Coding problems for memory and storage applications, Il J

Alexander Barg
University of Maryland

January 29, 2015

A. Barg (UMD) Coding for memory and storage January 29, 2015 1/24



Introduction: Rank modulation

Data storage in flash memories

A. Barg (UMD) Coding for memory and storage January 29, 2015 2/24



Introduction: Rank modulation

Data storage in flash memories
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Rank modulation

Instead of absolute values...

o n
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Rank modulation

...store data as relative ranks of the cells

3 5 7 1 4 2 6
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Formalizing the coding problem

& = {permutations on n symbols}
1234 1 2 ... n
1342 oc(1)o(2)... o(n)
Error process: charge leaks

o=(4,6,1,52,7,3) — o =(6,4,1,5,2,7,3)

Elementary errors: transposition of adjacent symbols

A. Barg (UMD) Coding for memory and storage

January 29, 2015

6/24



Flash memories and Rank modulation

Formalizing the coding problem

& = {permutations on n symbols}
(1234) < 1 2 ... n)
1342 oc(1)o(2)... a(n)
Error process: charge leaks
o=(4,6,1,52,7,3) — o =(6,4,1,5,2,7,3)
Elementary errors: transposition of adjacent symbols
Transposition:

135462 — 135264
135462 — 315462
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Formalizing the coding problem

& = {permutations on n symbols}
(1234) < 1 2 ... n)
1342 oc(1)o(2)... a(n)
Error process: charge leaks
o=(4,6,1,52,7,3) — o =(6,4,1,5,2,7,3)

Elementary errors: transposition of adjacent symbols
Transposition:

135462 — 135264

135462 — 315462

Permutations form a group &,

multiplication: (1234)(2413) = (2143)
inverse: (3421)(4312) = (1234)
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Distances on Permutations

Hamming distance:

d(o,m) =H{i:o(i) #7()}
(Blake-Cohen-Deza 1979, Tarnanen 1989, Colbourn-Klgve-Ling 2004)
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Distances on Permutations

Hamming distance:
d(o,m) =H{i:o(i) #7()}
(Blake-Cohen-Deza 1979, Tarnanen 1989, Colbourn-Klgve-Ling 2004)

Ulam distance
d(o, e) = longest increasing subsequence in o

Milenkovic-Farnoud-Skachek 2013
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Hamming distance:
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(Blake-Cohen-Deza 1979, Tarnanen 1989, Colbourn-Klgve-Ling 2004)

Ulam distance
d(o, e) = longest increasing subsequence in o

Milenkovic-Farnoud-Skachek 2013

£ or Chebyshev distance

A. Barg (UMD) Coding for memory and storage January 29, 2015 7/24



Distances on Permutations

Hamming distance:
d(o,m) =H{i:o(i) #7()}
(Blake-Cohen-Deza 1979, Tarnanen 1989, Colbourn-Klgve-Ling 2004)
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d(o, e) = longest increasing subsequence in o

Milenkovic-Farnoud-Skachek 2013
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Distances on Permutations

Hamming distance:
d(o,m) =H{i:o(i) #7()}
(Blake-Cohen-Deza 1979, Tarnanen 1989, Colbourn-Klgve-Ling 2004)

Ulam distance
d(o, e) = longest increasing subsequence in o

Milenkovic-Farnoud-Skachek 2013
£ or Chebyshev distance
Kendall = distance d(o, 7) = n—minimum number of adjacent transpositions ¢ — =

Many other metrics on permutations (see Deza-Huang, Metrics on permutations, a survey,
1998)
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Properties of the Kendall distance

e 0<d(,)<1en(n—1) d(1234,4321) =6
@ Right invariance: d(o1, 02) = d(o10,020) for all o, 01, 02
@ "Weight” of permutation w(o) = d(o, €), e =identity permutation
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Problems

@ What is the maximum size of a subset C C & such that the minimum
distance is at least d?
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Problems

@ What is the maximum size of a subset C C & such that the minimum
distance is at least d?

Rate of a code C C &, :

=—10<R<
R(C) Py ;0<R<A
Capacity of rank modulation codes:
#(d) = lim MAM.9)
n—oco Inn!

where A(n, d) is the cardinality of the largest code in &, with distance d
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Problems

@ What is the maximum size of a subset C C & such that the minimum
distance is at least d?

Rate of a code C C &, :

Re)y=""llo<p<y
Inn!
Capacity of rank modulation codes:
#(d) = lim MAM.9)
n—oco Inn!

where A(n, d) is the cardinality of the largest code in &, with distance d

@ Can we construct good codes and decode them?
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Coding in permutations

Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

o 216437598
X> 010120201
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

x> 010120201

o
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

X, 010120201
o 8
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

X, 010120201
o 98
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

X, 010120201
o 598

A. Barg (UMD) Coding for memory and storage January 29, 2015

14/24



Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

X, 010120201
o 7598
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

x> 010120201
o 216437598
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
Lo

Inversion vector of a permutation:

o 216437598 x, 010120201
X- 010120201 o 216437598
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Coding in permutations

Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
S~ b

Inversion vector of a permutation:

o 216437598
x> 010120201
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Coding in permutations

Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
S~ b

Inversion vector of a permutation:

o 216437598
x> 010120201

XgegnZ:{O}XZZXZ:gX..

The mapping &, — Gy is injective
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Combinatorics of permutations: Inversion vectors

Inversion in permutation:

- N
w w
S~ b

Inversion vector of a permutation:

o 216437598
x> 010120201

XgegnZ:{O}XZZXZ:;X...Zn

The mapping &, — Gy is injective

Proposition: Let /(o) be the total number of inversions in o. Then
w(o) = (o) = £/ (i) d(o,7) = w(or ™)
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Coding for the Kendall metric

Theorem

Let A(n, d) = max size of a code with distance d. Define

%(d) = lim InA(n, d)
n—oco Innl
Then
1 ifd = 0O(n)

Cd)=q1—¢ ifd=0(n""), 0<e<1
0 ifd = ©(n?).

Proof by estimating the number of permutations with a given number of inversions.
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. Codinginpermutations |
Coding for the Kendall metric

Theorem
Let A(n, d) = max size of a code with distance d. Define

#(d) = lim MA.)
n—oco Inn!
Then
1 ifd = O(n)
Cd)=q1—¢ ifd=0(n""), 0<e<1

0 ifd=0(mR).

Proof by estimating the number of permutations with a given number of inversions.

Define Spearman’s footrule D(ov,02) = Y1 |o1(i) — o2(i)]

1 IR
ED(m’UZ) < d(o 1,02 1) < D(o1,02)
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Constructing codes for the Kendall metric

Let J: G, — &, take x, back to o
E.g. J((10103101)) = (2,1,6,4,3,7,5,9,8).
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Constructing codes for the Kendall metric

Let J: G, — &, take x, back to o
E.g. J((10103101)) = (2,1,6,4,3,7,5,9,8).

Lemma
dT(U1 ) UZ) > d41 (X01 ) Xf’z) J
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Coding in permutations

Constructing codes for the Kendall metric

Gray map: Zps — {0,1}°
uefo0,2°—1]

u= (b5,1,b5,2,...,b1,b0) — ¢S(U) = (gs—1ygs—27~~~7go):
where gj = (bj+ bj11) mod2  (j=0,2,...s—1;bs £0)

A. Barg (UMD) Coding for memory and storage

January 29, 2015 21/24



Coding in permutations

Constructing codes for the Kendall metric

Gray map: Zps — {0,1}°

uefo0,2°—1]
u= (b571,b5,2,...

where g; = (bj + bj41) mod 2

Gray map is reflective

A. Barg (UMD)

00000000
00000001
00000010

00000011

7b17b0) P—>¢5(U)1 (95*1795*27"'790)7
(j=0,2,...s —1;bs £ 0)

00000000
00000001
00000011
00000010

00000110

00000111
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Inversion vectors; Gray map

Let
m; = |log,i|, i=1,...,n

Inverse Gray map
1/’:‘ : {071}”’,’ - [07i_ 1]
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Inversion vectors; Gray map

Let
m; = |log,i|, i=1,...,n
Inverse Gray map
7/’:‘ : {071}”’,’ - [07i_ 1]

Consider a vector x = (xz|x3] ... |Xa), where x; € {0,1}™,i=2,...,n.
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Inversion vectors; Gray map

Let
m; = |log,i|, i=1,...,n
Inverse Gray map
7/’:‘ : {071}”’,’ - [07i_ 1]
Consider a vector x = (xz|x3] ... |Xa), where x; € {0,1}™,i=2,...,n.

m&dim(x) =37, m = (n+1)m, — 2™ 42
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Inversion vectors; Gray map

Let
m; = |log,i|, i=1,...,n

Inverse Gray map
1/’:‘ : {071}”’,’ - [07i_ 1]

Consider a vector x = (xz|x3] ... |Xa), where x; € {0,1}™,i=2,...,n.
m & dim(x) = >0, mi = (n+1)m, — 2™ 4.2
Given a vector x € {0,1}7 let W(x) = W(x2|X3|...|Xn) = (Y2(X2), - - ., ¥n(Xn)).

Proposition

Letx,y € {0,1}™. Then
dg1(\V(X),\V(y)) > dH(X7 ,V),
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The Construction

Theorem

Let C be a binary code of length n, cardinality M and minimum Hamming distance d,
where m = (n+ 1)[log n] — 2L°9"*1 1 2. Then the set of permutations

Cr={reGy:m=J(V(x)),x€C}

forms a rank modulation code on n elements of size M and distance at least d in the
Kendall space X,,.
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Let C be a binary code of length n, cardinality M and minimum Hamming distance d,
where m = (n+ 1)[log n] — 2L°9"*1 1 2. Then the set of permutations

Cr={reGy:m=J(V(x)),x€C}

forms a rank modulation code on n elements of size M and distance at least d in the
Kendall space X,,.

Example: Let C be a BCH code of length n and designed distance 2t + 1. We obtain a
rank modulation code of cardinality M > 2™ /(m 4 1) that corrects ¢ errors.
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The Construction

Theorem

Let C be a binary code of length n, cardinality M and minimum Hamming distance d,
where m = (n+ 1)|log n] — 29" *1 4 2 Then the set of permutations

Cr={reGy:m=J(V(x)),x€C}

forms a rank modulation code on n elements of size M and distance at least d in the
Kendall space X,,.

Example: Let C be a BCH code of length n and designed distance 2t + 1. We obtain a
rank modulation code of cardinality M > 2™ /(m 4 1) that corrects ¢ errors.

n=63,m=253
logM 247 239 231 223...
t 1 2 3 4...
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The Construction

Theorem

Let C be a binary code of length n, cardinality M and minimum Hamming distance d,
where m = (n+ 1)[log n] — 2L°9"*1 1 2. Then the set of permutations

Cr={reGy:m=J(V(x)),x€C}

forms a rank modulation code on n elements of size M and distance at least d in the
Kendall space X,,.

Example: Let C be a BCH code of length n and designed distance 2t + 1. We obtain a
rank modulation code of cardinality M > 2™ /(m 4 1) that corrects ¢ errors.

n=63,m= 253
Iogl\/tl 2‘117 229 221 223 """ Simple decoding algorithms
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Some references

Codes in permutations and error correction for rank modulation, with A. Mazumdar,
arXiv:0908.4094

Constructions of rank modulation codes, with A. Mazumdar and G. Zémor, IT Trans. Feb. 2013
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