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Abstract

The most common decision criteria for decoding are maximum likelihood decoding
and nearest neighbor decoding. It is well-known that maximum likelihood decoding
coincides with nearest neighbor decoding with respect to the Hamming metric on the
binary symmetric channel. In this work we study channels and metrics for which those
two criteria do and do not coincide for general codes.

1 Introduction

In coding theory, the Hamming metric has a prominent status, since it can be used to
perform maximum likelihood (ML) decoding over a memoryless binary symmetric channel
(BSC), in the sense that decoding by choosing a most probable codeword (ML decoding)
or a closest codeword (nearest neighbor (NN) decoding) is actually the same decision. In
this decision criteria sense, we have also that Euclidean distance is the proper distance for
modulation-decoding when considering a continuous channel with white Gaussian noise (see,
e.g., [3]) and the Lee metric has the same distinguished role when considering some kinds of
modulation and transmission over certain discrete memoryless q-ary channels [1].

The use of geometric properties of channels in coding theory is explored in many generic
situations, such as the one proposed by Forney [6] for geometric uniformity of codes on
continuous channels and the study of geometrically inspired properties of codes over discrete
channels, as in [5] and [7], where bounds for the packing radius are derived from a distance-
like structure defined on an hypergraph determined by the channel model.

Many different distances are considered in the context of coding theory (a comprehensive
account may be found in [4, Chapter 16]), but not much is known about general relation
between channel models and metrics and not much is known about the geometry of many
important channels.

In this work we are concerned with the most basic of those questions: is any ML decoder
also an NN decoder, and conversely, is any NN decoder also an ML decoder? More precisely,
if, for every code, ML decoding on a given channel coincides with NN decoding with respect
to a given metric, we say the channel and the metric are matched to one another.

This terminology goes back over 40 years, as a 1971 paper [1] attributes it to notes from
a 1967 course given by Massey [8]. In [1], Chiang and Wolf classify the channels matched to
the Lee Metric. Their results are generalized in a 1980 paper by Séguin [9], which studies
necessary and sufficient conditions for a discrete memoryless channel to be matched to an
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additive metric, i.e., a metric that is defined on an alphabet A and then extended to a metric
An by applying the metric coordinate-wise and taking the sum. To avoid potential confusion
by the reader, we also mention recent work on mismatched decoders (see, e.g., [10]) but
note that that work considers different questions than those that are considered here. In
particular, given a channel with transition probabilities Pr(x|y), taking − 1

n
log Pr(x|y) does

not, in general, give a metric in any sense.
This work is organized as follows: In Section 2 we introduce the rigorous definition of the

matching problem and we show that any metric admits a matched channel but the converse
does not always hold. We therefore also give some conditions for a channel that obstruct the
existence of a matched metric. In Section 3 we construct a matched metric for the Z-channel.
In Section 4 we conjecture that any binary asymmetric channel (BAC) admits a matched
metric and present some evidence for this conjecture.

2 Matched metrics and channels
{mas}

It is well-known that, under the assumption of equally likely codewords, maximum likelihood
decoding coincides with nearest neighbor decoding with respect to the Hamming metric on
the binary symmetric channel. This is a general fact that does not depend on the code and
so we ask: for what other channels is there such a metric? Following Massey [8], we call such
a channel-metric pairs matched, a term we define rigorously as follows:

Definition 2.1. Let W : X → X be a channel with input and output alphabets X and let d
be a metric on X , i.e., d : X × X → R is a function such that:

1. d is symmetric: d(x, y) = d(y, x) for all x, y ∈ X ;

2. d is nonnegative: d(x, y) ≥ 0 for all x, y ∈ X , with equality if and only if x = y; and

3. d satisfies the triangle inequality: d(x, y) + d(y, z) ≥ d(x, z) for all x, y, z ∈ X .

We say that W and d are matched if maximum likelihood decoding on W coincides with
nearest neighbor decoding with respect to d for every code C ⊆ X , i.e., if for every code
C ⊆ X and every x ∈ X , we have

arg max
y∈C

Pr(x received | y sent) = arg min
y∈C

d(x, y). (1) {matched}

Several comments are in order. First, note that we are considering codes to be subsets
of the alphabet, so that the binary symmetric channel, for example, should be considered as
a channel on Fn2 rather than as n uses of a channel defined on F2, and the Hamming metric
should be considered as a metric on Fn2 rather than as a sum of n copies of the Hamming
metric on F2. Next, by considering codes with just two codewords, it is straightforward
that condition (1) is equivalent to the condition that, for every x, y, z ∈ X with either
Pr(x received | y sent) > 0 or Pr(x received | z sent) > 0 (or both),

Pr(x received | y sent) > Pr(x received | z sent) if and only if d(x, y) < d(x, z). (2) {newmatched}

Finally, we make the following two assumptions throughout the paper:
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• Every channel is reasonable in the sense that Pr(x sent |x received) > Pr(x sent | y received),
for all x 6= y ∈ X .

• All codewords are equally likely.

The first assumption is a necessary condition for a channel to admit a matched metric since
0 = d(x, x) < d(x, y) for all x 6= y ∈ X ; the second is needed in order for maximum
likelihood decoding to be relevant. (Alternatively, one could drop this assumption and
replace “maximum likelihood decoding” with “maximum a posteriori probability decoding”
throughout the paper.) In light of this second assumption, we note that conditions (1) and
(2) are also equivalent to

Pr(y sent |x received) > Pr(z sent |x received) if and only if d(x, y) < d(x, z) (3) {newnewmatched}

for every x, y, z ∈ X with either Pr(x received | y sent) > 0 or Pr(x received | z sent) > 0 (or
both).

We are interested in determining which channels admit matched metrics, and which met-
rics admit matched channels. For example, as described in the introduction, it is well-known
that the Hamming metric and the n-fold binary symmetric channel BSC(n) are matched;
the Euclidean metric and the n-fold additive white Gaussian noise channel AWGN(n) are
matched; and the Lee metric and certain n-fold q-ary channels are matched (see [1], Theorem
1).

The general question of which metrics admit matched channels is much simpler than the
question of which channels admit matched metrics. Indeed, every metric is matched to some
channel:

Proposition 2.2. For any finite metric space (X , d) there is a channel W : X → X matched
to d.

Proof. Given a finite metric space (X , d), we construct a channel W : X → X by constructing
the conditional probabilities Pr(y |x) = Pr(y sent |x received) for x, y ∈ X .

Fix 0 < ε < 1. For x, y ∈ X , set βxy = εd(x,y), set γx =
∑

y∈X βxy, and set Pr(y |x) = βxy
γx

.

Then 0 < Pr(x | y) ≤ 1 and, for a fixed x ∈ X ,∑
y∈X

Pr(y |x) =
∑
y∈X

βxy
γx

=
1

γx

∑
y∈X

βxy

=
1

γx
· γx

= 1

and so this definition yields a valid channel. To see that this channel is matched to our
metric, let x, y, z ∈ X . Then

P (y |x) > P (z |x) ⇐⇒ βxy
γx

>
βxz
γx
⇐⇒ εd(x,y) > εd(x,z) ⇐⇒ d(x, y) < d(x, z),

and so condition (3) is satisfied.
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On the other hand, not every channel has a matched metric, as the following simple
example demonstrates:

{NoMatchExample}
Example 2.3 (Inexistence of a matched metric). Let X = {x, y, z} and W : X → X
be defined by the probabilities

Pr (x|x) = a Pr (x|y) = b Pr (x|z) = c
Pr (y|x) = c Pr (y|y) = a Pr (y|z) = b
Pr (z|x) = b Pr (z|y) = c Pr (z|z) = a

with a > b > c > 0 and a + b + c = 1; for example we could have a = 1
2
, b = 1

3
and c = 1

6
.

Suppose d : X × X → R is a matched metric for W . Then

d(x, x) < d(x, y) < d(x, z) (4) {contra}
d(y, y) < d(y, z) < d(y, x)

d(z, z) < d(z, x) < d(z, y).

However, this leads to a contradiction:

d(z, x) < d(z, y)

= d(y, z) < d(y, x)

= d(x, y) < d(x, z)

= d(z, x),

where the inequalities follow from the inequalities in (4) and the equalities are just the sym-
metry of the metric d. Therefore there can be no matched metric for the channel W .

The preceding tiny example can be generalized to any larger alphabet size and we have
the following:

Proposition 2.4. For any alphabet X with |X | ≥ 3, there is a channel W : X → X that
does not admit a matched metric.

Proof. If |X | = 3, proceed as in Example 2.3. Otherwise, write X = X0 ∪ Y where |X0| = 3
and |Y| = M ≥ 1. Label the elements of X0 so that X0 = {x, y, z}. Fix positive real numbers
a > b > c > d with a+ b+ c+ d = 1. Define conditional probabilities for u, v ∈ X by

Pr(u | v) =



Pr0(u | v) if u, v ∈ X0

0 if u ∈ X0, v ∈ Y
d
M

if u ∈ Y , v ∈ X0

a if u = v ∈ Y
1−a
M−1 if u, v ∈ Y and u 6= v,

where Pr0(u | v) is as described in Example 2.3 for u, v ∈ X0. Then it is straightforward to
check that these conditional probabilities define a channel W : X → X and that this channel
has no metric for the same reason as in Example 2.3.
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The 3-step cycle of Example 2.3 gives rise to a more general obstruction criterion for the
existence of a metric matching a given channel. Given a channel W : X → X , x ∈ X , and
0 ≤ t ≤ 1, we define the t-decision region centered at x to be Bt (x) := {y ∈ X | Pr (x|y) ≥ t}.
We say that x0, x1, ..., xr−1 ∈ X is a decision chain of length r on W if there are values
t0, t1, ..., tr−1 > 0 satisfying the following conditions:

(FIP) Forward inclusion property : xi+1 ∈ Bti (xi)

(MEP) Backward exclusion property : xi /∈ Bti+1 (xi+1)

where we consider the indices modulo r. For example, taking x0 = x, x1 = y, x2 = z and
t0 = t1 = t2 = b+c

2
in Example 2.3 gives a decision chain of length 3.

With this definition we can state the following:

Proposition 2.5. Let W be a channel over the alphabet X . If W admits a decision chain
of length r ≥ 3, then there is no metric matched to W .

Proof. Let x0, x1, ..., xr−1 ∈ X be a decision chain on W with parameters t0, t1, ..., tr−1 and
suppose d : X ×X →R is a metric matched to W . Using FIP for i = 0 and BEP for i = r−1
we get that

d (x0, x1) < d (x0, xr−1) = d (xr−1, x0)

where the equality follows from the symmetry property of d. Using FIP for i = r − 1 and
BEP for i = r − 2 we get that

d (xr−1, x0) < d (xr−1, xr−2) = d (xr−2, xr−1)

and, proceeding in this manner, we get

d (x0, x1) < d (x0, xr−1) < d (xr−1, xr−2) < · · · < d (x0, x1)

a contradiction. Thus d cannot exist.

The preceding proposition gives an obstruction to the existence of a metric matched to a
channel, but many channels do not fit into this picture. If we consider W to be a reasonable
(in the sense described above) symmetric channel (Pr (x|y) = Pr (y|x), for every x, y ∈ X ),
then defining

D (x, y) =

{
0 if x = y

1− Pr (x|y) if x 6= y

we get that D satisfies all the properties of a metric except for the triangle inequality; as we
shall see in Lemma 3.2 below, it is not difficult to obtain a metric d (x, y) from D (x, y).

It follows that the main difficulty in finding a metric matched to a given channel is to
find a symmetric function satisfying condition (1) (or, equivalently, (2)).

In the next section, we construct a matched metric for the n-fold Z-channel, for any n.
We consider this result to be a bit surprising, since, as desribed above, it is the symmetry
property that poses the most difficulty in constructing a metric matched to a given channel,
and the Z-channel is as asymmetrical as possible, in the sense that for x 6= y we have that
Pr (x|y) > 0 implies Pr (y|x) = 0.
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3 A matched metric for the Z-channel {Z}

The Z-channel is the memoryless binary input and output channel with transition proba-
bilities given by Pr(0|0) = 1, Pr(1|0) = 0, Pr(0|1) = q, Pr(1|1) = 1 − q, where 0 < q < 1

2

and, as usual, we write Pr(x|y) to mean Pr(x received | y sent). The n-fold Z-channel is the
memoryless channel with input and output Fn2 with

Pr(x|y) =
n∏
i=1

Pr(xi|yi)

for x = (x1, · · · , xn), y = (y1, · · · , yn) ∈ Fn2 .
The main result of this section is as follows:

{z-theorem}
Theorem 3.1. For any n ≥ 1, there is a metric matched to the n-fold Z-channel.

Before proving Theorem 3.1, we need a lemma.
{squeeze-lemma}

Lemma 3.2. Let X be a finite set and suppose e : X ×X → R is a symmetric, nonnegative
function, i.e.,

1. e(x, y) = e(y, x) for every x, y ∈ X ; and

2. e(x, y) ≥ 0 for every x, y ∈ X , with equality if and only if x = y.

Then there is a metric d on X such that d(x, y) < d(x, z) if and only if e(x, y) < e(x, z) for
every x, y, z ∈ X .

Proof. Since X is finite, the set {e(x, y) |x, y ∈ X} has both a maximal and a minimal
element; set m = min{e(x, y) |x, y ∈ X} and M = max{e(x, y) |x, y ∈ X}. Fix δ with
0 < δ < 1

3
and let f : [m,M ]→ [1− δ, 1 + δ] be a strictly increasing bijective function. (For

example, take f to be the linear function which maps m to 1 − δ and M to 1 + δ.) Define
d : X × X → R by

d(x, y) =

{
e(x, y) = 0 if x = y,

f(e(x, y)) otherwise.

The symmetry and nonnegativity of d(·, ·) follow immediately from these properties of e(·, ·)
and the fact that f is strictly increasing. To check that d satisfies the triangle inequality, let
x, y, z ∈ X . Then

d(x, y) + d(y, z) ≥ 2(1− δ) > 2(1− 1

3
) =

4

3
> 1 + δ ≥ d(x, z).

Hence d is a metric.

Proof of Theorem 3.1. We proceed by induction on n ≥ 1. For the base case of n = 1, we
note that the Hamming metric is matched to the Z-channel on F2.

Suppose there is a matched metric for the n-fold Z-channel, determined by the 2n × 2n

matrix Dn. Our goal is to construct a 2n+1×2n+1 matrix Dn+1 that represents a metric that is
matched to the (n+ 1)-fold Z-channel. For any u ∈ Fn+1

2 , we write u = (x1, . . . , xn, θ) =: xθ,
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where x ∈ Fn2 and θ ∈ F2; given an ordering v1, . . . , vN of the elements of Fn2 (N = 2n), this
yields an ordering v10, . . . , vN0, v11, . . . , vN1 of FN+1

2 .
Let Pn = (Px,y)x,y∈Fn

2
be the probability matrix for the n-fold Z-channel, so that Px,y =

Pr(x received | y sent). Then the probability matrix Pn+1 for the (n + 1)-fold Z-channel is
given by

Pn+1 =



v10 · · · vN0 v11 · · · vN1
v10
... Pn · Pr(0 received | 0 sent) Pn · Pr(0 received | 1 sent)

vN0
v11
... Pn · Pr(1 received | 0 sent) Pn · Pr(1 received | 1 sent)

vN1



=



v10 · · · vN0 v11 · · · vN1
v10
... Pn Pn · q

vN0
v11
... 0 Pn · (1− q)

vN1


.

We will use this information to construct a matrix Dn+1 that determines a metric matched
to the (n + 1)-fold Z-channel. The entries of the matrix Dn+1 = (duv)u,v∈Fn+1

2
must satisfy

the following properties:

(M) d must be matched : duv < duw if and only if Pr(u|v) > Pr(u|w).

(S) d must be symmetric: duv = dvu for every u, v ∈ Fn+1
2 .

(N) d must be nonnegative: duv ≥ 0 for every u, v ∈ Fn+1
2 , with equality if and only if

u = v.

(T) d must satisfy the triangle inequality : duv + dvw ≥ duw for every u, v, w ∈ F n+1
2 .

Note that the last three of these properties are required for Dn+1 to represent a metric,
while the first is what makes the metric matched to the channel. We begin by constructing
a matrix E that satisfies properties (M), (S) and (N). We then apply Lemma 3.2 to E to
transform E into a matrix D that satisfies property (T) while maintaining the other three
properties. This modified matrix will be our desired Dn+1.
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Because E must be a symmetric matrix by (S), we can write

E =



v10 · · · vN0 v11 · · · vN1
v10
... A B

vN0
v11
... BT C

vN1


,

where we require A = (axy)x,y∈Fn
2
, B = (bxy)x,y∈Fn

2
and C = (cxy)x,y∈Fn

2
to be 2n×2n matrices,

with A and C symmetric.
Determining matrix A: To satisfy (M), we must have axy < axz if and only if

Pr(x0|y0) > Pr(x0|z0) if and only if Pr(x|y) > Pr(x|z). Thus A must represent a matched
metric for the n-fold Z-channel, and we may set A = Dn.

Determining matrix B: Let us consider the entry bx,y of the matrix B. We break this
into three cases.

Case 1. First, suppose Pr(x|y) 6= 0 and y is not the all-ones vector in Fn2 . Without loss
of generality, we may assume that all of the 0’s in y are at the beginning, so that y = 0j1k

with j ≥ 1 and j + k = n, where, for example, we mean by 0213 the vector (0, 0, 1, 1, 1).
Since Pr(1|0) = 0, the first j coordinates of x are 0 as well. Hence, without loss of generality,
we may assume that x = 0j0s1t with s+ t = k. Now set z = (1, y2, . . . , yn). Then

Pr(x|z) = Pr(0|1)
n∏
i=2

Pr(xi|yi) = q Pr(x|y)

since Pr(x1|y1) = Pr(0|0) = 1. Thus we have

Pr(x0|y1) = q Pr(x|y) = Pr(x|z) = Pr(x0|z0)

and so we set bxy = axz. We remark that, since x 6= z, the induction hypothesis ensures that
axz 6= 0, and hence also bxy 6= 0.

Case 2. We now consider the case where y = 1n is the all-ones vector in Fn2 , and find the
value of bx1n . Note first that Pr(1n0|1n1) = q(1−q)n is the second-largest entry in the row of
Pn+1 indexed by 1n0, second only to Pr(1n1|1n1). Since a1n1n = 0, we therefore require b1n1n
to be smaller than every nonzero a1nz; for concreteness, we set b1n1n = 1

2
min{a1nz|z 6= 1n}.

For x 6= 1n, without loss of generality, we may assume x = 0s1t, where s ≥ 1 and s+t = n.
Then

Pr(x|1n) = qs(1− q)t

and
Pr(x0|1n1) = qs+1(1− q)t.

Suppose z 6= 1n satisfies Pr(x|z) 6= 0; since x 6= 1n, we know such a z exists. Since
Pr(1|0) = 0, without loss of generality we can write z = 0j1k1t, where j + k = s and j ≥ 1.
This means

Pr(x|z) = Pr(0|0)j Pr(0|1)k Pr(1|1)t = qk(1− q)t,
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where k < s. Putting this together, we have

Pr(x0|1n1) = qs+1(1− q)t < qk+1(1− q)t = Pr(x0|z1) < qk(1− q)t = Pr(x0|z0)

and so we require bx1n > bxz > axz for every z 6= 1n with Pr(x|z) 6= 0. For concreteness, we
set

bx1n = 2 max{bxz | z 6= 1n and Pr(x|z) 6= 0}.

Case 3. Finally, if Pr(x|y) = 0, then Pr(x0|y1) = 0 and so

Pr(x0|y1) < Pr(x0|z1) = q Pr(x0|z0) < Pr(x0|z0) = Pr(x|z)

for every z with Pr(x|z) 6= 0. This means we require

bxy > bxz > axz

for every z with Pr(x|z) 6= 0, and we set

bxy = 2 max{bxz | Pr(x|z) 6= 0}.

By the remark made in Case 1 and the constructions in the two remaining cases, the
matrix B = (bxy) has strictly positive entries.

Determining matrix C: Because Pr(x1|y0) = 0 for all x and y, we must have cxz < byx
for all z with Pr(x|z) 6= 0. Because Pr(x1|y1) < Pr(x1|z1) if and only if Pr(x|y) < Pr(x|z),
the matrix C must represent a matched metric for the n-fold Z-channel. By choosing δ
sufficiently small and setting C = δDn, we can satisfy these conditions.

We now have a matrix

E = (euv)u,v∈Fn+1
2

=

(
A B
BT C

)
that satisfies properties (M), (S) and (N) above. Using Lemma 3.2, we can transform E in
such a way that we force the triangle inequality (T) to hold without affecting the other three
properties. Thus the resulting matrix Dn+1 = (duv)u,v∈Fn+1

2
represents a master metric for

the (n+ 1)-fold Z-channel, as desired.

4 Asymmetric channels
{bac}

A binary asymmetric channel (BAC) with parameters (p, q) is a memoryless channel with
binary input and output alphabet with transition probabilities given by Pr(0|0) = 1 − p,
Pr(1|0) = p, Pr(0|1) = q, Pr(1|1) = 1 − q, where 0 ≤ p ≤ q < 1

2
. The extreme cases of an

asymmetric channel are the symmetric channel (for p = q) and the Z-channel (for p = 0).
The squeezing function of Lemma 3.2 ensures the triangle inequality can always be attained.
Hence the unique difficulty to construct a metric matched to a given channel lies on the
symmetry of a distance matrix. From this point of view, we could expect that finding a
matched metric for an asymmetric channel should become harder as the asymmetry of the
channel grows, that is, as p becomes closer to 0 and we get a Z-channel. We remark that
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the well known asymmetric distance (see, for example [2]) is a metric but it is not matched
to the BAC.

Elementary continuity arguments can show the following: given 0 < q < 1/2 and n ∈ N,
there is an ε = ε(q, n) such that a BAC with parameters (p, q) admits a matched metric
if p < ε or q − p < ε. This follows from the simple reason that, for any given code,
for ε sufficiently small the decision regions (i.e., the sets Bt (x) := {y ∈ X | Pr (x|y) ≥ t}) do
not change. Direct computations show we may consider ε = qn, but we do not know whether
qn is or is not maximal.

We conjecture there is a matched metric for any BAC. We briefly describe some ap-
proaches to the problem, explaining why they reinforce the conjecture.

A direct and constructive (but naive) approach is to try to symmetrize the matrix Pr(x|y)
working line by line. We start at the first line, where we can substitute each value Pr(x1|y)
by a variable axy in such a way that (writing a1y for ax1y)

Pr(x1|y) = P (x1|z) ⇐⇒ a1y = a1z and Pr (x1|y) > P (x1|z) ⇐⇒ a1y > a1z. (5) {order}

Since we want the matrix to be symmetric, we enforce that ay1 = a1y for all y ∈ Fn2 .
However, on each line of the matrix A = (axy) under construction, we want to have

Pr (x|y) = Pr (x|z) ⇐⇒ axy = axz,

and so we enforce this condition on the matrix A under construction as well. In other words,
we consider ayx1 and define ayz in a way to respect the order constraint as in (5). We
move now to the second line and define the entries for ax2y, enforcing symmetry by defining
ayx2 = ax2y. The change on those indices may demand a rescaling on each line but this may
not be possible (for example if ayx1 and ayx2 do not respect the order constraint (5)). Despite
the fact that this naive algorithm does not always work, many small dimensional examples
worked out with this approach leads us to believe that it may be successful if we alternate
the use of this algorithm with the algorithm used for the Z-channel in Section (3).

A non constructive approach to prove on the existence of a master metric for the BAC
may be as follows: Given n, let us suppose that

D =

(
A B
BT δA

)
is a master matrix for the Z-channel as constructed om Section 3. Given t ∈ [0, 1] we define
B (t) = (bxy (t)) and A (t) = axy (t) as follows:

bxy (t) = (1− t) bxy + tbyx

axy (t) = (1 + t (δ − 1)) axy

and define

D (t) =

(
A (t) B (t)

B (t)T δA (t)

)
We remark that each D (t) is symmetric, D (0) = D is metric matched for the Z channel

defined by Pr (1|0) = 0 and D (1) =

(
δA BT

B A

)
is metric matched for the Z channel
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defined by Pr (0|1) = 0 (the reflected Z). Considering 0 < p < q < 1/2, for n = 2 there are
exactly two BACs (according to whether p < q2 or q2 < p) and similarly, for n = 3 there are
four such BACs. We verified (I actually did when I wrote this remark) that for n = 2, 3 all
the BACs may be matched by proper choices of t in D(t).

Those evidences suggest that for any BAC there is a matched metric.
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