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1 Secret Sharing Schemes

1.1 The problem of how to share a secret

The designer of a new car model puts the drawings in a safe every evening. But he likes his 
colleagues to be able to continue his work, if something happens to him. 

He does not trust any colleague enough to give him/her the combination. Instead, he wants to 
gives each of his 7 colleagues a “share” of  the secret combination in such a way that: 

1) Every 4-tuple of colleagues can recover the combination and open the safe.

2) Every 3-tuple of colleagues knows absolutely nothing about that combinaton.

Definition: An n, k threshold                 scheme is a secret sharing scheme among  n participants 
in such a way that:

1) Every k-tuple of participants can recover the combination and open the safe.

2) Every (k-1)-tuple of participants knows absolutely nothing about that 
combination.



Applications: 

Master keys that are used by banks to compute the personal secret keys on ATM cards. You 
do not want to store them at one location. 

Codes that send missiles to other countries. You do not want to entrust a single person with 
them. 

A   possible               complication: malicious colleagues.

1.2 An old, steel cabinet and a collection of padlocks

We start with an old, steel cabinet with an iron ring sticking out on which you can hang 
padlocks. 

The colleagues are called A, B, C, D, E, F and G. Each has the keys of some of the 
padlocks.

Notice:

1) For every three colleagues there must be at least one padlock that none of 
them can open. 

2) Each of the other colleagues must have the key of this padlock.

We put the names of the people who have the key of a particular padlock on that padlock in 
blue. In red we add the names of those who do not have the key of that padlock.
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A, B, C, D
have the key

A B C D

E F G
E, F, G
do not

Of course, you do not need two padlocks that both can be opened by A, B, C, D  and not by 
E, F, G.

É How many padlocks do you need?

The number of padlocks needed is the binomial coefficient 7
4
.

7

4
= 7¥6¥5¥4

4¥3¥2¥1
= 35.

É How many keys is colleague A, and each of the others, carrying around?  

For every 3-tuple not including A, there is one padlock that they cannot open and of which A 

must have the key. So, the answer is 6
3
.

Binomial6, 3

20

This is all not very practical!
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1.3 A safe with a number combination

We now look at safe with an old fashioned combination lock.  

For example, the combination is given by: 

19 - 82 - 63
Suppose that the owner/designer has two colleagues.

He could give

A the share 1 _ 8 _ 6 _   the left most digit of each numer, and

B the share _ 9 _ 2 _ 3  the right most digit of each number,

This leaves only 103 = 1000  possibilities for each of them to trt out, instead of the intended 
106 = 1 000 000. We do not want that.

1.3.1  A 2, 2 threshold scheme

A simple solution for two participants makes use of modulo 100 arithmetic: all calculations 
are done modulo 100. 

A gets three random 2-digits long numbers:

AA  RandomInteger100, 3

27, 35, 91
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B also gets three 2-digits long number, but computed in such a way, that the two shares add 
up (coordinate-wise) to the combination 19, 82, 63 (mod 100).

So 

Secret  19, 82, 63;

BB  ModSecret  AA, 100

92, 47, 72

Indeed

ModAA  BB, 100

19, 82, 63

Notice that you could as well have said that B’s share was generated in a random way and 
that A’s share was computed.

1.3.2  Also 3, 3, 4, 4 etc. threshold schemes

It is easy to generalize this approach to more participants in such a way that all are needed 
to recover the secret and that with one person missing the others do not know anything at all.

For example with three participants, you give A en B the random combinations:

AA  RandomInteger100, 3
BB  RandomInteger100, 3

41, 12, 14

96, 5, 22

The combination/share for C follows from

Secret  19, 82, 63;

CC  ModSecret  AA  BB, 100

82, 65, 27

Indeed
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ModAA  BB  CC, 100

19, 82, 63

This solution is clearly not flexible. You do not always want all participants to be present.

1.4 An n, k threshold scheme over R

In this chapter we perform all calculations in the field R of the real numbers.  In the next 
chapter we correct that.

Let us focus on the first number in the safe combination, so on S = 19.

1.4.1  A 7, 2 threshold scheme

Consider an arbitrary line through the point/secret 0, 19, for example f x = 19 - 2 x.

The 7 participants get the shares i, f i, i = 1, 2, …, 7.

fx_ : 19  2 x;

AA, BB, CC, DD, EE, FF, GG  Tablei, fi, i, 1, 7

1, 17, 2, 15, 3, 13, 4, 11, 5, 9, 6, 7, 7, 5

Plotfx, x, 0, 7,

Epilog  PointSize0.02, Point  Tablei, fi, i, 0, 7
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1 2 3 4 5 6 7

6

8
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12
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16

18

É Two participants come together

When 2 participants come together, for example B and E, they know the points 2, 15 and 
5, 9 and can easily find the line y = u x + v through them. 

1 2 3 4 5 6 7

8

10

12

14

16

18

They can use the formula

y =
y2-y1

x2-x1
x- x1+ y1
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or solve the two equations with two unknowns

15 = 2 u+ v

9 = 5 u+ v

Solve15  2 u  v, 9  5 u  v, u, v

u  2, v  19

to find the line

y = 19- 2 x

The secret follows from substituting x = 0, so S = 19.

One participant does not know anything. For instance, for F, with share 6, 7, every secret 
is still equally likely.

Null2

2 4 6 8

5

10

15

20
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2 4 6 8

5

10

15

20

É With liars

Suppose that E meets B, but purposely gives the wrong value, for example 5, 12. This yields

Solve15  2 u  v, 12  5 u  v, u, v

u  1, v  17

Their calculation gives the line y = 17 - x with “secret” 17. The safe will not open! 

Of course, B will accuse E of fraud, but E will accuse B equally hard of fraud. 

Then F enters the room. He has share 6, 7. There are now three candidate lines.

We use "InterpolatingPolynomial", the Lagrange interpolation formula,  instead of solving 
two equations with two unknowns. 

y  y1
x  x2

x1  x2

 y2
x  x1

x2  x1
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Evil  5, 12;

g  ExpandInterpolatingPolynomialBB, Evil, x
h  ExpandInterpolatingPolynomialBB, FF, x
k  ExpandInterpolatingPolynomialEvil, FF, x
Plotg, h, k, x, 0, 7,

PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0,
RGBColor0, 0, 1, RGBColor0.5`, 0.5`, 0.5`,

Epilog  PointSize0.02`, Point  BB, Evil, FF

17  x

19  2 x

37  5 x

1 2 3 4 5 6 7

5

10

15

20

25

30

35

Quite clearly, if one more honest person joins these participants, only the correct (green) line 
will remain and E will be identified as a liar. 

Lemma: Let 3 of four given points lie on a line l. Then there cannot be a different 

line, say m, also containing 3 of the given points. 

Proof: Two 3-tuples from a set of size 4, must have at least 2 points in common. These 2 
points already determine l and m. Apparently l = m. 

If there are 2 liars, 3 honest participants will not always be enough. For instance: 
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Con  3, 14; Evil  5, 12;

g  ExpandInterpolatingPolynomialBB, Con, Evil, x;
h  ExpandInterpolatingPolynomialBB, DD, FF, x;

Plotg, h, x, 0, 7,

PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0,

RGBColor0, 0, 1, RGBColor0.5`, 0.5`, 0.5`, Epilog 

PointSize0.02`, Point  BB, Con, DD, Evil, FF

1 2 3 4 5 6 7

6

8

10

12

14

16

18

It looks like the two liars have collaborated.

But with six participants, of which at most two are dishonest, there is again no problem.

Lemma: Let 4 of 6 given points lie on line l. Then there cannot be a different line, 

say m, also containing 4 of the given 6 points. 

Proof: Two 4-tuples from a set of size 6, must have at least 2 points in common. These 2 
points already determine l and m. Apparently l = m. 

Etc.

For each liar, you apparently need 2 additional honest participants to resolve the issue!

Theorem: Consider 2+2e shares of which at most e are false. The remaining shares 

all lie on the line l. Then there cannot be a different line, say m, also containing 2+e of the 
given points. 

With 1 + 2 e shares this is not necessarily the case.
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1.4.2  An 7, 3 threshold scheme

É Three participants come together

Consider an arbitrary parabola through the point/secret 0, 19, for example 
f x = 19 - 2 x + x2.

We give the 7 participants the shares i, f i, i = 1, 2, …, 7.

fx_ : 19  9 x  x2;

AA, BB, CC, DD, EE, FF, GG  Tablei, fi, i, 1, 7

1, 11, 2, 5, 3, 1, 4, 1, 5, 1, 6, 1, 7, 5

Plotfx, x, 0, 7,

Epilog  PointSize0.02, Point  Tablei, fi, i, 0, 7

1 2 3 4 5 6 7

5

10

15

When 3 participants come together, for example B and E, they know the points 3, 1, 
5, -1 and 6, 1 and can easily find the parabola y = u x2 + v x + w through them. They 

solve the three equations with three unknowns 

1 = u 32 + u 3+w

-1 = u 52 + v 5+w

5 = u 62 + v 6+w
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Solve1  u 32  v 3  w, 1  u 52  v 5  w, 1  u 62  v 6  w,

u, v, w

u  1, v  9, w  19

and find the parabola

x2 - 9 x+ 19

and thus the secret S = 19.

Of course, they could have used the interpolation formula:

y  y1
x  x2

x1  x2

x  x3

x1  x3

 y2
x  x1

x2  x1

x  x3

x2  x3

 y3
x  x1

x3  x1

x  x2

x3  x2

g  ExpandInterpolatingPolynomialCC, EE, FF, x;

Plotg, x, 0, 8,

PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0,

RGBColor0, 0, 1, RGBColor0.5`, 0.5`, 0.5`,

Epilog  PointSize0.02`, Point  CC, EE, FF

2 4 6 8

5

10

15

For two participants every secret is still equally likely. For instance for C and E
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g  ExpandInterpolatingPolynomial0, 5, CC, EE, x;

h  ExpandInterpolatingPolynomial0, 0, CC, EE, x;
k  ExpandInterpolatingPolynomial0, 5, CC, EE, x;

l  ExpandInterpolatingPolynomial0, 10, CC, EE, x;

S1  0, 5; S2  0, 0; S3  0, 5; S4  0, 10;

Plotg, h, k, l, x, 0, 8,
PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0,

RGBColor0, 0, 1, RGBColor0.5`, 0.5`, 0.5`, Epilog 

PointSize0.02`, Point  CC, EE, S1, S2, S3, S4

2 4 6 8

10

5

5

10

É With liars

Suppose that E gives an incorrect share, say 5, 7, in the presence of C and F. They will solve

Solve
1  u 32  v 3  w, 7  u 52  v 5  w, 1  u 62  v 6  w, u, v, w

u  3, v  27, w  53

and get the parabola y = -3 x2 + 27 x - 53 and thus the secret -53. The safe will not open. 

Now C knows that E or F is dishonest (or both), but not which one.

Suppose that D joins them with her share 6, 7. There are now 4 candidate parabolas.
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Evil  5, 7;

g  ExpandInterpolatingPolynomialCC, DD, Evil, x
h  ExpandInterpolatingPolynomialCC, DD, FF, x
k  ExpandInterpolatingPolynomialCC, Evil, FF, x
l  ExpandInterpolatingPolynomialDD, Evil, FF, x
Plotg, h, k, l, x, 2, 7,

PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0,

RGBColor0, 0, 1, RGBColor0.5`, 0.5`, 0.5`,

Epilog  PointSize0.02`, Point  CC, DD, EE, Evil, FF

67  37 x  5 x2

19  9 x  x2

53  27 x  3 x2

173  71 x  7 x2

3 4 5 6 7

20

10

10

20

Quite clearly, if one more honest person joins these participants, only the correct (green) line 
will remain and E will be identified as a liar. 

Lemma: Let 4 of 5 given points lie on parabola l. Then there cannot be a different 

parabola, say m, also containing 4 of the given 5 points. 

Proof: Two 4-tuples from a set of size 5, must have at least 3 points in common. These 3 
points already determine l and m. Apparently l = m. 
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If there are two liars, six participants are not always enough: 

Con  3, 5; Eve  5, 3;

g  ExpandInterpolatingPolynomialCC, DD, EE, FF, x
h  ExpandInterpolatingPolynomialCon, DD, Eve, x
Plotg, h, x, 0, 7,

PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0, Epilog 

PointSize0.02`, Point  2, 5, Con, DD, Eve, FF

19  9 x  x2

47  20 x  2 x2

1 2 3 4 5 6 7

10

20

30

40

But with seven participants, of which at most two are dishonest, there is again no problem.

Lemma: Let 5 of 7 given points lie on parabola l. Then there cannot be a different 

parabola, say m, also containing 5 of the given 7 points. 

Proof: Two 5-tuples from a set of size 7, must have at least 3 points in common. These 3 
points already determine l and m. Apparently l = m. 

Etc.

For each liar, you apparently need 2 additional honest participants to resolve the issue!

Theorem: Consider 3+2e shares of which at most e are false. The remaining shares 

all lie on a parabola l. Then there cannot be a different parabola, say m, also containing 
2+e of the given points. 
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With 2 + 2 e shares this is not necessarily the case.

1.4.3  An 7, 4 threshold scheme

Consider an arbitrary polynomial of degree 3 through the point/secret 0, 19, for example 
f x = 19 - 5 x + 7 x2 - x3.

We give the 7 participants the shares i, f i, i = 1, 2, …, 7.

fx_ : 19  5 x  7 x2  x3;

AA, BB, CC, DD, EE, FF, GG  Tablei, fi, i, 1, 7

1, 20, 2, 29, 3, 40, 4, 47, 5, 44, 6, 25, 7, 16

Plotfx, x, 0, 7,

Epilog  PointSize0.02, Point  Tablei, fi, i, 0, 7

1 2 3 4 5 6 7

10

10

20

30

40

When 4 participants come together, for example A, C, E and F, they know the points 
1, 20, 3, 40, 5, 44 and 6, 25 and can easily find the third degree polynomial  
y = u x3 + v x2 + w x + t through them. They solve the four equations with four unknowns 

20 = u 13 + u 12 +w 1+ t

40 = u 33 + u 32 +w 3+ t

44 = u 53 + u 52 +w 5+ t
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25 = u 63 + u 62 +w 6+ t

Solve20  u 13  v 12  w 1  t, 40  u 33  v 32  w 3  t,

44  u 53  v 52  w 5  t, 25  u 63  v 62  w 6  t, u, v, w, t

u  1, v  7, w  5, t  19

and find the third degree polynomial

-x3 + 7 x2 - 5 x+ 19

and thus the secret value S = 19.

Alternatively, they use

g  ExpandInterpolatingPolynomialAA, CC, EE, FF, x;

Plotg, x, 0, 8,

PlotStyle  RGBColor1, 0, 0, RGBColor0, 1, 0,

RGBColor0, 0, 1, RGBColor0.5`, 0.5`, 0.5`,

Epilog  PointSize0.02`, Point  AA, CC, EE, FF

2 4 6 8

80

60

40

20

20

40

Etc.

1.4.4  An n, k threshold scheme in general

Theorem:
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Take a random polynomial f x = S + a1 x + …ak-1 xk-1 of degree k - 1 

(through 0, S). 

Participant i, 1 £ i £ n, gets share i, f i.

When £ k - 1 participants gather, 

secret S remains completely unknown (each possibility is equally likely).

k participants can recover f x and determine S.

k + 2 participants can handle 1 liar.

k + 4 participants can handle 2 liars.

Etc.

1.5 The “real” scheme and its connection to RS codes

1.5.1  The n, k threshold scheme over a finite field

All the calculations in the previous chapter were over the reals. That is not realistic, because 
you also get negative numbers and fractions that way and they have no meaning in our 
context.

More importantly, we like to make statements like "every secret is still equally likely", but 

we have no uniform probability distribution over the reals.

The solution will be to work over a finite field Fq = GFq of size q.

Construction: of an n, k-threshold scheme for secret S in finite field Fq.

Let a1, a2, ... , an be n different, non-zero elements in Fq.
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Take a random polynomial f x = S + a1 x + … + ak-1 xk-1 of degree k - 1 

(through 0, S),
by choosing the coefficients ai, 1 £ i £ k - 1, randomly from GFq.   

Participant i, 1 £ i £ n, gets share ai, f ai.

When £ k - 1 participants gather, 

secret S remains completely unknown (each value in GFq is equally likely).

k participants can recover f x and determine S.

k + 2 participants can handle 1 liar.

k + 4 participants can handle 2 liars.

Etc.

Example: an n, k = 8, 4 threshold scheme for a secret in Z11.

We take ai = i, 1 £ i £ 8.

Let S = 7 be the secret and hidden in the polynomial of degree k = 3:

p  11;

s  7;

a  RandomInteger11;
b  RandomInteger11; c  RandomInteger11;

fx_ : 7  a x  b x2  c x3; n  8;

AA, BB, CC, DD, EE, FF, GG, HH 

Tablei, Modfi, p, i, 1, n
ListPlot0, s, AA, BB, CC, DD, EE, FF, GG, HH,

PlotStyle  DirectivePointSize.02, Blue

1, 10, 2, 5, 3, 0, 4, 3, 5, 0, 6, 10, 7, 8, 8, 2
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If BB, DD, FF, GG come together, they can recover f x and the secret by means of

ExpandInterpolatingPolynomial
BB, DD, FF, GG, x, Modulus  p, Modulus  p

7  6 x  3 x2  5 x3

Note also that three people know nothing about the secret, in the sense that every secret is 

equally likely. For instance, the following p polynomials of degree 3 all go through BB, FF, 

and GG and they take on each value in Z11 exactly once.

TableExpandInterpolatingPolynomial0, i, BB, FF, GG,

x, Modulus  p, Modulus  p, i, 0, p  1  TableForm

8 x  10 x2  6 x3

1  3 x  9 x2  9 x3

2  9 x  8 x2  x3

3  4 x  7 x2  4 x3

4  10 x  6 x2  7 x3

5  5 x  5 x2  10 x3

6  4 x2  2 x3

7  6 x  3 x2  5 x3

8  x  2 x2  8 x3

9  7 x  x2

10  2 x  3 x3
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1.5.2  Dealing with liars; the coding theory approach

The way we dealt with liars in Section 4 is of course not practical. With e liars, we need 
k + 2 e shares and have to find k + e honest shares among them.

But the description of the threshold scheme above calls for a coding theory approach.

Definition: Consider the finite field Fq = GFq and put n = q - 1.

Let a1, a2, ... , an represent the non-zero elements in Fq.  For any 1 £ k £ n, we 

define

RSn, k =  f a1, f a2, ... , f an f Œ Fqx, degree f  < k .

Then RS n, k is a linear code of length n over Fq with minimum distance 
d = n - k + 1

and (is equivalent to) the q-ary Reed-Solomon code of dimension k. 

Proof: For f , g Œ Fqx and u, v Œ Fq one has u. f + v.g Œ Fqx and 

degree f  < k and degreeg < k   î   degreeu. f + v.g < k 

It follows that RSn, k is a linear code of length n.

Clearly, the dimension is equal to k. 

A non-zero polynomial f Œ Fqx has at most as many zeroes as its degree. 

It follows that for f π 0, the weight of  f a1, f a2, ... , f an is at least n - k - 1.
As the minimum distance of a linear code equals its minimum non-zero weight, we conclude 
that d r n - k + 1.

In view of the Singleton bound, equality must hold.

To verify that this code is equivalent to the Reed-Solomon code, take ai = ai-1 for some 
primitive element a in Fq.

Then RSn, k as defined above can be generated by the polynomials xi, 0 b i < k, and thus 
has generator matrix:
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G =

1 1 1 ∫ ∫ 1

1 a a2 ∫ ∫ an-1

1 a2 a4 ∫ ∫ a2 n-1

ª ª ª ª

1 ak-1 a2 k-1 ∫ ∫ ak-1 n-1

,

the familiar form of the parity check matrix of the cyclic code (remember that 
an = aq-1 = 1) with generator polynomial x - 1 x - a ... x - ak-1. 
We conclude that G is generator matrix of a cyclic code with 
hx = x - 1 x - a ... x - ak-1 as parity check polynomial and thus with 

gx = x - ak x - ak+1 ... x - an-1 = x - a-1 x - a-2 ... x - a-n-k as generator 

polynomial. 

In view of the BCH bound this is another way of seeing that RSn, k is an n, k, n - k + 1q 

code.

The general construction of an n, k -threshold scheme in $1.5.1 allows for n < q - 1. In that 

case, some field elements are not substituted in the polynomial f .

The code that one now obtains is called a shortened Reed-Solomon code.

If the threshold scheme must be able to handle e liars, the corresponding RS code must be 

able to correct e errors, so its minimum distance must be at least 2 e + 1.

The redundancy of this code satisfies r = n - k = d - 1 = 2 e. 

This corresponds to the 2 e additional honest participants that were needed in the threshold 
scheme.

The good news for threshold schemes is that (shortened) Reed-Solomon codes allow very 

efficient decoding (Peterson, Berlekamp, Welch, etc.). 

Singleton                 bound: Let C be a code of length n with minimum distance d. Then 

C £ qn-d+1

In the special case that C is a linear n, k, d code, and thus C = qk,  it follows 

that

d £ n - k + 1.
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Codes that meet this bound with equality are called "optimal".

It follows that Reed-Solomon codes are optimal.

2 Symmetric Systems

Symmetric cryptosystems have been used for at least 2000 years. In these systems, the 
sender of a message and the intended receiver must share a common key. 

They are very popular because of their “symplicity” and high speed of operation. They are 
not based on mathematical assumptions, but make use of the ingredients that Claude 
Shannon recommended back in 1947: "confusion" and "diffusion".

Wikipedia: Claude E. Shannon  (April 30, 1916 – February 24, 2001) was an 
American mathematician, electronic engineer, and cryptographer known as “the 
father of information theory”.

Shannon’s description of a symmetric key cryptosystem is depicted in the following figure. 

Alice Encryption Decryption Bob

Key Source

Eve

Secure Channel

m Ekmc

m

Dkc
k k 




ê ê ê

Here, Ek is a 1-1 mapping, encrypting plaintext m (clear text) into ciphertext c. 

Dk is the inverse mapping, called decryption.
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The encryption depends on a secret key k that sender and receiver share.

One must assume that the encryption method is known to the eavesdropper Eve, but not the 

actual choice of the key k. 

É Enigma

The key of the Enigma consists of 

i) the choice and order of the rotors,
ii) their initial position and 
iii) a fixed initial permutation of the alphabet. 

3 Block Ciphers

3.1 Introduction

Block ciphers handle n bits at a time. Typical values are n = 64, 128, 192, and 256.

They have no memory and can operate at very high speeds. 

Campinas.nb 25



É Electronic Codebook

Block



Cipher

plaintext ciphertext

key

128 128

128 bits

bits bits

Often, the same device can be used for encryption and decryption. 

Typically, the block cipher consists of a sequence of identical looking rounds each operating 

under a round key that is computed from the key k. 

Each round is designed to realize "confusion" and "diffusion" in order to obscure 
dependencies and other statistical properties of the plaintext.

∫

  

    

Round 1 Round 2 Round 8

k1 k2 k8

plain

text

cipher

text

Note that the same plaintext will result in the same ciphertext as long as the key has not been 
changed.  To avoid this situation feedback is introduced. 
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É DES

The Data Encryption Standard (DES) is such a system. It operates on 64 bits at a time. 

It became a standard in 1976. Its (effective) key size is 56 bits. 

In 1999 a large collection of computers broke DES for the first time by exhaustive key search.

3.2 Advanced Encryption Standard (AES); Rijndael

3.2.1 AES

At the end of last century, the (American) National Institute of Standards and Technology 
(NIST) invited the cryptographic community to develop a successor for DES . 

The names of these proposals are CAST-256, CRYPTON, DFC, DEAL, E2, FROG, HPC, 
LOKI97, MAGENTA, MARS, RC6, RIJNDAAEL, SAFER+, SERPENT and TWOFISH. 

The second round of the selection was concluded in August 1999. The following contenders 
remained in the race: MARS (IBM), RC6TM (RSA Laboratories), RIJNDAEL (Daemen and 
Rijmen), SERPENT (Ross Anderson, Eli Biham, and Lars Knudsen) and TWOFISH (Bruce 
Schneier e.a.).

On October 2, 2000, the final selection was made: RIJNDAEL!

The block length and the key length in Rijndael can be independently specified to 128, 192, 
and 256 bits. 

The number of rounds in Rijndael depends in the following way on the the block length and 
the key length.

cipher\key 128 192 256
128 10 12 14
192 12 12 14
256 14 14 14

The round function consists of the following operations:

• ByteSub (affects individual bytes),

• ShiftRow (shifts rows),

• MixColumn (affects each column),

• RoundKey addition (overall XOR).

These are applied to the intermediate cipher result, also called the State: a 4¥ 4, 4¥ 6, resp. 
4¥ 8 matrix of which the entries consist of 8 bits, i.e. one byte. For example, when the block 
length is 192, one gets
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g g

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

where each ai, j consists of 8 bits. For example, a0,0 = 1, 0, 1, 1, 0, 0, 0, 1.
Let Nb be the number of columns in the array above. So, the the block cipher length is 32 Nb 
bits, or 4 Nb bytes (each byte consists of 8 bits), or Nb 4-byte words. 

3.2.2 One Round of Rijndael

É ByteSub

This is the only non-linear part in each round.

Apply to each byte ai, j two operations:

1) Interpret ai, j as element in F256 = GF28 and replace it by its multiplicative inverse,

if it is not 0, otherwise leave it the same. 

2) Replace the resulting 8-tuple, say x0, x1, …, x7 by 

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

x0

x1

x2

x3

x4

x5

x6

x7



1
1
0
0
0
1
1
0

.

The finite field GF28 is made by means of the irreducible polynomial 

ma = 1 + a + a3 + a4 + a8. This polynomial is not primitive!

Note that both operations are invertible.

<<FiniteFields`

f256  GF2, 1, 1, 0, 1, 1, 0, 0, 0, 1;

one  f2561, 0, 0, 0, 0, 0, 0, 0
  f2560, 1, 0, 0, 0, 0, 0, 0
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1, 0, 0, 0, 0, 0, 0, 02

0, 1, 0, 0, 0, 0, 0, 02

in  0, 1, 0, 0, 0, 0, 0, 0;

pol  
i1

8

ini i1

inver  1pol

0, 1, 0, 0, 0, 0, 0, 02

1, 0, 1, 1, 0, 0, 0, 12

A 

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

;

b  1, 1, 0, 0, 0, 1, 1, 0;

ModA.inver1  b, 2

1, 1, 1, 0, 1, 1, 1, 0

Instead of performing these calculations, one can also replace them by one substitution 
table: the ByteSub S-box.     

É ShiftRow

The rows of the State are shifted cyclically to the left using different offsets: do not shift row 
0, shift row 1 over c1 bytes, row 2 over c2 bytes, and row 3 over c3 bytes, where  

c1 c2 c3

128 1 2 3
192 1 2 3
256 1 3 4

.
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So

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

becomes

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,1 a1,2 a1,3 a1,4 a1,5 a1,0

a2,2 a2,3 a2,4 a2,5 a2,0 a2,1

a3,3 a3,4 a3,5 a3,0 a3,1 a3,2

É MixColumn

Interpret each column as a polynomial of degree 3 in x over GF28 and multiply it with 

 1+a x3 + x2 + x+a 

modulo x4 + 1.

Note that the above polynomial is invertible modulo x4 + 1.

g .;

gx_  1   x3  one x2  one x  

0, 1, 0, 0, 0, 0, 0, 02  x 1, 0, 0, 0, 0, 0, 0, 02 

x2 1, 0, 0, 0, 0, 0, 0, 02  x3 1, 1, 0, 0, 0, 0, 0, 02

Suppose that the first column looks like 

col  1    3  6  7, one, 2  4  5  6, ;

col  TableForm

1, 1, 0, 1, 0, 0, 1, 12

1, 0, 0, 0, 0, 0, 0, 02

0, 0, 1, 0, 1, 1, 1, 02

0, 1, 0, 0, 0, 0, 0, 02

colpolx_  col1  col2 x  col3 x2  col4 x3
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x2 0, 0, 1, 0, 1, 1, 1, 02  x3 0, 1, 0, 0, 0, 0, 0, 02 

x 1, 0, 0, 0, 0, 0, 0, 02  1, 1, 0, 1, 0, 0, 1, 12

ownexpandexpr_ :

Collectexpr . GF  GF$, x . GF$  GF

prx_  ownexpandcolpolxgx
prodx_  PolynomialModprx, x4  1

x2 0, 1, 0, 0, 0, 1, 0, 02 

x6 0, 1, 1, 0, 0, 0, 0, 02  x5 0, 1, 1, 1, 1, 0, 0, 12 

x 1, 0, 0, 1, 0, 0, 1, 12  x4 1, 0, 1, 0, 1, 1, 1, 02 

1, 0, 1, 1, 0, 0, 0, 12  x3 1, 1, 1, 0, 1, 1, 0, 02

0, 0, 0, 1, 1, 1, 1, 12  x2 0, 0, 1, 0, 0, 1, 0, 02 

x 1, 1, 1, 0, 1, 0, 1, 02  x3 1, 1, 1, 0, 1, 1, 0, 02

colafter  CoefficientListprodx, x;

colafter  TableForm

0, 0, 0, 1, 1, 1, 1, 12

1, 1, 1, 0, 1, 0, 1, 02

0, 0, 1, 0, 0, 1, 0, 02

1, 1, 1, 0, 1, 1, 0, 02

The inverse operation is a multiplication by

h .; x .;

hx_  1    3 x3  1  2  3 x2  1  3 x    2  3 ;

ownexpandPolynomialModgxhx, x4  1

1, 0, 0, 0, 0, 0, 0, 02

ownexpandPolynomialModprodxhx, x4  1

x2 0, 0, 1, 0, 1, 1, 1, 02  x3 0, 1, 0, 0, 0, 0, 0, 02 

x 1, 0, 0, 0, 0, 0, 0, 02  1, 1, 0, 1, 0, 0, 1, 12
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These design choices lead to the following properties:

- Each column of (Hamming) weight 1 is mapped to a column of weight 4.

- Each column of  weight 2 is mapped to a column of weight at least 3.

- Each column of  weight 3 is mapped to a column of weight at least 2.

- Each column of  weight 4 is mapped to a column of weight at least 1.

Now the connection with Coding Theory

Make “codewords” of length 8, by attaching the column after this MixColumn operation to 
the column before the operation in all possible ways. 

Joincol, colafter

1, 1, 0, 1, 0, 0, 1, 12, 1, 0, 0, 0, 0, 0, 0, 02,

0, 0, 1, 0, 1, 1, 1, 02, 0, 1, 0, 0, 0, 0, 0, 02,

0, 0, 0, 1, 1, 1, 1, 12, 1, 1, 1, 0, 1, 0, 1, 02,
0, 0, 1, 0, 0, 1, 0, 02, 1, 1, 1, 0, 1, 1, 0, 02

This code is linear and has dimension 4.

One apparently obtains an 8, 4, 5256 code!   

The designers could have chosen a shortened Reed-Solomon code for this purpose, starting 
with an 255, 251, 5256 RS code and shortening it to 8 coordinates.

But they checked all 8, 4, 5256 codes and took the most suitable for them, among others 
maximizing the number of 1’s in the generator matrix (Vincent Rijmen, private 
communication 2014). 

É Round Key Addition

XOR the whole matrix with a similar sized matrix (i.e. the Round Key) obtained from the 
cipher key in a way that depends on the round index.

Note that the XOR applied to a byte, really is an XOR applied to the 8 bits in the byte.

For example, if  

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5

a1,0 a1,1 a1,2 a1,3 a1,4 a1,5

a2,0 a2,1 a2,2 a2,3 a2,4 a2,5

a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

  ≈  

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5

k1,0 k1,1 k1,2 k1,3 k1,4 k1,5

k2,0 k2,1 k2,2 k2,3 k2,4 k2,5

k3,0 k3,1 k3,2 k3,3 k3,4 k3,5
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=

u0,0 u0,1 u0,2 u0,3 u0,4 u0,5

u1,0 u1,1 u1,2 u1,3 u1,4 u1,5

u2,0 u2,1 u2,2 u2,3 u2,4 u2,5

u3,0 u3,1 u3,2 u3,3 u3,4 u3,5

.

with u0,0 = a0,0≈ k0,0, the coordinate-wise exclusive or.

a0,0  1, 1, 1, 1, 0, 0, 0, 0; k0,0  1, 1, 0, 0, 1, 0, 1, 0;

Moda0,0  k0,0, 2

0, 0, 1, 1, 1, 0, 1, 0

4 Stream Ciphers

4.1 Introduction

 ……

s s

m m

c c

 
ê Ä

ê ê

ê ê

Algorithm
Same

Algorithm

Key
Same
Key

ciphertext

plaintext

i i

i i

i i

A stream cipher outputs one bit at a time.

It has some memory, say n bits.

It makes use of very simple electronic circuitry, like shift registers.

It can operate at very high speeds. 

4.1.1 Linear Feedback Shift Registers

The easiest building blocks for stream ciphers are Linear Feedback Shift Registers (LFSR). 
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An example is given by:

0 1 1 0 1

Let s0, s1, s2, s3 be the initial state of this register.

After one clock pulse, s0 will leave the register as output bit and the state changes to 
s1, s2, s3, s4 with s4 = s0≈ s1. 

Then s1 will leave the register as output bit and the state changes to s2, s3, s4, s5 with 
s5 = s1≈ s4.

So, the output bits s0, s1, s2, ...   of the register above satisfy the recurrence relation:

sk+4 = sk ≈ sk+1, k ≥ 0.

With the general picture of an LFSR

Output
s0 s1 sn2 sn

c1 cn2 cn1c01

Ä

   

Ä Ä ÄÄ…

…    ê ê ê ê

…

the output sequence sii≥0 is determined by the initial state s0, s1, …, sn-1 and the 

recurrence relation: 

(4.1)sk+n = c0 sk ≈ c1 sk+1≈…≈ cn-1 sk+n-1, k ≥ 0.

The coefficients ci, 0 £ i £ n - 1 are called the feedback coefficients.
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Without proof we mention:

Theorem
Let sii≥0 be the output sequence of (4,1). Then this sequence is periodic 
with period at most 2n - 1. 

Moreover the period is equal to 2n - 1 if and only if the polynomial 
c0 + c1 x + …cn-1 xn-1 + xn is a primitive polynomial. 

The polynomial f x = c0 + c1 x + …cn-1 xn-1 + xn is called the characteristic polynomial of 

the LFSR. 

It suffices to know 2 n consecutive output bits of the sequence sii≥0 to determine the actual 

LFSR in use and thus to determine the whole sequence.

For instance, if a cryptanalist knows or can guess s0, s1, …, s2 n-1, then the feedback 

coefficients ci can be computed from the n linear equations with n unknowns 

sk sk1 … … skn1

sk1 sk2 … … skn

. . … … .

. . … … .

. . … … .
skn1 skn … … sk2 n2

c0

c1

.

.

.
cn1



skn

skn1

.

.

.
sk2 n1

.

For this reason, one can not use LFRS's directly for encryption purposes. One has to 
combine more LFSR's in a non-linear way. 

4.1.2 The A5/1 for GSM

In GSM every conversation consists of sequence of frames, each lasting 4.6 millisecond. 

Each frame contains 114 bits for the communication from Alice to Bob and 114 for the 
communication from Bob to Alice.

Each conversation makes use of a session key K  of 64 bits. 

For each frame, the session key K  and  the publicly known frame counter Fn (22 bits long) 
generate 228 bits that are XOR-ed with the 2â114 = 228 bits of plaintext. 

É How are the 228 bits generated? 

Use the three LFSR's depicted below. Their output is XOR-ed to give the output sequence 
that is XOR-ed with the plaintext.

The characteristic polynomials of the registers aren given by

1+ x+ x2 + x5 + x19 for R1
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1+ x+ x22 for R2

1+ x+ x2 + x16 + x23 for R3

However the LFSR's are not always shifted at the same time. Each one has a single 
"clocking" tap (at positions 8, 10, and 10 for R1, R2, resp. R3). At each clock cycle those 

registers will shift that agree on their clocking tap with the majority value m of the three 
clocking taps c1, c2 and c3. This is called the"stop/go" rule. 

(Note that always at least 2 LFSR's will shift.) 

0

1 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 1

1 1 0 0 1 0 1 0 0 0 1 1 1 1 1 0

0 1 1 1 0 0 1 1 1 1 1 0 1

The generation of the 228 bits:

Put the LFRS's in their zero-state. Feed in the 64 bits of K  by clocking 64 times all 
three LFRS's (so no stop/go rule), each time XOR-ing the next bit of K  in parallel with 
the right most cell of each register . 

Continue in exactly the same way 22 more clock cycles to feed in the 22 bits of Fn.

The three LFRS's are clocked 100 more times with the stop/go rule. No output is 
generated so far. 
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The three LFRS's are clocked 228 more times with the stop/go rule to generate 228 
bits of output. 

4.2 The Berlekamp-Massey Algorithm

Let us now consider an output sequence sii≥0 made in a nonlinear way by a stream cipher, 

which is a deterministic algorithm in a finite state machine. This sequence will eventually be 

periodic, say with period p. 

This means that, except for a beginning part, sii≥0 can be generated in a trivial way by the 

LFSR with characteristic polynomial 1 + xp. Indeed, if the period is p then

sk+p = sk, k ≥ 0.

Therefore, the sequence sii≥0 which was possibly made in a non-linear way, can also be 

made by a LFSR (except for a finite beginning part). Here, we shall assume that the output 
sequence is periodic right from the start. The discussion above justifies the following 
definition.

Definition
The linear complexity (or linear equivalence) of a periodic sequence sii≥0 is the 

length of the smallest LFSR that can generate sii≥0.

A cryptanalist, who knows a segment of the output sequence, say s0, s1, …, sk-1, can try the 
following strategy:

i)  find the smallest LFSR that generates s0, s1, …, sk-1, 
ii) determine the next output bit of this LFSR and hope that it correctly "predicts'' the 
next bit sk of the sequence.

In that way, the cryptanalist can try to find the characteristic polynomial of the shortest 
LFSR that can generate sii≥0. 

With the sequence sii≥0 we associate the power series (also called generating function)

Sx = i=0
• si xi.
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Theorem 4.2
Each output sequence sii≥0 of the LFSR with characteristic polynomial 

f x defines a unique polynomial wx of degree less than n, by means of   

Sx f *x = wx ,

where f *x = c0 xn + c1 xn-1 + …cn-1 x + cn is the reciprocal of f x.
Proof: For each k ≥ 0, the coeffient of xn+k in

Sx f *x = s0 + s1 x + s2 x2 + … c0 xn + c1 xn-1 + …cn-1 x + cn 
is given by 

c0 sk + c1 sk+1 + … + cn-1 sk+n-1 + cn sk+n

which is 0 by (4.1).

Also, if S1x f *x = wx and S2x f *x = wx, then S1x - S2x f *x = 0 implies 

that S1x = S2x.
Of course, we only know s0, s1, …, sk-1, so we have to find f *x  and w x from

Sx fx   x (mod xk).

Massey (1969) saw the similarity between the equation Sx f *x = wx and the so-called key-

equation in a decoding algorithm for cyclic codes that Berlekamp presented two years earlier.

Jim Massey

Wikipedia: James Lee Massey (1934 – 2013) was an information theorist and 
cryptographer, Professor Emeritus of Digital Technology at ETH Zurich. His notable 
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work includes the application of the Berlekamp–Massey algorithm to linear codes, the 
design of the block ciphers IDEA (with Xuejia Lai) and SAFER, and the Massey-
Omura cryptosystem (with Jim K. Omura).

Elwyn Berlekamp

Wikipedia: Elwyn Ralph Berlekamp (1940) is an American mathematician. He is a 
professor emeritus of Mathematics and EECS at the University of California, 
Berkeley. Berlekamp is known for his work in coding theory and combinatorial game 
theory.
He is a member of the National Academy of Engineering (1977) and the National 
Academy of Sciences (1999). He was elected a Fellow of the American Academy of 
Arts and Sciences in 1996, and became a fellow of the American Mathematical Society 
in 2012. In 1991, he received the IEEE Richard W. Hamming Medal, and in 1993, the 
Claude E. Shannon Award. In 1998, he received a Golden Jubilee Award for 
Technological Innovation from the IEEE Information Theory Society.

Let us demonstrate the Berlekmap-Massey algorithm on a small example:

Consider the sequence
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sii=0
30 = 0, 0, 0, 0, 0, 1 , 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0.

All intermediate functions will also be printed below.

s  0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0;

Lol  0; fol  1;
diff  0; Clearx;

f  1; L  0; g  CoefficientListf, x;

DoIfMod
i1

L

gi sj  1  L  i, 2  sj, diff  diff  1,

Lne  Maxj  L, L;

fne  PolynomialModxLneL f  xLneLoldiff1 fol, 2;

IfLne  L, fol  f; Lol  L; L  Lne; diff  0,

diff  diff  1; f  fne; g  CoefficientListf, x;

Print"j", j, ", L", L, ", f", f, j, Lengths

j1, L0, f1

j2, L0, f1

j3, L0, f1

j4, L0, f1

j5, L0, f1

j6, L6, f1  x6

j7, L6, f1  x5  x6

j8, L6, f1  x5  x6

j9, L6, f1  x5  x6

j10, L6, f1  x5  x6

j11, L6, f1  x5  x6

j12, L6, fx5  x6

j13, L6, fx5  x6

j14, L6, fx5  x6

j15, L6, fx5  x6

j16, L6, fx5  x6

j17, L6, fx5  x6
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j18, L12, f1  x11  x12

j19, L12, f1  x10  x12

j20, L12, f1  x9  x12

j21, L12, f1  x8  x12

j22, L12, f1  x7  x12

j23, L12, f1  x6  x12

j24, L12, f1  x5  x12

j25, L13, fx  x5  x13

j26, L13, f1  x  x12  x13

j27, L14, f1  x  x2  x5  x12  x13  x14

j28, L14, fx2  x5  x14

j29, L14, fx2  x5  x14

j30, L16, f1  x  x4  x7  x12  x13  x16

j31, L16, f1  x  x4  x7  x12  x13  x16

5 Authentication codes

See Latex document.
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6 Error-Correcting Codes

6.1 A Linear Code of Length 7

6.2 A Linear Code of Length 15

6.3 Decoding of a Single Error is Easy. 

6.4 A Different Notation

6.5 Decoding Two Errors

6.6 Cyclic t-Error Correcting Codes

6.6.1 Binary cyclic codes

6.6.2 Decoding More Errors Efficiently

We will now look into the decoding of the binary BCH code C of length n = 2m - 1 with 
designed distance d = 2 t + 1. 

As before let a be a primitive element in F2m = GF2m.
The defining relation of the code C is:

(6.1)cx Œ C ï ca = ca2 = … = ca2 t = 0.

Suppose that cx is a transmitted codeword and that rx is received. 

The error vector follows from rx = cx + ex. Let ex have weight u with u £ t, by 
assumption.

The locations of the errors are denoted by the field error locations X j, 1 £ j £ u. 

In other words, if the locations of the errors are given by i1 < i2 < … £ iu, i.e. if 
ex = xi1 + xi2 +∫ + xiu ,  then the field error locations are given by 

X1 = ai1 , X2 = ai2 ,  …  Xu = aiu . 

Let

(6.2)S j = ra j, j ≥ 0.

The syndrome of the received word rx is given by S1, S2, …, S2 t and satisfies by 6.2

42 Campinas.nb



(6.3)

S j = ra j = ca j + ea j = ea j =

a j i1 + a j i2 +∫ + a j iu =i=1
u Xi

j,  1 £ j £ 2 t.

The goal is to find the Xi from these 2 t equations with u minimal.

Definition 6.1
The error locator polynomial sz = i=0

u si zi of the error vector is given by

sz = i=1
u 1- Xi z

Once the error-locator polynomial is known, its zeroes tell where the errors are.

For instance, if sz = 1 - a5 z 1 - a11 z, we know that two errors occured, namely at 

coordinates 5 and 11. 

Consider the generating function

Sz = j=1
• S j z j = j=1

• i=1
u Xi

j z j = i=1
u j=1

• Xi
j z j = i=1

u Xi z

1-Xi z
.

Multiply left and right hand sides with sz:

Szsz = i=1
u Xi z

1-Xi z
j=1

u 1- X j z = i=1
u Xi z jπi 1- X j z.

Add sz to both sides to get

sz 1+ Sz = sz+i=1
u Xi z jπi 1- X j z. 

The right hand side will be shortened to wz, a polynomial of degree at most u, the actual 
number of errors that occurred. So, by definition

wz = j=0
e w j z j = sz+i=1

u Xi z jπi 1- X j z. 

and we have the relation

sz 1+ Sz = wz. 
In view of (6.4), only S1, S2, …, S2 t are known.  
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Theorem 6.1  
Consider the t-error correcting BCH code of length n with designed 
distance 2 t + 1 and with parity check matrix as given in 6, 1.

Let rx be a received vector and S j the syndrome defined by S j = ra j, 
1 £ j £ 2 t. 

Put Sz =j=1
• S j z j.

Suppose that rx is not a codeword and that u £ t errors have been made, 
say at locations X j, 1 £ j £ u.

Let the error locator polynomial s(z) be defined by Def. 6.2. Then

s z 1 + Sz ∫ wz mod z2 t+1,

where sz and wz are polynomials of degree u, resp at most u, and 
where s0 = 1.

This equation is called the key equation. Finding sz and wz from this 
equation amounts to decoding rx.

There are many algorithms known in the literature to solve the key equation efficiently. One 
of these algorithms makes use of the extended version of Euclid’s Algorithm applied to the 
polynomials 1 + Sz and z2 t+1. 

Berlekamp (1967) does it iteratively. He solves

siz 1+ Sz ∫ wiz mod zi+1

for i = 0, 1, …, 2 t.

Massey (1969) saw the similarity of the key equation with equation Sz f *z = wz for the 

output sequence  S0, S1, S2 … of linear feedback shift registers with unknown characteristic 

polynomial f z of degree n (the degree of wz, also unknown, is less than n).    

He showed that Berlekamp’s iterative decoding algorithm can be translated to a technique 
to determine the linear complexity of a binary sequence.

It is called the Berlekamp-Massey algorithm.
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