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Codes (here always binary and linear) are mostly used to correct random
errors, each one independent of the others.

But not always.
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A code is a subset of {0, 1}n. The elements are called codewords. They are
said to have length n.

Suppose that each two codewords differ in at least d coordinates (the
distance between them is at least d) and put e = bd−1

2
c.

Then the code C is said to be e-error-correcting, because if you transmit (or
store) a codeword and not more than e errors have occurred upon reception
(or read out) due of noise or damage, then the received word will still be
closer to the original codeword than to any other.

Here the codes will be linear, meaning thatC is a linear subspace of {0, 1}n.
We use the notation [n, k, d] codes, where k denotes the dimension of the
code C.

The quantity r = n − k is called the redundancy of the code. This is the
number of additional coordinates (apart from the actual information being
transmitted) that make error-correction possible.
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A [7, 4, 3] code is given by

m0 0 0 0 0 0 0 0 c0
m1 0 0 0 1 1 1 1 c1
m2 0 0 1 0 0 1 1 c2
m3 0 0 1 1 1 0 0 c3
m4 0 1 0 0 1 0 1 c4
m5 0 1 0 1 0 1 0 c5
m6 0 1 1 0 1 1 0 c6
m7 0 1 1 1 0 0 1 c7
m8 1 0 0 0 1 1 0 c8
m9 1 0 0 1 0 0 1 c9
m10 1 0 1 0 1 0 1 c10
m11 1 0 1 1 0 1 0 c11
m12 1 1 0 0 0 1 1 c12
m13 1 1 0 1 1 0 0 c13
m14 1 1 1 0 0 0 0 c14
m15 1 1 1 1 1 1 1 c15
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A linear code C, say of dimension k, is often described by a generator ma-
trix: a matrix G of size k × n such that its rows form a basis of C. So,

C = {uG | u ∈ {0, 1}k}.
So, C consists of all linear combinations of the rows of G.

If k is large compared to n, it is often advantageous to describe C as the
null-space of a (n− k)× n matrix H called a parity check matrix:

C = {x ∈ {0, 1}n |HxT = 0T}.

Typically, you transmit a codeword c and you receive c ⊕ e = r, where e is
called the error vector and is caused by the noise. The decoder looks for the
closest codeword to r, i.e. for e of lowest weight such that r − e ∈ C.

Note thatHrT = HcT⊕HeT = HeT . The valueHrT is called the syndrome
of the received word.
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Example: The matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


is the parity check matrix of a linear code of length 7 and dimension 4.
Moreover, this code can correct a single error (e = 1, d = 3). We give a
decoding algorithm.

Let r be a received word.

1) Compute its syndrome s, i.e. compute sT = HrT .

2a) If s = 0 one has that r ∈ C, so (most likely) no error occurred.

2b) If s 6= 0 then s is equal to one of the 7 columns inH, say the j-th. Invert
the j-th coordinate in r to get a word with syndrome 0, i.e. a codeword.
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Example continued: Suppose you receive

r =
(
1 0 0 0 1 1 1

)
Its syndrome with

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


is

 1
0
1

 , which is the 5-th column. The most likely transmitted codeword

is

c =
(
1 0 0 0 0 1 1

)
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Most codes in practice have the additional property of being cyclic:

(c0, c1, . . . , cn−1) in C ⇒ (cn−1, c0, . . . , cn−2) in C

It makes them a lot easier to use and it is also easier to find good codes. We
associate

c = (c0, c1, . . . , cn−1) with the polynomial c(x) =
n−1∑
i=0

cix
i
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Theorem: For each cyclic code there exists a unique generator polynomial
g(x) that divides xn − 1 with the property:

c(x) in C if and only if g(x) divides c(x),
if and only if c(x) ≡ 0 (mod g(x)).

The art is to choose g(x) properly to get a code with good properties.

For a cyclic code, the syndrome of a received word r(x) (corresponding to
r = (r0, r1, . . . , rn−1)) is given by

s(x) ≡ r(x) (mod g(x))

For a codeword c(x) the syndrome is 0.
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II Burst-correcting codes
Errors in some applications tend to occur in clusters.
With higher transmission rates or higher storage densities this may even be
more so in the future.

Most publications about burst-correcting codes go back to the sixties (Fire
’59, Abramson ’60, Elspas and Short ’62, Bahl and Chien Jr. ’69, Peterson
and Weldon ’72.).

But there has been a revived interest in the late eighties (Blaum, Farrell,
and van Tilborg ’86, Abdel-Ghaffar, McEliece, Odlyzko, and van Tilborg ’86,
Zhang and Wolf ’88).
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A burst of length b starting at position i is an error pattern of the form:

(0, . . . . . . . . . , 0,
i

1, ∗, . . ., ∗,
i+b−1
1 , 0, . . . . . . . . . , 0)

So, the errors are confined to b or less consecutive places.

A cyclic burst of length b is a burst where the coordinates now have to be
viewed cyclically, so it may have the form:

(. . ., ∗,
i+b−1
1 , 0, . . . . . . . . . . . . , 0,

i

1, ∗, . . .).

A code C is a (cyclic) b-burst-correcting code if it is capable of correcting all
(cyclic) bursts of length up to b.
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Theorem A code C is b-burst-correcting if and only if all different bursts of
length up to b have different syndromes.

Proof: Suppose that b1 and b2 are two different burst with the same syndro-
me and let H denote the parity check matrix of C. Then

Hb1 = Hb2

and thus H(b1 − b2) = 0. In other words, c = b1 − b2 is a codeword! Now
note that

b1 = 0 + b1
b1 = c + b2

So, when you receive b1, maybe

0 was the transmitted codeword and the burst that occurred was b1, or
c was the transmitted codeword and the burst that occurred was b2.

There is no way to tell what happened.
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Theorem: Let C be a linear code and H its parity check matrix. Then C is a
b-burst-correcting code if and only if every two sets of b consecutive columns
in H consists of 2b linearly independent vectors.

Proof: Just look at such a linear dependency:

( 0 · · · 0 u1 · · · ub 0 · · · 0 v1 · · · vb 0 · · · 0 ) h1 · · ·hi hi+1· · ·hi+b hi+b+1 · · ·hj hj+1· · ·hj+b hj+b+1 · · ·hn

 = 0

This means that the two different bursts

( 0 · · · 0 u1 · · · ub 0 · · · 0 )

and minus

(0 · · · 0 v1 · · · vb · · · 0 )

have the same syndrome and vice-versa.
�
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Corollary (Reiger): Let C be a (cyclic) b-burst-correcting code with redun-
dancy r. Then r ≥ 2b, i.e. | C |≤ 2n−2b.

There is a further inequality for cyclic b-burst-correcting codes.

Theorem (Abramson): Let C be a cyclic b-burst-correcting code of length n
and redundancy r. Then

n ≤ 2r−b+1 − 1.

Proof: The number of cyclic bursts of length up to b is given by 1 + n2b−1.

The number of different syndromes is 2r.
So,

1 + n2b−1 ≤ 2r
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The theorem now follows from

1 + n2b−1 ≤ 2r

n2b−1 ≤ 2r − 1

n ≤ 2r−b+1 − 1

2b−1

n ≤ 2r−b+1 − 1

where we have used that n in an integer in the last step.

Later on we stall discuss codes that meet this inequality with equality, so-
called “optimal codes”.
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III Some old constructions
The techniques that are most commonly used are

• Interleaving block codes

• Concatenated codes

• Fire codes

We shall discuss these methods here briefly.



12

/ department of mathematics and computer science 17/64

III.1 Interleaving a block code

Let C be an [n, k, d] code. Fix a parameter t, the depth of the interleaving
process. Let ci, i ≥ 0, be the list of codewords, that one wants to transmit.

The first tn bits, that are transmitted, are obtained by reading out the co-
lumns of the matrix below from top to bottom, starting from the left-most
column and continuing to the right. Then transmit the next group, etc.

↓
c1,1 c1,2 · · · · · · c1,n codeword c1
c2,1 c2,2 · · · · · · c2,n codeword c2
· · · · · · · · · ·
· · · · · · · · · ·
ct,1 ct,2 · · · · · · ct,n codeword ct

↓
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Now look at:

r1,1 r1,2 r1,3 r1,4 · · · · · · r1,n codeword c1
r2,1 r2,2 r2,3 r2,4 · · · · · · r2,n codeword c2
· · · · · · · · · · · ·
· · · · · · · · · · · ·
· · · · · · · · · · · ·
rt,1 rt,2 rt,3 rt,4 · · · · · · rt,n codeword ct

Clearly a burst of length b in the transmitted sequence will affect any parti-
cular codeword at most db/te times.

So if db/te ≤ e, where C can correct e errors, then this burst pattern can be
correctly decoded.

Note that it is even sufficient that C is db/te-burst-correcting.
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In fact, this trick is trivial.

Take for C the binary [7, 4, 3] code. Since d = 3, this code can correct a
single error. Interleaving at depth 5 gives:

r1,1 r1,2 r1,3 r1,4 r1,5 r1,6 r1,7 codeword c1
r2,1 r2,2 r2,3 r2,4 r2,5 r2,6 r2,7 codeword c2
r3,1 r3,2 r3,3 r3,4 r3,5 r3,6 r3,7 codeword c3
r4,1 r4,2 r4,3 r4,4 r4,5 r4,6 r4,7 codeword c4
r5,1 r5,2 r5,3 r5,4 r5,5 r5,6 r5,7 codeword c5

So, a burst of length up to 5 affects every row at most once and thus can be
corrected.
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III.2 The concatenated code construction

Let C be an [n, k, d] code but not binary, but over an alphabet with 2m sym-
bols.

Very good codes of this kind exist because one can equip a set with 2m ele-
ments with a field structure: this means that addition, subtraction, multipli-
cation and division are all possible.

Now write each 2m-ary symbol as a binary m-tuple. In that way a binary
[nm, km] code is obtained.

( c1 , c2 , . . . , cn ) 2m-ary
↓ ↓ ↓

( a1, . . . , am , am+1 . . . , a2m , . . . , a(n−1)m+1, . . . , anm ) binary

On a CD and DVD they use a [28, 24, 5] code over 28.With this trick, you get
a binary code of length 28× 8 and cardinality (28)24, i.e. dimension 24× 8.
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A burst of length bwill affect at most 1+d(b−1)/me consecutive symbols in
the 2m-ary code C. If C is capable of correcting those, we have thus obtained
a b-burst-correcting [nm, km] code.

On the CD and DVD, m = 8 and the 28-code can correct 2 errors (since the
[28, 24, 5] has minimum distance 5).

( c1 , c2 , . . . , c28 ) 28-ary
↓ ↓ ↓

( a1, . . . , a8 , a9 . . . , a16 , . . . , a217, . . . , a224 ) binary

So, every burst of length up to 9 can be corrected, but many more patterns
can also be corrected.

In fact, they use this trick in combination with some kind of more advanced
interleaving.
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III.3 Fire codes

Definition: A Fire code ’59 is a cyclic code with generator polynomial

g(x) = (x2b−1 − 1)p(x),

where p(x) is an irreducible polynomial of degree m, m ≥ b, that does not
divide x2b−1 − 1. The block length of the Fire code is the smallest integer n
such that g(x) divides xn − 1.

Theorem: The Fire code, as defined above, has block length lcm[l, 2b − 1],
where l is the period of p(x). It is b-burst-correcting.

Recall that the redundancy r of a cyclic code satisfies r = deg(g(x)), so the
redundancy of the Fire code is given by r = 2b− 1+m ≥ 3b− 1. Compare
this with the Reiger bound r ≥ 2b.

The period of p(x) is the smallest positive l for which p(x)|(xl − 1).
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Proof by example:

Consider the binary Fire code with b = 4, generated by g(x) = (x7− 1)(1 +
x + x4).

Since 1+x+x4 has period 15, this Fire code has length n = lcm[7, 15] = 105,
redundancy 7 + 4 = 11, and dimension k = 105− 7− 4 = 94.

Now, let r(x) =
∑104

i=0 rix
i be a received word and let its syndrome (given by

s(x) ≡ r(x) (mod g(x))) have value

x9 + x7 + x5 + x4 + 1.

We reduce this further modulo the two factors of g(x): x7−1 and x4+x+1
and get

s1(x) ≡ x2 + x4 + x5 (mod x7 − 1),

s2(x) ≡ 1 + x2 (mod x4 + x + 1).
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Remember that r(x) = c(x) + xiB(x), where xiB(x) is the burst, B(0) =
B0 = 1, deg(B(x)) < 4, 0 ≤ i < 105 and where c(x) is a codeword (so it
has syndrome 0). The syndrome comes from xiB(x).

How can xiB(x) ≡ x2 + x4 + x5 (mod x7 − 1), when deg(B(x)) < 4?

0

1

2
3

4

6

5

0

1
0

1

0

1

0

Since the burst has length at most 4, there will be a gap along the circle of
length at least 3. Note that there can not be two gaps of length at least 3
(separated by ones) along the circle.
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0

1

2
3

4

6

5

0

1
0

1

0

1

0

The gap starts at position 6 and ends at position 1. So the burst starts at
position 2. We conclude that

B(x) = 1 + x2 + x3 and i ≡ 2 (mod 7).

From the second syndrome

(1 + x2 + x3)x2+7u ≡ 1 + x2 (mod x4 + x + 1)

one finds u = 14. So, the actual burst that occurred was: (1 + x2 + x3)x100.
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IV New(er) developments
About 25 years later two other classes of burst correcting codes received a lot
of attention.

1. Array codes

2. Optimal cyclic burst-correcting codes

They form the main topic of this presentation.
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IV.1 Array codes

Definition: An (n1, n2)-array code C consists of all n1 × n2 {0, 1}-arrays C
whose row and column sums are all congruent to zero modulo 2.

1 2 3 · · · · · · n2

1 ← even parity
2 ← even parity
... ...
... ...
n1 ← even parity
↑ ↑ ↑ ↑ ↑ ↑

even parity · · · even parity

It follows directly from this definition that an (n1, n2) array code C is a linear
code with length n1×n2, dimension (n1−1)(n2−1), and minimum distance
4.
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Example: n1 = 5, n2 = 8.

0 1 0 1 1 1 0 0
1 1 1 1 0 1 1 0
1 0 1 0 0 0 1 1
0 0 0 1 0 1 1 1

0 0 0 1 1 1 1 0

is a “codeword”.

This code has length 5× 8 = 40 and dimension 4× 7 = 28.
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Let R be a received word.

h1

h2
...
...
hn1

v1 v2 vn2

The horizontal and vertical syndrome of R are defined by:

hi =
n2∑
j=1

rij, 1 ≤ i ≤ n1, resp. vj =
n1∑
i=1

rij, 1 ≤ j ≤ n2.

Decoding a single error in this code is extremely simple, because an error at
location (i, j) results in the syndrome

h = (0, . . . , 0,
i

1, 0, . . . , 0)T and v = (0, . . . , 0,
j

1, 0, . . . , 0).
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Example continued:

Look at the received word:

1 1 0 0 0 1 0 1 0
0 1 0 0 1 0 1 0 1
1 0 1 0 1 1 0 0 0
0 0 1 1 0 1 1 0 0
0 0 1 1 0 1 0 1 0
0 0 1 0 0 0 0 0

It is clear where the error occurred.

So, decoding a single error is easy (but not very impressive).

How about decoding bursts?
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For burst-correction the particular read-out of the array is important. We
follow diagonals, one after another.

Example: n1 = 5, n2 = 6, so n = 30.

0 5 10 15 20 25
26 1 6 11 16 21
22 27 2 7 12 17
18 23 28 3 8 13
14 19 24 29 4 9

Without loss of generality we shall assume that n2 ≥ n1.
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It is not so difficult to see that C cannot correct all bursts of length up to n1.

Indeed, in our example, the two bursts of length 5 indicated below (and
many more) have the same syndrome.

0 5 10 15 20 25
26 1 6 11 16 21
22 27 2 7 12 17
18 23 28 3 8 13
14 19 24 29 4 9

and

0 5 10 15 20 25
26 1 6 11 16 21
22 27 2 7 12 17
18 23 28 3 8 13
14 19 24 29 4 9

Both have burst-pattern (1, 0, 0, 0, 1) and the positions of the ones have been
indicated in color.
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Let us now see when C can correct all bursts of length≤ n1 − 1.

With a little bit of work one can check that for n2 < 2n1− 3 there are always
two different weight-2 bursts of length≤ n1 − 1 with the same syndrome.

For instance the two bursts depicted below in red resp. blue have the same
syndrome.

0 5 10 15 20 25 1
26 1 6 11 16 21 0
22 27 2 7 12 17 0
18 23 28 3 8 13 1
14 19 24 29 4 9 0
1 0 0 1 0 0
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Theorem: Let C be the n1 × n2 array code, n2 ≥ n1, with +1-diagonal read-
out as defined above. Then C can correct all bursts of length≤ n1−1 if and
only if

n2 ≥ 2n1 − 3.

Proof by example: n1 = 5, n2 = 7. (Note that n2 = 7 = 2×5−3 = 2n1−3.)

Let the syndrome of a received word be given as below.

0 5 10 15 20 25 30 1
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0
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0 5 10 15 20 25 30 1
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0

Observation 1: Each burst of length ≤ n1 − 1 (= 4) affects each row and
also each column of the array at most once.

So, cancelation of ones does not occur during the computation of the hori-
zontal and vertical syndromes.

So, the top-row is affected by the burst, the second row is not, etc.

Similarly, the first two columns are affected by the burst, the third not, etc.



12

/ department of mathematics and computer science 36/64

0 5 10 15 20 25 30 1
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0

Observation 2: A burst of length ≤ n1 − 1 (= 4) affects at most n1 − 1
cyclically consecutive columns. So, at least n2 − n1 + 1 (= 3) (cyclically)
consecutive vertical syndromes vi will be zero.

By Observation 1 we know that the corresponding columns are error-free.
So columns 3, 4 and 5 are error free.

There cannot be two error-free gaps of length≥ (n2−n1+1), both flanked
by ones, because 2(n2 − n1 + 1) + 2 ≤ n2 (= ] columns) implies that
n2 ≤ 2n1 − 4. A contradiction!
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0 5 10 15 20 25 30 1
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0

We conclude that there is a unique gap of length ≥ n2 − n1 + 1 (= 3) in
(v1, v2, . . . , vn2

) when viewed cyclically.

Let the error-free gap, found above, end in column v − 1. Above v − 1 = 5,
so v = 6.

We now have

vi 6= 0⇒ i ∈ {v, v + 1, . . . , v + n1 − 2} modulo n2.

Above: vi 6= 0⇒ i ∈ {6, 7, 1, 2}.
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0 5 10 15 20 25 30 1 u
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0

← gap→ v

Observation 3: Let u be the index of the first row from the top with non-zero
syndrome (the top row here). Remember that v = 6 in this example.

Claim: position (u, v) is in error.

Indeed, row u and column v both must contain one error. If this error in
not on position (u, v), there must be an error on a position (i, v) with i > u
and an error on a position (u, j) with jε{v + 1, v + 2, . . . , v + n1 − 2}.
However, these positions cannot be in the same burst of length≤ n1 − 1.
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0 5 10 15 20 25 30 1
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0

The other error positions of the burst are now easily found with the same
rule: 27 and 28.

0 5 10 15 20 25 30 1
31 1 6 11 16 21 26 0
27 32 2 7 12 17 22 1
23 28 33 3 8 13 18 1
19 24 29 34 4 9 14 0
1 1 0 0 0 1 0
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To judge the efficiency of array codes we take n2 minimal, so n2 = 2n1 − 3,
and compute the redundancy.

The redundancy r is given by r = n2 + n1 − 1 = 3n1 − 4, while the
Reiger bound gives 2b = 2n1 − 2 as lower bound. So, the prize paid for the
simplicity of the coding and decoding consists of at most (n1 − 2) bits of
information.

Other read-outs have also been studied. In particular, the (−1)-read-out:
follow a diagonal and then go to the preceding one.

Zhang and Wolf generalize this to the s-read-out, where gcd(s, n) = 1.

0 25 15 5 30 20 10
11 1 26 16 6 31 21
22 12 2 27 17 7 32
33 23 13 3 28 18 8
9 34 24 14 4 29 19

s = 3.
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IV.2 Optimal, cyclic burst-correcting codes

Definition: A cyclic, b-burst-correcting code of length n is called optimal if
its redundancy r satisfies the Abramson inequality with equality:

n = 2r−b+1 − 1.

So, an optimal, cyclic, b-burst correcting code has length n = 2m − 1 and
redundancy r = m + b− 1. The Reiger bound, r ≥ 2b, yields

m ≥ b + 1.
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We know already such codes for b = 1 : the 1-error-correcting codes with
parity check matrix

H =
(
1 α α2 · · · αn−1 )

and generator polynomial g(x) = m1(x), the minimal polynomial (of de-
gree m) of the primitive element α in GF (2m).

Note that r = m.

These are the well known (binary) Hamming codes.

We shall denote a primitive polynomial of degree m by p(x) from now on.
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Consider the cyclic code C with generator polynomial g(x) = (x + 1)p(x),
or, equivalently,

C = {c(x) | c(1) = c(α) = 0}.
Its parity check matrix is given by:

H =

(
1 1 · · · 1 · · · 1
1 α · · · αi · · · αn−1

)
.

Code C has length n = 2m − 1 and minimum distance d = 4, as g(x) is
divisible by (x− 1)(x− α)(x− α2) and thus has 3 consecutive zeros (BCH
bound).

We shall show that it is an optimal, cyclic, 2-burst correcting code!

Note that indeed r = m + 1.
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H =

(
1 1 · · · 1 1 1 1 · · · 1
1 α · · · αi−1 αi αi+1 αi+2 · · · αn−1

)
.

The decoding of a burst of length≤ 2 is easy.

Let r(x) be the received word and s0 = r(1) and s1 = r(α) its syndrome.

• Clearly, if no error (burst) occurred, the syndrome will be s0 = s1 = 0.

• A burst of length 1 is the same as a single error.
If this occurred at the i-th coordinate, one has: s0 = 1 and s1 = αi.

• And a burst of length 2, say at coordinates i and i+1,will have syndrome
s0 = 1 + 1 = 0 and s1 = αi + αi+1 = αi(1 + α).

It is easy to distinguish these cases and to determine i from the syndrome.
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Abramson ’60 states that g(x) = (1+x+x2)p(x), where p(x) is a primitive
polynomial of even degree m ≥ 4, generates an optimal, cyclic, 3-burst-
correcting code, if a defined by

1 + x ≡ xa (mod p(x))

satisfies

a 6≡ 2 (mod 3).

Note that r = m + 2.

Abramson gives such codes form = 4, 6, 8 and 10 and conjectures that they
always exist for even m, m ≥ 4.

For instance, (1 + x + x2)(1 + x + x6) generates a optimal, cyclic, 3-burst-
correcting code of length n = 63.
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That conditions like

“the exponent m in n = 2m − 1 must be even”

“the a defined by 1 + x ≡ xa (mod p(x)) must satisfy a 6≡ 2 (mod 3).”

come up is not so surprising.

First of all, the generator polynomial g(x) = (1 + x + x2)p(x) must divide
xn − 1, i.e. x2m−1 − 1.

But 1+x+x2 = (x3−1)/(x−1) divides x2m−1−1 if and only if 3|(2m−1),
i.e. if and only if m is even.
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Remember from the discussion of Fire codes that each burst can be put in
polynomial notation

xiB(x),

with B(0) = 1 and degree(B(x)) < b.

B(x) reflects the pattern of the burst and i the coordinate where the bursts
starts.

Example: n = 7
Burst

0 0 0 1 0 1 0

starts at coordinate 3, has pattern 101, and is denoted by x3(1 + x2).
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To understand the second condition, observe that all bursts must have diffe-
rent syndromes, so their difference cannot be equal to a codeword. Consider
the two bursts 1 and xu(1 + x). Apparently

(1 + x + x2)p(x) 6 | (1 + xu(1 + x)).

This can be rewritten as:

(1 + x + x2) | (1 + xu(1 + x)) =⇒ p(x) 6 | (1 + xu(1 + x)).

But the condition (1 + x + x2) | (1 + xu(1 + x)) is equivalent with the
condition u ≡ 1 (mod 3).

So, we have

u ≡ 1 (mod 3) =⇒ p(x) 6 | (1 + xu(1 + x)).
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u ≡ 1 (mod 3) =⇒ p(x) 6 | (1 + xu(1 + x)).

Since p(x) is a primitive polynomial 1 + x ≡ xa (mod p(x)) for some
a, 0 ≤ a < n.

In this way one obtains the condition that p(x) does not divide 1 + xa+u for
any u with u ≡ 1 (mod 3).

By the primitivity of p(x)we know that p(x) | (1+xa+u) if and only if a+u ≡ 0
(mod n).

So, for each u ≡ 1 (mod 3) we have the condition that a+u 6≡ 0 (mod n).
But n ≡ 0 (mod 3).

Apparently a 6≡ 2 (mod 3), which is exactly the condition of Abramson.
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Elspas and Short ’62 state necessary conditions on the generator polynomial
g(x) of optimal, cyclic, burst-correcting codes for the general case.

Let e(x) be a polynomial without repeated factors and assume that e(0) = 1.

Then the smallest exponent m such that e(x) divides x2m−1 − 1 is well-
defined and will be denoted by me. It is called the degree of the splitting
field of e(x).

It follows that e(x) | (x2m−1 − 1) if and only if me |m.

For example, e(x) = 1 + x + x2 divides x3 − 1 = x22−1 − 1, so me = 2.

And thus (1 + x + x2) | (x2m−1 − 1) if and only if 2|m.

And e(x) = 1 + x + x3 divides x7 − 1 = x23−1 − 1, so me = 3.

And thus (1 + x + x3) | (x2m−1 − 1) if and only if 3|m.
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Theorem Let g(x) be the generator polynomial of an optimal, cyclic, b-burst
correcting code of length n = 2m − 1. Then g(x) can be factored into
e(x)p(x), where

1. e(x) is a square-free polynomial of degree b− 1 and e0 6= 0.

2. p(x) is a primitive polynomial of degreem, m ≥ b+1, such thatme|m,
where me is smallest integer with e(x) | (x2me−1 − 1).

Elspas and Short give no proof.

Conditions 1) and 2) partly follow from the fact that e(x)p(x) has to divide
xn − 1 = x2m−1 − 1, as this polynomial has no repeated factors and is not
divisible by x.

A proof of the other assertions in 1) and 2) is given by Abdel-Ghaffar, McE-
liece, Odlyzko, and van Tilborg (AMOT) in 1986.
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Elspas and Short do find all optimal, cyclic, 3-burst correcting codes genera-
ted by (1 + x2)p(x) for m = 4, 6, 8, 10 and m = 12.

Similarly, they find all optimal, cyclic, 4-burst correcting codes generated by
(1 + x3)p(x) for m = 10 and 12.

For m = 6 and 8 they do not exist. (Note that m has to be divisible by 2 and
is at least 5.)

And they find all optimal, cyclic, 4-burst correcting codes generated by (1 +
x + x3)p(x) for m = 9 and 12.

For m = 6 they do not exist. (Note that m has to be divisible by 3 and is at
least 5.)
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Elspas and Short only give a necessary condition for the existence of an op-
timal, b-burst-correcting code.

Theorem [AMOT]: A polynomial g(x) generates an optimal, cyclic, b-burst-
correcting code of length n = 2m− 1 if and only if g(x) can be factored into
e(x)p(x), where:

1. e(x) is a square-free polynomial of degree b− 1 and e(0) 6= 0.

2. p(x) is a primitive polynomial of degreem, m ≥ b+1, such thatme|m,
where me is the degree of the splitting field of e(x).

3. p(x) satisfies the AES conditions associated with e(x).
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We will not give a description of the AES conditions (named after Abramson,
Elspas and Short), but just say that they can be obtained by comparing all
possible pairs of different bursts patterns of length up to b.

Of course we like necessary and sufficient conditions for the existence of
optimum, cyclic b-burst correcting codes!
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Example

In case that b = 4 and e(x) = 1 + x3 there are the following four AES
conditions:

a 6≡ 2 (mod 3), where a is defined by 1 + x ≡ xa (mod p(x)),

b 6≡ 1 (mod 3), where b is defined by 1 + x + x3 ≡ xb (mod p(x)),

c 6≡ 2 (mod 3), where c is defined by 1 + x2 + x3 ≡ xc (mod p(x)),

and also

b + 2c 6≡ 2 (mod 3).

These conditions can be found in a similar way as in the b = 3 and e(x) =
1 + x + x2 case before: compare all burst patterns of length up to 4 and
require that they all have different syndromes.
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a 6≡ 2 (mod 3), with 1 + x ≡ xa (mod p(x)),

b 6≡ 1 (mod 3), with 1 + x + x3 ≡ xb (mod p(x)),

c 6≡ 2 (mod 3), with 1 + x2 + x3 ≡ xc (mod p(x)),

b + 2c 6≡ 2 (mod 3).

Possible solutions modulo 3 are

{a, b, c} = {0, 0, 0}, {0, 2, 1}, {1, 0, 0}, {1, 2, 1}

The big question is if a primitive polynomial exists that meets these requi-
rements.

One may hope so as the number of primitive polynomials grows exponenti-
ally in the degree.
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Theorem [AMOT]: Let e(x) be a square free polynomial of degree b− 1 with
e(0) 6= 0. Let me be the degree of the splitting field of e(x).

Then for all sufficiently large m with me|m, a primitive polynomial p(x)
of degree m exists such that g(x) = e(x)p(x) generates an optimal, cyclic,
b-burst-correcting code.

The proof consists of two parts.

First, it is shown that the AES-conditions can never be self-contradictory.

Secondly, by making use of Weil’s estimates, it is shown that for sufficiently
large m, with me|m, one can always find primitive polynomials of degree
m, satisfying the relations corresponding to the AES-conditions.
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This theorem implies that Abramson’s conjecture about the existence of op-
timal, cyclic, 3-burst-correcting codes is true for sufficiently large even valu-
es of m. By making careful estimates in the proof of this theorem and by
making use of the computer the following results were also established.

Theorem: For every even m, m ≥ 4, there exists an optimal, cyclic, 3-
burst-correcting code of length 2m − 1 with generator polynomial g(x) =
(1 + x + x2)p(x), where p(x) is a primitive polynomial of degree m.

Theorem: For every even m, m ≥ 10, there exists an optimal, cyclic, 4-
burst-correcting code of length 2m − 1 with generator polynomial g(x) =
(1 + x3)p(x), where p(x) is a primitive polynomial of degree m.

Finally we want to mention that (1 + x)(1 + x + x3)p(x), with p(x) =
1 + x + x2 + x3 + x5 + x9 + x10 + x13 + x15, generates an optimal, cyclic,
5-burst correcting code of length 215 − 1.
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V Research directions

• Multiple-burst correcting codes.

• Two-dimensional burst correcting codes.

• Efficient decoding of optimal, cyclic burst correcting codes.

• Improve on the very pessimistic bound in AMOT.

• ...
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Proof of 1) and 2) :

From g(x) | (xn− 1 = (x2m−1− 1), it follows that g(x) has a period dividing
n = 2m − 1.

If this period, say p, is less than 2m − 1, it follows, because g(x) | (xp − 1),
that xp − 1 is a codeword.

But this implies that bursts 1 and xp will have the same syndrome. A con-
tradiction with the assumption that the code is b-burst-correcting.

We conclude that

g(x) has period 2m − 1.

Write g(x) = f1(x) · · · fl(x) (distinct, irreducible polynomials).

The period u of a polynomial g(x) is the smallest positive integer for which
g(x) divides xu − 1.
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g(x) = f1(x) · · · fl(x)
Define

ri = degree of fi(x)
hi = period of fi(x)

From fi(x) | g(x) | (x2m−1 − 1) it follows that ri|m.

From fi(x) | (x2ri−1 − 1) it follows that hi|(2ri − 1.)

Since g(x) has period 2m − 1 we have

2m − 1 = period of g(x) = lcm1≤i≤lhi

2m − 1 | lcm1≤i≤l(2
ri − 1)

Since ri|m, 1 ≤ i ≤ l, it follows (number theory) that ri = m for at least
one value of i, say for i = 1.
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g(x) = f1(x)f2(x) · · · fl(x) (irreducible and distinct)

f1(x) has degree m (will be named p(x))

No other fi(x) can have degree m, because of the Reiger bound:

Indeed, m + b− 1 = r ≥ 2m implies b ≥ m + 1,
while r = m + b− 1 ≥ 2b implies that m ≥ b + 1.
A contradiction!

Write e(x) = f2(x) · · · fl(x) (its degree is b− 1)

It remains to prove: f1(x) has period 2m − 1.
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If h1 (the period of f1(x)) is less than 2m− 1, then e(x)(xh1 − 1) has degree
less than n = 2m − 1.

Trivially g(x) = e(x)f1(x) divides e(x)(xh1 − 1), so e(x)(xh1 − 1) is a code-
word!

Apparently the two distinct bursts e(x) and e(x)xh1 have the same syndro-
me. A contradiction!

Conclusion: f1(x) is a polynomial of degreemwhich has period n = 2m−1.
So, f1(x) is primitive polynomial.

�
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Outline of proof of 3).

a ≡ b ≡ c ≡ . . . ≡ 0 (mod 2me − 1)

is always a solution of the AES conditions. In other words, the AES conditi-
ons are not self-contradictory.

The number of primitive polynomials of degree m grows exponentially in
m.
By making use of Weil’s estimates, one can show that for sufficient large
m primitive polynomials exist, which do meet a ≡ b ≡ c ≡ . . . ≡ 0
(mod 2me − 1).


