
Structure of the capacity region and its use in multiuser
systems

Ninoslav Marina

SPCoding School

(SPCoding School) 1 / 81



Table of Contents

1 Introduction

2 Labeling faces

3 Structure, dimensionality and group successive decoding

4 Number of faces of dimension D

5 Conclusion

2 / 81



Table of Contents

1 Introduction

2 Labeling faces

3 Structure, dimensionality and group successive decoding

4 Number of faces of dimension D

5 Conclusion

3 / 81



Capacity region

Capacity: set of simultaneously achievable rates R1, . . . ,Rn with
arbitrarily small probability of error.
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Uplink and downlink channels

Uplink (Multiple Access Channel
or MAC): Many Transmitters to
One Receiver

Downlink (Broadcast Channel or
BC): One Transmitter to Many
Receivers
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Successive decoding

The asynchronous capacity region of an M-user memoryless
multiple-access channel (MAC) is union of certain M-dimensional
polytopes

Successive decoding is a method of canceling the interference
from the already decoded users ⇒ allows achieving optimal rates

One user at a time can be decoded successively if a rate tuple lies
on the vertex of the dominant face of such a polytope, using the
codewords of already decoded users as side information
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Group successive decoding

Extension to group successive decoding for rate tuples that are on
the boundary of the dominant face:
− Each point on the boundary of the dominant face belongs to a
face of some dimension k ∈ {0, 1, . . . ,M − 2}
− Forming M − k groups of users
− The users within a group are decoded jointly whereas groups are
decoded successively

The probability of error is smaller for joint decoding than for
successive decoding
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Group successive decoding

Group successive decoding is extended to every face of the
polytopes not only to the faces of the dominant face

The labeling technique is extended in order to have label for every
face

Non-degenerated polytopes are considered for which the labels
are unique

The group composition, the decoding order and a number of
structural properties for all rates on a face of interest are obtained
from a label assigned to that face
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Main contribution

Reviewing the multiple access capacity region

Defining polytopes

Labeling the faces of polytopes

Deriving the necessary and sufficient conditions for faces to intersect
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Discrete memoryless MAC

An M - user discrete memoryless multiple-access channel is
defined in terms of M discrete input-alphabets Xi , i ∈ {1, · · · ,M},
an output alphabet Y, and a stochastic matrix
W : X1 ×X2 × · · · × XM → Y with entries
WY |X1,X2,··· ,XM

(y |x1, x2, · · · , xM) describing the probability that the
channel output is y when the inputs are x1, x2, · · · , xM
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Region for a product input distribution I

For any input distribution in product form PX1 , · · · ,PXM
, define R

to be

R = {R ∈ RM
+ : R(S) ≤ I (XS ;Y |XSc ), ∀S ⊆ [M]},

where R(S)
4
=
∑

i∈S Ri , XS
4
=(Xi )i∈S , Sc 4=[M] \ S,

[M] = {1, 2, . . . ,M}, and I (XS ;Y |XSc ) is the mutual information
between XS and Y given XSc
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Region for a product input distribution II

R = {0 ≤ R1 ≤ I (X1;Y |X2,X3),

0 ≤ R2 ≤ I (X2;Y |X1,X3),

0 ≤ R3 ≤ I (X3;Y |X1,X2),

R1 + R2 ≤ I (X1,X2;Y |X3),

R1 + R3 ≤ I (X1,X3;Y |X2),

R2 + R3 ≤ I (X2,X3;Y |X1),

R1 + R2 + R3 ≤ I (X1,X2,X3;Y |X1)}
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Capacity Region for M = 3
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Capacity Region for M = 3
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Capacity Region for M = 3
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Capacity Region for M = 3
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R1 + R2 + R3 ≤ I (X1, X2, X3; Y |X1)
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Capacity region

The capacity region depends on whether the channel is synchronous
or asynchronous

A discrete-time channel is synchronous if the transmitters are able
to index channel input sequences in such a way that all inputs with
time index n enter the channel at the same time

If there is an unknown shift between time indices, then the channel
is said to be asynchronous

The capacity region is described as a union of certain polytopes:

CDMC =
⋃

PX1
PX2
···PXM

R[W ;PX1
PX2
· · ·PXM

],

where the union is over all product input distributions
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Polytopes

Polytope is a geometric object with flat sides, which exists in
any general number of dimensions

a polytope of n dimensions is an n-polytope

For example a two-dimensional
polygon is a 2-polytope

For example a three-dimensional
polygon is a 3-polytope

For example a four-dimensional
polygon is a 4-polytope
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Non-degenerated region I

Definition 1

A region R is called non-degenerated if the following two conditions
hold

1 I (XS ;Y ) > 0 for all non-empty sets S ⊆ [M],

2 I (XS ;Y |XA) < I (XS ;Y |XB) for all ∅ ⊂ S ⊂ [M], A ⊂ B ⊂ [M],
and S ∩ B = ∅.

It is also true that for all A ⊂ [M], ∅ ⊂ S ⊂ T ⊆ [M], and
A ∩ T = ∅,

I (XS ;Y |XA) < I (XT ;Y |XA)
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Non-degenerated region II

R2

R1

(i) (ii) (iii)

R2 R2

R1

Figure : Shapes of R for a two-user channel: (i) is a non-degenerated case; (ii)
and (iii) degenerated cases
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Non-degenerated region III
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Face of a region I

A hyperplane of RM
+ of dimension M − 1 is defined as:

{R ∈ RM
+ : R(S) = c}

for some constant c

The set:
{R ∈ RM

+ : R(S) ≤ c}

is one of the two half-spaces bounded by such a hyperplane

R is a finite intersection of such half-spaces

A face of R is defined as any set of the form

F = R∩ {R ∈ RM
+ : Ra = a0},

where Ra ≤ a0 is a valid inequality for R
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Face of a region II

The dimension of a face is the dimension of its affine hull:

dim(F) := dim(aff(F))

R itself and the empty set ∅ are called improper faces

The number of faces of any dimension is maximal in
non-degenerated cases

The 0-faces are 0-dimensional vertices, the 1-faces are
1-dimensional edges, the 2-faces are 2-dimensional faces (polygonal
faces), the 3-faces are 3-dimensional cells (polyhedral faces) and so
on
The faces of dimension M − 2 and
M − 1 are called ridges and facet
respectively
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Face of a region III
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Back and front facets

A Back facet is defined as:

Bi = R∩ {R ∈ RM
+ : Ri = 0}

where i ∈ [M]

A front facet is defined as:

FS = R∩ {R ∈ RM
+ : R(S) = I (XS ;Y |XSc )}

for every S ⊆ [M], S 6= ∅
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Labeling example

R1

R2

R3

Figure : Region R with labels for a three-user MAC
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Labeling example
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R2

R3
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B{1,3}

� B1 = B{1}

-B2 = B{2}
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B3 = B{3}

XX
XXX

Xy

B[3]

Figure : Back facets in a region R for a three-user MAC
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Labeling example
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?
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Figure : Front facets in a region R for a three-user MAC

24 / 81



Extending the notations

Extending the notation:

BA =
⋂
i∈A
Bi , with B∅ = R by convention,

FS1,S2,...,Sm =
m⋂
j=1

FSj , with F∅ = R by convention,

FS1,S2,...,Sm|A = FS1,S2,...,Sm ∩ BA

FS|∅ = FS , F∅|A = BA, Bi is a short-hand notation for B{i},
F∅|∅ = R, and the origin as a vertex is labeled by B[M] = F∅|[M]
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Front facets intersection I

Lemma 2

FS1 ∩ FS2 is not empty iff S1 ⊆ S2 or S2 ⊆ S1.

Proof:
(i) The “if” direction:

True if S1 = S2

Assume that S1 ⊂ S2

Re-index users so that S1 = [k] and S2 = [`], where ` > k

R = (R1, . . . ,RM) defined as follows:

Ri =

{
I (Xi ;Y |Xi+1, . . . ,XM), i = 1, . . . ,M − 1,

I (XM ;Y ) i = M
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Front facets intersection II

R is a vertex of the dominant face ⇒ R ∈ R and:

R([i ]) =
i∑

j=1

Rj =
i∑

j=1

I (Xj ;Y |Xj+1, . . . ,XM) = I (X[i ];Y |X[i ]c )

For i = k , R([k]) = I (XS1 ;Y |XSc1 ) and for i = `,
R([`]) = I (XS2 ;Y |XSc2 ) → R ∈ FS1 ∩ FS2
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Front facets intersection III

(ii) The “only if” direction:

Let R ∈ FS1 ∩ FS2 . Then:

I (XS1∪S2 ;Y |X(S1∪S2)c )
(a)

≥ R(S1 ∪ S2) = R(S1) + R(S2)− R(S1 ∩ S2)

(b)
= I (XS1 ;Y |XSc

1
) + I (XS2 ;Y |XSc

2
)− R(S1 ∩ S2)

(c)

≥ I (XS1 ;Y |XSc
1
) + I (XS2 ;Y |XSc

2
)− I (XS1∩S2 ;Y |X(S1∩S2)c )

(d)
= I (XS1\S2

;Y |XSc
1
) + I (XS2 ;Y |XSc

2
)

(e)

≥ I (XS1\S2
;Y |X(S1∪S2)c ) + I (XS2 ;Y |XSc

2
)

= I (XS1∪S2 ;Y |X(S1∪S2)c )

(a) and (c) follow from R ∈ R, (b) from the definition of
FSi , i = 1, 2, (d) from the chain rule for mutual information, and
(e) holds since the inputs are independent
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Front facets intersection IV

(a), (c), and (e) must be equalities. Equality in (e) means

I (XS1\S2
;Y |XSc1 ) = I (XS1\S2

;Y |X(S1∪S2)c )

R is non-degenerated ⇒ either S1 \ S2 = ∅, i.e., S1 ⊆ S2 or
S1 = S1 ∪ S2, i.e., S2 ⊆ S1
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Front and back facets intersection I

Lemma 3

Assume R ∈ FS . Then for every L ⊆ S

I (XL;Y |XSc ) ≤ R(L) ≤ I (XL;Y |XLc )

Proof:

The second inequality is true for every R ∈ R
For the first inequality:

R(L) = R(S)− R(S \ L)

(a)
= I (XS ;Y |XSc )− R(S \ L)

(b)

≥ I (XS ;Y |XSc )− I (XS\L;Y |X(S\L)c )

(c)
= I (XL;Y |XSc )
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Front and back facets intersection II

where (a) is true since R ∈ FS , (b) since R ∈ R and (c) follows
from the chain rule for mutual information

Lemma 4

FS ∩ BA 6= ∅ iff A ∩ S = ∅.

Proof:

If A = ∅ then the lemma is true

Assume A 6= ∅
(i) Proving one direction:

Let R ∈ FS ∩ BA
Then 0 = R(A) = R(S ∩ A) ≥ I (XS∩A;Y |XSc ) ⇒
I (XS∩A;Y |XSc ) = 0
R is non-degenerated ⇒ A∩ S = ∅
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Front and back facets intersection III

(ii) Proving the other direction:

Assume A ∩ S = ∅
Pick a rate R̃ such that R̃ ∈ FS
Let R be obtained from R̃ by setting to 0 all coordinates with index
in A
R ∈ BA but also R ∈ FS since R(S) = R̃(S)
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Unique label of all proper faces of R I

Proposition 5

The intersection FS1,S2,...,Sm|A is not empty, if and only if the following
two conditions are satisfied
(i) The set sequence S1,S2, . . . ,Sm is telescopic, i.e., there is a
permutation π on the index set [m] such that
Sπ(1) ⊃ Sπ(2) ⊃ . . . ⊃ Sπ(m), and
(ii) A ∩ Sπ(1) = ∅.

Proof:
(i) Achievability:

Assume that S1 ⊃ S2 ⊃ . . . ⊃ Sm and A ∩ S1 = ∅
“if” part of the proof of Lemma 2 leads to an R̃ in FS1,S2,...,Sm

Let R be obtained from R̃ by setting to 0 all coordinates with index
in A
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Unique label of all proper faces of R II

Hence R ∈ FSi , i = 1, . . . ,m and R ∈ BA
(ii) Converse:

if Si is not contained in Sj or vice versa, then by Lemma 2,
FSi ∩ FSj = ∅
if S1 ∩ A 6= ∅, then according to Lemma 4, FS1 ∩ BA = ∅
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Dominant facet I

Points have maximum sum-rate

Does not intersect with any back facet

In the one-user case it is a vertex, in the two-user case it is an edge
that has two vertices, in the three-user case a hexagon and so on

Instead of writing the telescopic sequence can be written the
sequence of “decrements’’

The sequence of decrements gives the order in which users are
decoded and count vertices

Since each permutation on the set [M] is a vertex on the dominant
face, it is clear that there are M! such vertices on the dominant face
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Dominant facet II

Figure : Dominant face of a four-user MAC. The fourth dimension, not shown
here, has coordinate R4 = I (X{1,2,3,4};Y )− R1 − R2 − R3
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Main contribution

Link between the label an group successive decoding

Showing that the object formed by intersection of faces are
Cartesian product fundamental region of channels related to the
original channel

Rates on the intersection of faces may be decoded successively in
groups
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Notations I

Region R is completely specified by the channel WY |X[M]
and by the

input distribution PX[M]

With WY |X[M]
is denoted the original channel

With PX[M]
is denoted the input distribution

For any two sets U ,V ⊂ [M] such that U ∩ V = ∅, there is a channel
with inputs XU and outputs (Y ,XV) ⇒

WYXV |XU (y , xV |xU ) = PXV (xV)WY |XU ,XV (y |xU , xV))

= PXV (xV)
∑

x[M]\(U∪V)

WYX[M]\(U∪V)|XU ,XV (y , x[M]\(U∪V)|xU , xV)

= PXV (xV)
∑

x[M]\(U∪V)

PX[M]\(U∪V)
(x[M]\(U∪V))WY |X[M]

(y |x[M])
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Notations II

A rate tuple for WYXV |XU ⇒ RU
4
=(Ri )i∈U

The corresponding region is defined by

RYXV |XU
∆
= R[WYXV |XU ;PXU ]

= {R ∈ R|U|+ : R(L) ≤ I (XL;Y |XV∪(U\L)), ∀L ⊆ U}

Dimensionality of a region RYXV |XU is represent with |U|

Dominant face (|U| − 1) - dimensional subregion is obtained by adding the
equality R(U) = I (XU ;Y |XV) i.e.,

DYXV |XU
∆
= D[WYXV |XU ;PXU ]

= {R ∈ R|U|+ : R(L) ≤ I (XL;Y |XV∪(U\L)), ∀L ⊂ U ,R(U) = I (XU ;Y |XV)}
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Special cases used frequently

RYXSc |XS
∆
= R[WYXSc |XS ;PXS ]

= {R ∈ R|S|+ : R(L) ≤ I (XL;Y |XLc ), ∀L ⊆ S}

DYXSc |XS
∆
= D[WYXSc |XS ;PXS ]

= {R ∈ R|S|+ : R(L) ≤ I (XL;Y |XLc ),∀L ⊂ S,R(S) = I (XS ;Y |XSc )}

RY |XS
∆
= R[WY |XS ;PXS ]

= {R ∈ R|S|+ : R(L) ≤ I (XL;Y |XS\L), ∀L ⊆ S}

DY |XS
∆
= D[WY |XS ;PXS ]

= {R ∈ R|S|+ : R(L) ≤ I (XL;Y |XS\L),∀L ⊂ S,R(S) = I (XS ;Y )}
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Cartesian product of region R and a dominant face D I

Lemma 6

R ∈ FS if and only if RSc ∈ RY |XSc and RS ∈ DYXSc |XS .

Proof:
(i) Achievability:

R ∈ FS
From the definition of FS , ∀L ⊂ S ⊆ [M], R(L) ≤ I (XL;Y |XLc )
and R(S) = I (XS ;Y |XSc ) ⇒ RS ∈ DYXSc |XS
∀T ⊂ Sc , [M] = S ∪ T ∪ Q as the union of disjoint sets
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Cartesian product of region R and a dominant face D II

Then,

R(T ) + R(S) ≤ I (XT ∪S ;Y |XQ)

= I (XT ;Y |XQ) + I (XS ;Y |XQ∪T )

= I (XT ;Y |XQ) + I (XS ;Y |XSc )

= I (XT ;Y |XSc\T ) + R(S)

Knowing R(T ) ≤ I (XT ;Y |XSc\T ) and the corresponding region
RYXV |XU ⇒ RSc ∈ RY |XSc
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Cartesian product of region R and a dominant face D III

(ii) Converse:

RS ∈ DYXSc |XS and RSc ∈ RY |XSc

Prove that R(S) = I (XS ;Y |XSc ) and that for all L ⊆ [M],
R(L) ≤ I (XL;Y |XLc )

The former is true since RS ∈ DYXSc |XS
To prove the latter, let T = L ∩ S and Q = L ∩ Sc

RS ∈ DYXSc |XS , R(T ) ≤ I (XT ;Y |XSc∪(S\T )) = I (XT ;Y |XT c ) for
all T ⊆ S
RSc ∈ RY |XSc , R(Q) ≤ I (XQ;Y |XSc\Q) for all Q ⊆ Sc

44 / 81



Cartesian product of region R and a dominant face D IV

Follows,

R(L) = R(T ∪ Q) = R(T ) + R(Q)

≤ I (XT ;Y |XT c ) + I (XQ;Y |XSc\Q)

≤ I (XT ;Y |XT c ) + I (XQ;Y |X(Sc\Q)∪(S\T ))

= I (XT ∪Q;Y |X(T ∪Q)c )

= I (XL;Y |XLc )

for all L ⊆ [M] and this completes the proof
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Cartesian product of region R and a dominant face D V

From Lemma 6 the dimension for a facet FS ⇒

dim(FS) = dim(RY |XSc ) + dim(DYXSc |XS )

= |Sc |+ |S | − 1 = M − 1

The contribution is that a rate point in FS may be approached via
group successive decoding where groups are decoded in the order (Sc ,S)
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Generalization of cartesian product I

Theorem 7

Let S1 ⊃ S2 . . . ⊃ Sm form a telescopic sequence. R ∈ FS1,S2,...,Sm iff
RSc1 ∈ RY |XSc

1
and RSi\Si+1

∈ DYXSc
i
|XSi\Si+1

for i = 1, . . . ,m, where by

way of convention we have defined Sm+1 = ∅.

Concludes when FS1,S2,...,Sm is not empty it is the Cartesian
product of a region and m dominant faces

Proof:
(i) Achievability:

From R ∈ FS1,...,Sm , FS1,S2,...,Sm =
⋂m

i=1FSi and Lemma 6 ⇒

RSi ∈ DYXSc
i
|XSi

and RSci ∈ RY |XSc
i
, i = 1, . . . ,m
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Generalization of cartesian product II

Which proves RSc1 ∈ RY |XSc
1

Next show that

RSi\Si+1
∈ DYXSc

i
|XSi\Si+1

, ∀i = 1, . . . ,m − 1

If R(K) ≤ I (XK;Y |XSci ∪(Si\(Si+1∪K))) = I (XK;Y |X(Si+1∪K)c ) holds
for all K ⊆ Si \ Si+1, i = 1, . . . ,m, with equality if K = Si \ Si+1

From Lemma 6, for any K ⊆ Si , R(K) ≤ I (XK;Y |XKc ) with
equality if K = Si and for any L ⊆ Si+1, R(L) ≤ I (XL;Y |XLc ) with
equality if L = Si+1
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Generalization of cartesian product III

Then for K ⊆ Si \ Si+1 ⇒

R(K) = R(Si )− R(Si+1)− R(Si \ (Si+1 ∪ K))

= I (XSi ;Y |XSc
i
)− I (XSi+1 ;Y |XSc

i+1
)− R(Si \ (Si+1 ∪ K))

(a)

≤ I (XSi ;Y |XSc
i
)− I (XSi+1 ;Y |XSc

i+1
)− I (XSi\(Si+1∪K);Y |XSc

i
)

= I (XK;Y |X(Si+1∪K)c )

where (a) follows from the fact that ∀Q ⊂ Si , R(Q) ≥ I (XQ;Y |XSc
i
)

The equality in (a) holds if K = Si \ Si+1, that proves the direct part
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Generalization of cartesian product IV

(ii) Converse:

For RSc1 ∈ RY |XSc
1

, and RSi\Si+1
∈ DYXSc

i
|XSi\Si+1

, for i = 1, . . . ,m

prove that R(L) ≤ I (XL;Y |XLc ) holds for all L ⊆ [M] with equality
if L = Si , i = 1, . . . ,m

R(Si ) = I (XSi ;Y |XSci ) is true since RSi\Si+1
∈ DYXSc

i
|XSi\Si+1

and

R(Si ) =
m∑
j=i

R(Sj \ Sj+1)

=
m∑
j=1

I (XSj\Sj+1
;Y |XScj ) = I (XSi ;Y |XSci ), i = 1, . . . ,m
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Generalization of cartesian product V

Let L ⊆ [M] and Li = L ∩ Si \ Si+1, i = 0, 1, . . . ,m with S0 = [M]
by convention

Then L =
⋃m

i=0 Li is a disjoint partition

From RSc1 ∈ RY |XSc
1

and L0 ⊆ Sc1 => R(L0) ≤ I (XL0 ;Y |XSc1\L0
)

Since RSi\Si+1
∈ DYXSc

i
|XSi\Si+1

, and

R(Li ) ≤ I (XLi ;Y |XSci ∪(Si\(Si+1∪Li ))) = I (XLi ;Y |XSci+1\Li ) for all

Li ⊆ Si \ Si+1 ⇒
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Generalization of cartesian product VI

I (XL;Y |XLc ) =
m∑
i=0

I (XLi ;Y |X⋃i−1
j=0 Lj∪Lc )

(a)

≥
m∑
i=0

I (XLi ;Y |XSc
i+1\Li

)

≥
m∑
i=0

R(Li )

= R(L)

where (a)
⋃i−1

j=0 Lj ∪ Lc = [M] \
⋃m

j=i Lj ⊇ Sci+1 \
⋃m

j=i Lj = Sci+1 \ Li , and
(b) for j ≥ i + 1, Lj ⊆ Si+1 implies that Lj does not intersect with Sci+1
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Generalization of cartesian product VII

From the Theorem 7 the dimension of FS1,S2,...,Sm ⇒

dim(FS1,S2,...,Sm) = dim(RY |XSc
1

) +
m∑
i=1

dim(DYXSc
i
|XSi\Si+1

)

= M − |S1|+
m∑
i=1

(|Si | − |Si+1| − 1)

= M −m

This implies that all points in FS1,S2,...,Sm may be approached via group
successive decoding with groups of users decoded according to the
following order: (Sc1 ,S1 \ S2,S2 \ S3, ...,Sm−1 \ Sm,Sm)
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Generalization of cartesian product VIII

Corollary 8

Let S1 ⊃ S2 ⊃ . . . ⊃ Sm be a telescopic sequence. R ∈ FS1,...,Sm|A iff
RSc1 ∈ RY |XSc

1
, RSi\Si+1

∈ DYXSc
i
|XSi\Si+1

for i = 1, . . . ,m, and RA = 0.

Concludes that

dim(FS1,S2,...,Sm|A) = dim(FS1,S2,...,Sm)− |A|
= M − |A| −m

And, R ∈ FS1,...,Sm|A may be approached bydecoding groups of users in
the order ([M] \ (A ∪ S1),S1 \ S2,S2 \ S3, ...,Sm−1 \ Sm,Sm)
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Main contribution

Derive the number of D - dimensional faces in R for any
D = 0, 1, . . . ,M

Number of faces in D
Number of front faces
Number of back faces

Derive expressions for the total number of vertices and edges
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Number of D - dimensional faces on the dominat face I

Proposition 9

The number of D - dimensional faces on the dominant face of R is

Nd(M,D) =
M−D∑
j=1

(
M − D

j

)
(−1)M−D−j jM .

Proof:

F[M],S2,...,SM−D
is any D - dimensional face on the dominant face

The difference sets [M] \ S2,S2 \ S3, . . . ,Si \ Si+1, . . . ,SM−D \ ∅
form an (M − D) partition of [M]

There is a one-to-one correspondence between a D - dimensional
face and such a partition
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Number of D - dimensional faces on the dominat face II

The number of such ordered partitions is

Nd(M,D) =
∑

m1,m2,...,mM−D

mi≥1,∀i∑
i mi=M

(
M

m1,m2, . . . ,mM−D

)
=

∑
m1,m2,...,mM−D

mi≥1,∀i∑
i mi=M

M!∏
i mi !

By expanding the following polynomial

(
x

1!
+

x2

2!
+ · · ·+ xM

M!

)M−D

=

M(M−D)∑
k=M−D

xk
∑

m1,...,mM−D

mi≥1,∀i∑
i mi=k

1

m1!m2! . . .mM−D !
,

and that the coefficient in front of xM multiplied by M! gives the number
of ordered partitions
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Number of D - dimensional faces on the dominat face III

Therefore,

Nd(M,D) = M!

( M∑
i=1

x i

i !

)M−D

, xM


(a)
= M!

( ∞∑
i=1

x i

i !

)M−D

, xM


(b)
= M!

(
(ex − 1)M−D , xM

)
(c)
=

dM

dxM
(ex − 1)M−D

∣∣∣∣
x=0

,

where coeff(f (x), x i ) is the coefficient of x i in the Taylor series expansion
around zero of the function f (x), (a) is true since taking all the terms up
to M or up to infinity will not change the coefficient in front of xM , (b)
follows from the Taylor expansion of ex , and (c) follows from the definition
of the Taylor expansion
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Number of D - dimensional faces on the dominat face IV

Expand (ex − 1)M−D with the Binomial formula ⇒

(ex − 1)M−D =
M−D∑
j=0

(
M − D

j

)
e jx(−1)M−D−j

Taking the M - th derivative,

dM

dxM
(ex − 1)M−D =

M−D∑
j=1

(
M − D

j

)
e jx(−1)M−D−j jM ,

and setting x = 0 is obtained the Proposition 9
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Number of faces on dominant face I

Proposition 10

The total number of front faces of dimension D, denoted by Nf (M,D),
equals

Nf (M,D) = Nd(M,D) + Nd(M,D − 1).

Proof:

FS1,S2,...,SM−D |∅ is any D - dimensional front dominat face for some
S1 ⊆ [M]. If S1 = [M] and there are Nd(M,D) such faces

If S1 ⊂ [M] the front face is not on the dominant face

Since there is a one-to-one relationship between the subscripts of
FS1,S2,...,SM−D |∅ and those of F[M],S1,S2,...,SM−D |∅ when S1 ⊂ [M], it
follows that the total number of front faces not on the dominant
face is exactly Nd(M,D − 1)
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Number of faces on dominant face II

To obtain the total number of front D - faces we have to add
Nd(M,D − 1) and the number Nd(M,D) of D - faces on the
dominant face
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Number of faces on dominant face I

Propostion 11

The total number of D - dimensional back faces in R is given by

Nb(M,D) =
M−1∑
i=D

(
M

i

)
Nf (i ,D).

Proof:

All back faces are front faces for some other channel with fewer users

The dimension of this face is M −m − |A| and A ∩ S1 = ∅
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Number of faces on dominant face II

If we remove all users with index in A, we obtain the front face
FS1,S2,...,Sm|∅ of an (M − |A|) - user MAC The dimensionality of this
face is also M − |A| −m. Running over all pertinent subsets
A ⊂ [M] yields

Nb(M,D) =
∑
A⊂[M]

0<|A|≤M−D

Nf (M − |A|,D)

Since there are
(M
|A|
)

subsets of cardinality |A| ⇒

Nb(M,D) =
M−D∑
|A|=1

(
M

|A|

)
Nf (M − |A|,D) =

M−D∑
i=1

(
M

i

)
Nf (M − i ,D)

=
M−D∑
i=1

(
M

M − i

)
Nf (M − i ,D) =

M−1∑
i=D

(
M

i

)
Nf (i ,D)
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Number of D - dimensional faces in R I

Theorem 12

The total number of D - dimensional faces in R, 0 ≤ D ≤ M, is

N(M,D) =
M∑

i=D

(
M

i

)(i + 1− D)i −
i−D∑
j=1

(
i − D

j − 1

)
(−1)i−D−j j i

 .
Proof:

N(M,D) = Nf (M,D) + Nb(M,D) =
∑M

i=D

(M
i

)
Nf (i ,D)

Using the total number of front faces ⇒

N(M,D) =
M∑

i=D

(
M

i

)
[Nd(i ,D) + Nd(i ,D − 1)],

where Nd(D,D) = 0, Nd(D,D − 1) = 1 and, by convention,
Nd(i ,−1) = 0
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Number of D - dimensional faces in R II

From the number od D - dimensional faces ⇒

Nd(i ,D) + Nd(i ,D − 1)

= (i − D + 1)i +
i−D∑
j=0

j i (−1)i−D−j+1

[(
i − D + 1

j

)
−
(
i − D

j

)]

= (i − D + 1)i −
i−D∑
j=0

(
i − D

j

)
j i+1(−1)i−D−j

i − D + 1− j

= (i − D + 1)i −
i−D∑
j=1

(
i − D

j − 1

)
(−1)i−D−j j i

Inserting this into previous N(M,D) completes the proof
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Number of vertices I

Lemma 13

The total number of vertices in R is beM!c.

Proof:

From N(M,D) for D = 0 ⇒
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Number of vertices II

N(M, 0) =
M∑
i=0

(
M

i

)
Nd(i , 0)

(a)
=

M∑
i=0

(
M

i

)
i ! =

M∑
i=0

M!

(M − i)!
=

M∑
i=0

M!

i !

= M!
∞∑
i=0

1

i !
−M!

∞∑
i=M+1

1

i !

(b)
= eM!−M!

∞∑
i=M+1

1

i !

where in (a) the number of vertices Nd(i , 0) on the dominant face of an
i - user region is i ! and (b) follows from the Taylor series expansion of e

68 / 81



Number of vertices III

Since eM!−M!
∑∞

i=M+1
1
i! is an integer, and

∞∑
i=M+1

M!

i !
=

∞∑
i=1

M!

(M + i)!
=
∞∑
i=1

1∏i
j=1(M + j)

<

∞∑
i=1

i∏
j=1

1

M + 1
=
∞∑
i=1

(
1

M + 1

)i

=
1/(M + 1)

1− 1/(M + 1)
=

1

M
≤ 1,

it follows that

N(M, 0) =
M∑
i=0

M!

i !
=

⌊
N(M, 0) +

∞∑
i=M+1

M!

i !

⌋
= beM!c
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beM!c

M beM!c
1 2
2 5
3 16
4 65
5 326
6 1957
7 13700
8 109601
9 986410
10 9864101
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Stirling approximation

ln(M!) = M lnM −M + o(lnM)

M! ∼
√

2πM

(
M

e

)M

ln(M!) ∼ M lnM −M +
1

2
lnM +

1

2
ln(2π)

eM! ∼
√

2πMMMe−M+1

ln(eM!) ∼ M lnM −M +
1

2
lnM +

1

2
ln(2π) + 1

=

(
M +

1

2

)
lnM −M +

1

2
ln(2π) + 1
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beM!c

1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

M

ln(beM!c)
ln(eM!)
Stirling

Mln(M)
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Number of edges I

Lemma 14

The total number of edges in R is
M

2
beM!c.

Homework:

Proof that the number of edges is
M

2
beM!c?

Proof that the number of 2 dimensional faces is
(3M2 − 5M + 3)beM!c

24
+

M − 3

24
?

73 / 81



Number of edges II

Proof:

From N(M,D) for D = 1 ⇒

N(M, 1) =
M∑
i=1

(
M

i

)
(Nd(i , 1) + Nd(i , 0))

Since Nd(i , 0) = i !, from Nd(M,D),

Nd(i , 1) =
∑

m1,m2,...,mi−1

mj≥1,∀j∑
j mj=i

(
i

m1, . . . ,mi−1

)
= (i − 1)

(
i

2, 1, . . . , 1

)
=

i !(i − 1)

2
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Number of edges III

Therefore,

N(M, 1) =
M∑
i=1

(
M

i

)(
i ! +

i − 1

2
i !

)
=

1

2

M∑
i=1

(
M

i

)
i ! (i + 1)

=
1

2

M∑
i=1

M!

(M − i)!
(i + 1) =

1

2

M−1∑
j=0

M!

j!
(M − j + 1)

=
M + 1

2

M−1∑
j=0

M!

j!
− 1

2

M−2∑
k=0

M!

k!

(a)
=

1

2
[(M + 1)(beM!c − 1)− (beM!c −M − 1)] =

M

2
beM!c,

where in (a) we use (1) to obtain
∑M−1

j=0 M!/j! = beM!c − 1 and∑M−2
j=0 M!/j! = beM!c −M − 1
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Number of faces of various dimensions for R and D

Dimension D Faces of R of dimension D Faces of D of dimension D

D = 0 (vertices) beM!c M!

D = 1 (edges) M
2 beM!c M!(M − 1)/2

D = 2 (3M2−5M+3)beM!c
24 + M−3

24
M!(M−2)(3M−5)

24

...
...

...

D
∑M

i=D

(M
i

)
(i − D)!

{ i+1
i+1−D

}
(M − D)!

{ M
M−D

}
...

...
...

D = M − 2 3M + 2M−1(M − 4) + M(M − 3)/2 + 1 2M − 2

D = M − 1 (facets) M + 2M − 1 1

D = M 1 0
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Total number of D - dimensional faces

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Dimension of the face − D

lo
g 10

N
(M

,D
)

Figure : Total number of D - dimensional faces (expressed on a logarithmic
scale) as a function of D. Each curve corresponds to a value of M. The curve
that corresponds to M = m, m = 1, 2, . . . , 20, is the one that hits the abscissa
at D = m.
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Conclusion I

The capacity region of an asynchronous memoryless multiple-access
channel is the union of certain polytopes

The points in those polytopes are the rate tuples that can be
approached at an arbitrarily small error probability

Operational and structural properties of such polytopes such as
labels to tag their faces are of interest in information theory

For non-degenerated cases, each face of dimension M −m− |A| has
a unique label of the form (S1,S2, . . . ,Sm|A), where A ⊆ [M] and
([M] \ A) ⊃ S1 ⊃ S2, . . . ,⊃ Sm
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Conclusion II

A rate tuple on a face may be approached via successive decoding,
in the following order:
(1) The users with index in [M] \ (A ∪ S1) are decoded first
(2) The users with index in S1 \ S2

(3) The users with index in S2 \ S3

...

(m) The users with index in Sm
the users with index in A do not need to be decoded since they have
vanishing rate
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Muito obrigado!
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