vaccine presents itself as a state strategy to control

system replenishment, effective in combating the spread of COVID-19.

10. Conclusion

In this article, we studied the behavior of COVID-19 spread by using a

compartmental SIQR model, with vaccination as the main prevention strategy .

We studied model equilibrium points and stability, controllability, and optimal

control for the system, finally presenting some numerical simulations to sup-

port the theoretical results. From equilibrium points and stability analysis, we

learned about two constant solutions: one was the disease disappearing quickly

and the other continued to infect a small portion of the population, depending

on the value of R0. By using the simulations, we showed the behavior of system

(2.3) and also learned that the presence of vaccination can decrease the basic

reproductive number faster than the isolation of infectious individuals, even-

tually bringing the number of infections to endemic equilibrium. By applying

optimal control strategies, it was possible to optimize the logistical costs of the
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vaccine and reach endemic equilibrium more quickly.

We concluded this work by emphasizing that, for future work, this study

can be carried out for the same models, combinations of varied control strate-

gies, improving our knowledge about the behavior of this type of system and

also our understanding of infectious diseases

References

Achaiah, N. C., Subbarajasetty, S. B., and Shetty, R. M. (2020). R0 and Re of

COVID-19: Can we predict when the pandemic outbreak will be contained?

Indian J. Crit. Care Med., 24(11):1125–1127.

Baumeister, J. and Leitão, A. (2008). Introduction to theory of control and

dynamic programming (in portuguese). In Euclid’s project. IMPA, Rio de

Janeiro.

Brauer, F., Castillo-Chavez, C., and Feng, Z. (2019). Simple compartmental

models for disease transmission. In Mathematical Models in Epidemiology,

pages 21–61. Springer New York.

Britton, T., Ball, F., and Trapman, P. (2020). A mathematical model reveals

the influence of population heterogeneity on herd immunity to SARS-COV-2.

Science, 396:846–849.

Kermark, M. and Mckendrick, A. (1927). Contributions to the mathematical

theory of epidemics. Proceedings of the Royal Society, 115A:700–721.

Lisboa, S. A. and Rodrigues, L. R. S. (2023). Epidemiological model for building

scenarios for the spread of COVID-19 in codó-MA. Journal of Epidemiology
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