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Abstract

As is the case of many studies, the data collected are limited and an exact value is recorded only if it

falls within an interval range. Hence, the responses can be either left, interval or right censored. Linear

(and nonlinear) regression models are routinely used to analyze these types of data and are based on the

normality assumption for the errors terms. However, those analyses might not provide robust inference

when the normality assumption (or symmetry) is questionable. In this article, we develop a Bayesian

framework for censored linear regression models by replacing the Gaussian assumption for the random

errors with the asymmetric class of scale mixtures of skew-normal (SMSN) distributions. The SMSN is

an attractive class of asymmetrical heavy-tailed densities that includes the skew-normal, skew-t, skew-

slash, the skew-contaminated normal and the entire family of scale mixtures of normal distributions as

special cases. Using a Bayesian paradigm, an e�cient Markov chain Monte Carlo (MCMC) algorithm

is introduced to carry out posterior inference. The likelihood function is utilized to compute not only

some Bayesian model selection measures but also to develop Bayesian case-deletion in�uence diagnostics

based on the q-divergence measures. The proposed Bayesian methods are implemented in the R package

BayesCR, proposed by the authors. The newly developed procedures are illustrated with applications

using real and simulated data.

Keywords: Bayesian modeling, Censored regression models, MCMC, Scale mixtures of skew-normal dis-

tributions

1. Introduction

Regression models with normal observational errors are usually applied to model symmetrical data.

However, it is well known that several phenomena are not always in agreement with the assumptions of

the normal model. A good alternative is to consider a more �exible distribution for the errors, such as the

Student-t. This is done in Fernández and Steel (1999), where some inferential procedures are discussed.

Ibacache-Pulgar and Paula (2011), propose local in�uence measures in the Student-t partially linear
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regression model. Other existing methods for robust estimation are based on the class of scale mixtures

of normal (SMN) distributions presented by Andrews and Mallows (1974). These distributions have

heavier tails than the normal one, and thus they seem to be a reasonable choice for robust inference and

includes as special cases many symmetric distributions, such as the normal, Pearson type VII, Student-t,

slash and contaminated normal. For an interesting review, including applications in mixed models, see

Meza et al. (2012). An another important wide class of distributions is the scale mixtures of skew�normal

distributions (SMSN), presented by Branco and Dey (2001). This class of distributions deals with heavy

tails and skewness simultaneously, and contains the entire family of SMN distributions as special case.

In this work, we are interested in �tting regression models when the responses are possibly censored.

Censoring occurs in several practical situations, for reasons such as limitations of measuring equipment or

from experimental design. Roughly speaking, a censored observation contains only a partial information

about an event of interest. For example, the needle of a scale that does not provide a reading over 200 kg

will show 200 kg for all the objects that weigh more than the limit. Another interesting example is the

following, extracted from Breen (1996): on a school examination, the pass mark is 40%. A certi�cate,

containing the status of the student (passed or not passed) is given to all of them, but only the students

who meet the pass mark have reported their scores. Suppose that we want to study the relation between

the scores and some other explanatory variables, like social class, gender and parental education. In

this case, the scores are the responses and are left-censored because, if yi denotes the score of student i

and he or she did not meet the limit, we only know that yi ≤ 39. The case of censored responses with

normal observational errors, denoted by N-CR, has been studied extensively in the literature, see for

example, Nelson (1977), Stapleton and Young (1984), Chib (1992), Thompson and Nelson (2003), Park

et al. (2007) and Vaida and Liu (2009), to mention a few. Arellano-Valle et al. (2012) and Massuia et al.

(2015) proposed extensions of the N-CR model by considering that the error term follows a Student-t

distribution. Symmetric extensions of the N-CR model can be obtained by assuming that the distribution

of the perturbations belongs to the scale mixture of normal (SMN) distributions family as in Garay

et al. (2015b). These papers provide extensions of the normal censored model for statistical modeling of

censored datasets involving observed variables with heavier tails than the normal distribution. The work

of Massuia et al. (2015) examines the performance of the model through case-deletion and local in�uence

techniques.

Here we suggest to use a �exible class of SMSN distributions, extending the previous cited works of

Arellano-Valle et al. (2012), Massuia et al. (2015) and Garay et al. (2015b), where the error component

distributions is assumed to follow a SMSN distributions. It is important to notice that the skew�normal

and skewed versions of some other classical symmetric distributions are SMSN members: the skew�t (ST),

the skew�slash (SSL) and the skew contaminated normal (SCN), for example. These distributions have

heavier tails than the skew�normal (and the normal) one, and thus they seem to be a more reasonable

choice for robust inference. In this paper, we propose a robust parametric approach of the censored linear

regression models based on the SMSN distributions, denoted by SMSN-CR, from a Bayesian perspective.
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In addition, we suggest an e�cient Gibbs-type algorithm for posterior Bayesian inference and discuss

some Bayesian diagnostic measures based on the q-divergence, as proposed by Peng and Dey (1995)

and Lachos et al. (2013), to detect in�uential observations, which are an essential part of the analysis

when using this kind of model, showing the drawbacks of the normal one and justifying the usefulness

of the more �exible class of the SMSN distributions. These Bayesian diagnostic measures can be easily

implemented directly from the MCMC output.

The rest of the paper is organized as follows. In Section 2, after brie�y outlining some basic notations

and conventions, we introduce the SMSN class of distributions. The SMSN censored linear regression

model model is presented in Section 3. We present a Gibbs-type algorithm for Bayesian estimation,

specifying priors distributions for the parameters of interest in Section 4. The model selection and

in�uence diagnostics issue is considered in Section 5. The proposed method is illustrated in Section 6, by

the analysis of a data set of housewife wages, and in Section 7, by considering the analysis of simulated

data sets. Section 8 concludes with a short discussion of issues raised by our study and some possible

directions for the future research.

2. Preliminaries

2.1. Notations and de�nitions

In this paper X ∼ N(µ, σ2) denotes a random variable X with normal distribution with mean µ

and variance σ2 and ϕ
(
· ;µ, σ2

)
denotes its probability density function (pdf). ϕ(·) and Φ(·) denote,

respectively, the pdf and the cumulative distribution function (cdf) of the standard normal distribution.

X ∼ Gamma(a, b) denotes a random variable with Gamma distribution with mean a/b and variance a/b2,

with a > 0 and b > 0. We use the traditional convention denoting a random variable (or a random vector)

by an upper case letter and its realization by the corresponding lower case. Random vectors and matrices

are denoted by boldface letters. X⊤ is the transpose of X. X⊥Y indicates that the random variables X

and Y are independent. For the random vectors X and Y, we use π(x) to denote the density of X and

π(x|y) to denote the conditional density of X|Y = y which, although being an abuse of notation, greatly

simpli�es the exposition.

2.2. Scale mixtures of skew-normal (SMSN) distributions

In order to de�ne the linear regression model with censored responses under the SMSN class, we start

with the de�nition of this family of distributions, its hierarchical formulation, and then we will introduce

some further properties. This class of distributions was proposed by Branco and Dey (2001) and contains

the entire family of SMN distributions (Andrews and Mallows, 1974; Lange and Sinsheimer, 1993), and

skewed versions of classic symmetric distributions such as the skew-Student-t and the skew-slash, among

others. Before we de�ne the SMSN class, we present the fundamental concept of skew-normal (SN)

distribution, given in Azzalini (1985).
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De�nition 1. A random variable Z has a skew-normal distribution with location parameter µ, scale
parameter σ2 and skewness parameter λ, denoted by Z ∼ SN(µ, σ2, λ), if its pdf is given by

f(z) = 2ϕ(z;µ, σ2)Φ

(
λ(z − µ)

σ

)
. (1)

The relation between the SMSN class and the SN distribution is given in the next de�nition.

De�nition 2. We say that a random variable Y has a SMSN distribution with location parameter µ, scale
parameter σ2 and skewness parameter λ, denoted by SMSN(µ, σ2, λ;H), if it has the following stochastic
representation:

Y = µ+ κ(U)1/2Z, U⊥Z, (2)

where Z ∼ SN(0, σ2, λ), κ(·) is a positive function and U is a positive random variable with cdf H( · ;ν)
indexed by a scalar or vector parameter ν.

The random variable U is known as the scale factor and its cdfH( · ;ν) is called themixing distribution

function. Note that, when λ = 0, the SMSN family reduces to the symmetric class of SMN distributions.

Now we present a hierarchical representation for Y ∼ SMSN(µ, σ2, λ;H) which is very convenient to

derive some mathematical properties and also to make Bayesian inference through the implementation

of a Gibbs-type algorithm. It was used by Basso et al. (2010) in the context of mixtures of SMSN

distributions and by Cancho et al. (2011) in the context of non-linear regression models, among others.

This representation is given by

Y = µ+∆T + κ(U)1/2τ1/2T1, (3)

where

∆ = σδ, τ = (1− δ2)σ2, δ =
λ√

1 + λ2
,

T = κ(U)1/2|T0|, T0⊥T1,

where T0 and T1 are standard normal random variables and | · | denotes absolute value.

The scale factor U can be discrete or continuous and the form of the SMSN distribution is determined

by its distribution. In this paper we take into account three members of SMSN class: SN, St and SSL

distributions, although there are another examples of distributions which belong to the SMSN family, as

the skew-contaminated normal, the skew-Cauchy, the skew-Pearson VII and the corresponding symmetric

versions.

Using the representation in Equation (2), we observe that

Y |U = u ∼ SN(µ, κ(u)σ2, λ).

Thus, integrating out U from the joint density of Y and U will lead to the following marginal density of

Y

f(y) = 2

∫ ∞

0

ϕ(y;µ, κ(u)σ2)Φ

(
λ(y − µ)

σκ(u)1/2

)
dH(u). (4)

Also, considering the stochastic representation given in Equation (3), we have that

Y |T = t, U = u ∼ N(µ+∆t , κ(u)τ),

T |U = u ∼ TN(0, κ(u) ; (0,∞)),
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where TN(µ, σ2 ; A) denotes the density of a normal distribution with mean µ and variance σ2 truncated

in the set A. Therefore, another way to write the pdf of Y is

f(y) =

∫ ∫
f(y|t, u)f(t|u)f(u) dt du (5)

= 2

∫ ∞

0

∫ ∞

0

ϕ(y ; µ+∆t , κ(u)τ)

× ϕ(t ; 0, κ(u)) dt dH(u).

The following Lemmas are useful to compute the model comparison criteria, which will be seen in

Section 5. Some new notation is now in order: Nm(µ,Σ) denotes the m−variate normal distribution

with mean vector µ and covariance matrix Σ and Φm(· ; µ,Σ) is the corresponding cdf. Tm (·; µ,Σ, ν)

represents the cdf of the m−variate Student-t distribution with mean vector µ, scale matrix Σ and ν

degrees of freedom. The special notation T (·; ν) is used for the univariate case with mean zero and scale

1.

Lemma 1. Let Y ∼ SMSN(µ, σ2, λ;H). Then, the cdf of Y can be written in the following ways:

F (y) = 2

∫ ∞

0

∫ ∞

0

ϕ(t) (6)

× Φ
( y − µ

σκ(u)1/2

√
1 + λ2 − λt

)
dt dH(u) and

F (y) =

∫ ∞

0

2Φ2

(
y(u)∗;µ∗,Σ

)
dH(u), (7)

where

y(u)∗ = (κ(u)−1/2y, 0)⊤, µ∗ = (µ, 0)⊤, (8)

Σ =

(
σ2 −δσ
−δσ 1

)
and δ =

λ√
1 + λ2

.

Proof. See Appendix Appendix A.

Lemma 2. Let X ∼ Np(µ,Σ) and U ∼ Gamma (α, β) be independent. Then, for any �xed vector
w ∈ Rp,

E
[
Φp

(√
Uw ; µ,Σ

)]
= Tp

(√
α

β
w ; µ,Σ, 2α

)
.

Proof. See Lemma 1 of Prates et al. (2014).

Following Basso et al. (2010), in this paper we consider κ(u) = 1/u in the stochastic representation (3),

since this choice leads to interesting mathematical properties. Besides, our study focus on some particular

cases of SMSN distributions. For each speci�c SMSN distribution, we compute its cdf, which is useful

for evaluating the likelihood in SMSN-CR models, and km = E[U−m/2], useful for the implementation of

the Gibbs-type algorithm for posterior inference about the parameters in these models. We consider the

following distributions:

• The skew-normal distribution: in this case we consider, in De�nition 2, P (U = 1) = 1, which

implies km = 1. The density of Y is de�ned in (1) and, using Equation (7) of Lemma 1, the cdf of

Y is given by

F (y) = 2Φ2

(
y∗;µ∗,Σ

)
, (9)
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where y∗ = (y, 0)⊤ and µ∗ and Σ are like in (8).

• The skew�t distribution: this case arises when we consider U ∼ Gamma(ν/2, ν/2), leading to

km = (ν/2)(m/2)Γ((ν −m)/2)

Γ(ν/2)
.

If Y has this distribution, we use the notation Y ∼ ST
(
µ, σ2, λ; ν

)
. The density of Y is

f(y|µ, σ2, λ; ν) =
2 Γ(ν+1

2 )

Γ( ν2 )
√
πνσ

(
1 +

d(y)2

ν

)− ν+1
2

(10)

× T

(
λ d(y)

√
ν + 1

ν + d(y)2
; ν + 1

)
,

y ∈ R,

where d(y) = (y−µ)/σ. A particular case of the skew-t distribution is the skew�Cauchy distribution,

when ν = 1. Also, when ν → ∞, we get the skew-normal distribution as the limiting case. Using

Equation (7) of Lemma 1, we obtain the following expression for the cdf of Y

F (y) = 2 T2 (y
∗ ; µ∗,Σ, ν) , (11)

where y∗ = (y, 0)⊤ and µ∗ and Σ are like in (8). Results (10) and (11) are proven in Appendix

Appendix B.

• The skew�slash distribution: in this case U ∼ Beta(ν, 1), with density h(u|ν) = νuν−1, 0 < u < 1,

with ν > 0, so

km =
ν

ν −m/2
, ν > m/2.

For a random variable Y with skew-slash distribution, we use the notation Y ∼ SSL(µ, σ2, λ; ν).

The density of Y is given by

f(y|µ, σ2, λ; ν) = 2ν

∫ 1

0

uν−1ϕ(y;µ, u−1σ2)

× Φ

(
u1/2λ(y − µ)

σ

)
du, y ∈ R.

The cdf of the skew-slash distribution does not have a closed form expression. However, using Equa-

tion (7) of Lemma 1, we can write it in terms of the following integral, which can be approximated

by numerical methods,

F (y) =

∫ ∞

0

2νΦ2

(
y(u)∗;µ∗,Σ

)
uν−1 du,

where y(u)∗, µ∗ and Σ are like in (8).

3. The SMSN censored linear regression model

The linear regression model under SMSN distributions is de�ned as

Yi = x⊤
i β + εi, i = 1, 2, . . . , n, (12)
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where β = (β1, . . . , βp)
⊤ is a vector of regression parameters. For subject i, Yi is a response variable and

xi = (xi1, . . . , xip)
⊤ is a vector of explanatory variables. We assume that

εi ∼ SMSN

(
−
√

2

π
k1∆, σ2, λ;H

)
, i = 1, . . . , n, (13)

are independent random variables. The value of the location parameter of εi is chosen in order to obtain

E[εi] = 0, as in the normal model, see Lemma 1 in Basso et al. (2010). Thus, if the moments exist, we

have

Yi ∼ SMSN(x⊤
i β + b∆, σ2, λ;H),

E[Yi] = x⊤
i β, and V ar[Yi] = k2σ

2 − b2∆2, i = 1, . . . , n,

where b = −
√

2
πk1.

Estimation and diagnostic analysis for linear and nonlinear models under SMSN distributions have

been widely discussed in the literature from a Bayesian and frequentist perspective see, for example,

Cancho et al. (2010), Zeller et al. (2011), Garay et al. (2011) and Labra et al. (2012), among others. In

this work we are interested in the situation in which the response variable can not be fully observed for

all subjects, i.e. when Yi in model de�ned in (12)�(13) is censored. Assuming left-censoring, Yi is a latent

variable, and we observe the variable Vi de�ned as

Vi =

 ci if Yi ≤ ci;

Yi if Yi > ci,
(14)

for some known threshold point ci, i = 1, 2, . . . , n. The censored linear regression model using SMSN

distributions, hereafter SMSN-CR model, is de�ned by combining (12)� (14). In this work we restrict

ourselves to the cases where ϵi, in (13), is skew-Student-t (the St-CR model) or skew-slash (the SSL-CR

model).

Consider the vector of parameters θ =
(
β⊤, σ2, λ, ν

)⊤
and the vector of observations v = (v1, v2, . . . , vn)

of V = (V1, V2, . . . , Vn). The log-likelihood function is given by

ℓ(v|θ) =
n∑

i=1

log [FSMSN (vi|θ;H)] 11{ci}(vi) (15)

+

n∑
i=1

log [fSMSN (vi|θ;H)] 11(ci,∞)(vi),

where 11A(·) is the usual indicator function of the set A, that is, 11A(x) = 1 if x ∈ A and 11A(x) = 0 if

x /∈ A.

In our theoretical development, we will use a left censoring pattern. Because the response Yi is de�ned

over the real line, extensions to right censored data are immediate. The right censored problem can be

represented by a left censored problem by transforming the response Yi and censoring level ci to −Yi and

−ci, respectively.
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4. Bayesian Inference for the SMSN-CR model

In this section we develop the Gibbs sampling algorithm to carry out Bayesian inference for the

SMSN-CR model. To do so, as stated in Section 3, the stochastic representation given in (3) plays a key

role. Following Cancho et al. (2011), we consider a reparameterization of the SMSN class of distributions

based on the representation mentioned before in order to simplify the mathematical development of the

algorithm.

Let ω = (β⊤,∆, τ, ν)⊤ be the vector of parameters in focus, which has a one-to-one correspondence

to the original vector of parameters θ =
(
β⊤, σ2, λ, ν

)⊤
, since

∆ = σ

√
λ

λ2 + 1
and τ =

σ2

λ2 + 1
.

Thus, we can obtain σ2 and λ from ∆ and τ using σ2 = τ + ∆2 and λ = ∆/
√
τ . Therefore, the Gibbs

sampler can be used to draw samples from the posterior distribution of ω or θ, indistinctly.

4.1. Prior distributions

In the Bayesian context, distributional prior speci�cations are needed for posterior inference. Following

Cancho et al. (2011), we assume that β ∼ Np (µ0,Σ0) , where µ0 and Σ0 (positive de�nite) are known.

Also, using the reparameterization mentioned in the beginning of this section, we assume that ∆ ∼

N(µ∆, σ
2
∆) and τ ∼ IGamma(aτ , bτ ), the inverse gamma distribution, where µ∆, σ

2
∆, aτ and bτ are

known. These choices are made to ensure conjugacy.

Regarding ν, the parameter that indexes the mixing distribution H(·; ν), we use the suggestion given

in Cabral et al. (2012), i.e., ν ∼ Texp (γ ; A) and γ ∼ Unif (a, b), where a and b are known hyperpa-

rameters. Texp (γ ; A) denotes the exponential distribution with rate parameter γ > 0 truncated on the

interval A, and Unif (a, b) denotes the uniform distribution on the interval (a, b). In order to guarantee

the existence of the �rst two moments, we set A = (2,∞) and A = (1,∞) for the St-CR model and for

the SSL-CR model, respectively.

We also assume independence between the parameters, thus the joint prior distribution of the param-

eter vector ω is

π(ω) = π (β)π (∆)π (τ)π (ν|λ).

Note that, although our prior assumption of independence may not be realistic for some sets of

parameters, it leads to posterior distributions with good mathematical properties, as conjugacy, leading

to an easy implementation of the Gibbs sampler. Moreover, if this assumption is not true, it will be

corrected by the posterior distribution and will not undermine the inference process.

4.2. MCMC estimation

In the Bayesian framework, estimators are obtained as characteristics associated to the posterior

distribution, like expectations, modes, etc. Due to its complex form, it is clear that it is prohibitive to

approximate its moments using techniques like numerical integration. Nowadays, it is well known that
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an e�cient way to approximate these integrals is through the generation of samples from the posterior

distribution via an MCMC-type algorithm (Gamerman and Lopes, 2006).

In our case, this algorithm can be developed using a data augmentation scheme, that consists in assume

that the latent variables in the model, given by the vector of censored responses Y = (Y1, Y2, . . . , Yn)
⊤

and by the vectors U = (U1, U2, . . . , Un)
⊤ and T = (T1, T2, . . . , Tn) � see representation (3) � could be

observed, and then obtain the full conditional distribution for each parameter in the model and for each

latent variable, de�ned as the conditional distribution of one variable given values of all the remaining

(the observed data included). Then, we draw samples from these (full conditional) distributions.

If we consider the augmented data, the stochastic representation of a random variable with SMSN

distribution is given by

Yi|Ui = ui, Ti = ti ∼ N(x⊤
i β +∆ti, u

−1
i τ),

Ti|Ui = ui ∼ TN(b, u−1
i ; (b,∞)),

Ui ∼ H(·|ν),

for i = 1, 2, . . . , n.

The algorithm is as follows.

Step 1. For i = 1, 2, . . . , n; if vi = ci sample yi (independently) from π(yi | vi, ti, ui,β,∆, τ), which is a

truncated normal distribution

TN(x⊤
i β +∆ti, u

−1
i τ ; (−∞, ci]).

Otherwise yi = vi .

Step 2. For i = 1, 2, . . . , n, sample ti independently from π(ti | vi, yi, ui,β,∆, τ), which is

TN(µti , σ
2
ti ; [b,∞)),

with µti =
∆

∆2+τ

(
yi − x⊤

i β + bτ
∆

)
and σ2

ti =
τ

ui(∆2+τ) .

Step 3. Sample β from π(β | v,y, t,u,∆, τ,ν), which is Np (µ
∗,Σ∗) with

µ∗ = Σ∗
(
Σ−1

0 µ0 +
X∗⊤y∗

τ
− ∆X∗⊤t∗

τ

)
and

Σ∗ =

(
X∗⊤X∗

τ
+Σ−1

0

)−1

,

where t∗ = (t∗1, . . . , t
∗
n)

⊤,y∗ = (y∗1 , . . . , y
∗
n)

⊤,X∗ = (x∗
1, . . . ,x

∗
n)

⊤ and, for i = 1, 2, . . . , n, t∗i =
√
uiti,

y∗i =
√
uiyi and x∗

i = (
√
uixi1, . . . ,

√
uixip)

⊤.

Step 4. Sample ∆ from π(∆ | v,y, t,u,β, τ,ν), which is N
(
µ∗
∆, σ

2∗
∆

)
, with

µ∗
∆ = σ2∗

∆

(
µ∆

σ2
∆

+
1

τ

n∑
i=1

uiti(yi − x⊤
i β)

)
and

σ2∗
∆ =

(
1

τ

n∑
i=1

uit
2
i +

1

σ2
∆

)−1

.
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Step 5. Sample τ from π(τ | v,y, t,u,β,∆,ν), which is a inverse gamma distribution

IGamma

(
aτ +

n

2
, bτ +

1

2

n∑
i=1

ui(yi − x⊤
i β −∆ti)

2

)
.

Step 6. Sample ui, i = 1, . . . , n, independently from π(ui | vi, yi, ti,β,∆, τ,ν), which is

1. for the skew-t case,

Gamma

(
ν

2
+ 1,

ν +Ai

2

)
,

where Ai =
(
yi − x⊤

i β −∆ti
)2

/τ + (ti − b)2;

2. for the skew-slash case,

TGamma

(
ν + 1,

Ai

2
; (0, 1)

)
,

a truncated gamma distribution on (0, 1);

3. for the skew-normal case, set ui = 1 for i = 1, 2, . . . , n.

Step 7. For skew-slash or skew-t, we need to sample ν from its full conditional distribution.

1. for the skew-t case,

(a) Sample γ from π(γ|ν), which is TGamma(2, ν; (a, b)).

(b) Using a Metropolis-Hastings path, sample ν from its full conditional distribution

π(ν | v,y, t,u,β,∆, τ, λ) ∝ (16)(
(ν/2)

ν/2

Γ(ν/2)

)n

exp

{
−ν

(
1

2

n∑
i=1

ui + γ

)}

×
n∏

i=1

u
ν
2−1
i 11(2,∞)(ν).

We use the following arti�cial Gaussian state space model proposed by Abanto-Valle et al.

(2015): given an observation ν(j−1) obtained at stage j − 1, generate a candidate ν∗ from

q(·|ν(j−1), · · · ), which is the density of the truncated normal distribution

TN

(
ν(j−1) − cν(j−1)

dν(j−1)

,

√
− 1

dν(j−1)

, (2,∞)

)
,

where

cν(j−1) =
∂ log π(ν| · · · )

∂ν

∣∣∣∣
ν=ν(j−1)

and

dν(j−1) =
∂2 log π(ν| · · · )

∂2ν

∣∣∣∣
ν=ν(j−1)

.

The new observation ν∗ is accepted with probability

min

{
π(ν∗| · · · ) q

(
ν∗|ν(j−1), · · ·

)
π(ν(j−1)| · · · ) q

(
ν(j−1)|ν∗, · · ·

) , 1} ,

where π(ν∗| · · · ) denotes (16) evaluated using the current values of γ and u.
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2. for the skew-slash case,

(a) Sample γ from π(γ|ν), which is TGamma(2, ν; (a, b)).

(b) Sample ν from π(ν | v,y, t,u,β,∆, τ, λ) which is equal to

TGamma

(
n+ 1, γ −

n∑
i=1

log (ui) ; (1,∞)

)
;

5. Bayesian model selection and in�uence diagnostics

5.1. Model comparison criteria

There are several propositions for Bayesian model choice criteria, which are useful to compare com-

peting models �tting the same data set. For a review, see Ando (2010). One of the most used in applied

works is derived from the conditional predictive ordinate (CPO) statistic, which is based on the cross

validation criterion to compare the models. Let z = {z1, . . . , zn} be an observed random sample from

π(·|θ). For the i-th observation, i = 1, 2, . . . , n the CPOi is written as

CPOi =

∫
π(zi|θ)π(θ|z(−i))dθ =

(∫
π(θ|z)
π(zi|θ)

dθ

)−1

, (17)

where z(−i) is the sample without the i-th observation. For the proposed model, the CPOi does not have

a closed form. However, it is easy to see, from (17), that a Monte Carlo approximation can be obtained by

using a MCMC sample {θ1, . . . ,θQ} from the posterior distribution π(θ|z) (after burn-in and thinning).

It is given by Dey et al. (1997)

ĈPOi =

(
1

Q

Q∑
q=1

1

π(zi|θq)

)−1

.

A summary statistic of the CPOi's, is the so-called Log-Marginal Pseudo Likelihood (LPML) for the

model, de�ned by

LPML =
n∑

i=1

log(ĈPOi).

Larger values of LMPL indicate better �t.

The deviance information criterion (DIC), proposed by Spiegelhalter et al. (2002), measures at the

same time goodness of �t and model complexity. The deviance is de�ned as

D(θ) = −2 log

(
n∏

i=1

π(zi|θ)

)
.

In connection with a measure of model complexity, the criterion considers a measure of the e�ective

number of parameters in the model. It is de�ned by

ρDIC = D(θ)−D(θ̃),

where the �rst term is the posterior expectation of the deviance, given by

D(θ) = −2
n∑

i=1

E [log π(zi|θ)|z] ,

11



and the second term is the deviance evaluated at some point estimate θ̃ of θ. The posterior mean is a

natural choice for θ̃. Other alternatives are the posterior mode or median. Finally, we de�ne the DIC by

DIC = 2ρDIC +D(θ̃) = 2D(θ)−D(θ̃).

Again, we can see that the computation of the integral D(θ) is a complex numerical problem, and

a good solution can be obtained using a MCMC sample {θ1, . . . ,θQ} from the posterior distribution.

Thus, we can obtain an approximation of the DIC by �rst approximating D(θ) by the sample posterior

mean of the deviations

D̂(θ) = − 2

Q

Q∑
j=1

log

(
n∏

i=1

π(zi|θj)

)
and, after this, we compute

D̂IC = 2 D̂(θ)−D(θ̃).

More recently, Watanabe (2010) introduced another criterion for model selection that takes into

account goodness of �t and complexity, the Watanabe-Akaike information criterion (WAIC), and proved

that it is asymptotically equivalent to the Bayes cross-validation loss. First, let us de�ne the log pointwise

predictive density, given by

p(z) =

n∑
i=1

log

∫
π(zi|θ)π(θ|z) dθ.

Basically, WAIC is p(z) plus a correction for the e�ective number of parameters to adjust for over�t-

ting. There are two di�erent approachs to calculate this correction and both can be viewed as approxi-

mations to cross-validation, as discussed in Gelman et al. (2014). The �rst of them is similar to the one

used on ρDIC and is given by

ρWAIC1 = 2 p(z) +D(θ).

The other one is de�ned by

ρWAIC2 =
n∑

i=1

V ar [log π(zi|θ)|z] .

Finally, the two versions of the WAIC criterion are given by

WAICk = 2 ρWAICk
− 2 p(z) k = 1, 2. (18)

It is important to notice that in Watanabe's original de�nition, the WAIC criterion was de�ned only

as −p(z)/n plus a corretion. Here, following the suggestion made by Gelman et al. (2014), we multiplied

this term by −2 so as to be on deviance scale.

Again, computation of both versions of WAIC involves calculation of integrals which usually raise

numerical problems. Thus, one can approximate the value of WAIC using a MCMC sample, as it was

12



done in the DIC criterion case. First, the approximation of p(z) is given by

p̂(z) =

n∑
i=1

log

 1

Q

Q∑
j=1

π(zi|θj)


and then, considering the approximation of D(θ) given before, the approximation of �rst version of WAIC

criteria is given by

ŴAIC1 = 2 p̂(z) + 2 D̂(θ).

The approximation of the second version of WAIC, ŴAIC2, can be calculated if we consider the

sample variance V Q
j=1(x) = 1

Q−1

∑Q
j=1(xj − x̄)2 as an estimate of the variance, where x̄ = 1

Q

∑Q
j=1 xj ,

and use the MCMC sample {θ1,θ2, . . . ,θQ} to approximate the value of π(zi|θ), i = 1, 2, . . . , n, that is

π̂(zi|θ) =
1

Q

Q∑
j=1

π(zi|θj).

Comparing the two versions of the WAIC criterion, Gelman et al. (2014) points out that ŴAIC2 is

more recommended for pratical use than ŴAIC1, since its series expansion has closer resemblance to the

series expansion for leave-one-out cross-validation and gives results that are closer to this method.

We also use the expected Akaike information criterion (EAIC), see Brooks (2002), and the expected

Bayesian information criterion (EBIC), see Carlin and Louis (2001), to compare models. These criteria

are de�ned by

EAIC = D(θ) + 2ϑ and EBIC = D(θ) + ϑ log (n) ,

where ϑ is the number of parameters in the model. Replacing D(θ) by D̂(θ), one can obtain an estimate

of these criteria.

Note that, for all these criteria, the evaluation of the likelihood function π(z|θ) is a key aspect. In

our case, it is given by (15).

To evaluate model adequacy, we use a discrepancy measure based on the posterior predictive distri-

bution. One can use any pre-�xed statistic to measure if its observed value is extreme relative to the

reference distribution (the posterior predictive distribution). If this is the case, there is some concern

with respect to the assessment of model �t to the data. De�ne yi to be the observed data. Gelman et al.

(2004) use a function of the log-likelihood as a summary statistic, given by

T (y,θ) = −2
n∑

i=1

log
[
π(yi | θ)

]
. (19)

The Bayesian p-value/posterior predictive p-value, proposed by Rubin (1984), is de�ned to be

pB = Pr(T (ypr,θ) ≥ T (y,θ)|Y = y),

where ypr denotes a simulated draw from the posterior predictive distribution. It is the number of times

T (ypr,θ) exceeds T (y,θ) out of L simulated draws. According to Gelman et al. (2004, pp. 180), a model

is suspect if a discrepancy is of practical importance and its p-value is close to 0 or 1. An extreme p-value
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implies that the model cannot be expected to capture this aspect of the data. A very small or very

large p-value (< 0.05 or > 0.95, say) signals model misspeci�cation, i.e., the observed pattern would be

unlikely to be seen in replications of the data under the true model.

5.2. In�uential observations

In this section we consider some Bayesian diagnostic measures of in�uence. Our focus is on case

deletion methods, which detect observations that have a global in�uence in the inferential process.

Computation of divergence measures between posterior distributions with and without a given subset

of the data is a useful way of quantifying in�uence. The q-divergence measure between two densities π1(·)

and π2(·) for θ (Csiszar, 1967) is de�ned by

dq(π1, π2) =

∫
q

(
π1(θ)

π2(θ)

)
π2(θ)dθ, (20)

where q is a convex function such that q(1) = 0. Some speci�c divergence measures are obtained by

considering di�erent options for q(·). For example, the Kullback-Leibler divergence is obtained when

q(z) = − log (z); the J-distance divergence (a symmetric version of Kullback-Leibler divergence) is ob-

tained when q(z) = (z − 1) log(z) and the L1-distance divergence is obtained when q(z) = |z − 1| .

Let y = {y1, . . . , yn} be the sample and I a subset of {1, . . . , n}. Let us de�ne yI = {yi; i ∈ I} and

denote its complement set by y−I . The q-in�uence of yI on the posterior distribution of θ is obtained by

considering π1(θ) = π1(θ|y(−I)) and π2(θ) = π(θ|y) in (20). This in�uence measure can be written as

dq(I) = E

[
q

(
π1(θ|y(−I))

π2(θ|y)

)
|y
]
. (21)

It is important to note that all these measures can be approximated by using the MCMC posterior

samples. Observe that they do not determine when a speci�c set of observations is in�uential or not.

A way to circumvent this drawback is to establish a threshold point to help each a decision. In this

direction, a proposition was made by Peng and Dey (1995) and Vidal and Castro (2010), which is given

next.

Suppose that we toss a coin one time with probability p ∈ [0, 1] of heads. If x = 1 means �heads� and

x = 0 otherwise, the associated probability function is π1(x|p) = px(1− p)1−x, with x = 0, 1. If the coin

is unbiased, we have π2(x|p) = 0.5, x = 0, 1. From (20), the q-divergence between a (possibly) biased

and an unbiased coin is given by

d∗q(p) =
q(2p) + q(2(1− p))

2
.

Note that d∗q(p) increases as pmoves away from 0.5, is symmetric around p = 0.5 and achieves its minimum

value at p = 0.5, which is the point where π1(·) = π2(·) (in this case, we also have d∗q(0.5) = q(1) = 0).

Regarding the L1 distance divergence measure, if we consider p ≥ 0.80 as a strong bias, then we can

say that the observation i is in�uential when dL1({i}) ≥ 0.60, since d∗L1
(0.80) = 0.60. Similarly, for the

Kullback-Leibler and J−distance divergences, we have d∗KL(0.80) ≈ 0.2231436 and d∗J(0.80) ≈ 0.4158883,

respectively. Thus, if we use the Kullback-Leibler divergence, we can consider an in�uential observation

when dKL({i}) > 0.22 and, using the J-distance, an observation with dJ({i}) > 0.41 can be considered

as in�uential.
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6. Data analysis

In order to study the performance of our proposed model and algorithm, we analyze a real data set.

The computational procedures of this section, and of the next section, were implemented using the R

software (R Development Core Team, 2015), through the package BayesCR (Garay et al., 2015c). We

consider the wage rate data set described in Mroz (1987), where a measure of the wage of 753 married

white women, with ages between 30 and 60 years old in 1975, is evaluated. Of 753 women considered in

this study, 428 worked at some point during that year. Thus, the variables are:

• yi : wage rates, de�ned as the average hourly earnings. If the wage rates are set equal to zero, these

wives did not work in 1975. Therefore, these observations are considered left censored at zero;

• xi1: wife's age;

• xi2: years of schooling;

• xi3: the number of children younger than six years old in the household;

• xi4: the number of children between six and nineteen years old.

Each of the vectors of explanatory variable values is given by x⊤
i = (1, xi1, xi2, xi3, xi4) for i = 1, 2, . . . , 753.

This data set was analyzed by Arellano-Valle et al. (2012) using a censored regression model with Student-

t responses and, more recently, Garay et al. (2015a) and Garay et al. (2015b) using a censored regression

model with SMN responses from a Bayesian and a frequentist point of view, respectively. Here, we revisit

this data set in order to evaluate the performance of the proposed Bayesian methods considering the class

SMSN-CR.

6.1. Estimation

In the estimation process, we consider the prior densities discussed in Subsection 4.1. We generated two

parallel independent MCMC runs of size 400,000 with widely dispersed initial values for each parameter,

considering a burn-in of 100,000 iterations and a thin of 30.

The convergence of the MCMC chains was monitored using trace plots, autocorrelation plots, and

Gelman-Rubin R̂ diagnostics. Table 1 reports the posterior means (Mean), standard deviations (SD),

highest posterior density (HPD) credible intervals (95%) and Gelman-Rubin statistic (R̂) of the param-

eters after �tting the di�erent SMSN-CR models. One can notice that for all the models, except the

SSL-CR, the HPD interval for β1 contains the value 0. Also, notice that the small value of the estimate

of ν for the St-CR and SSL-CR models indicates a lack of adequacy of the skew-normal (or normal)

assumption. Table 2 compares the �t of the three asymmetric models and the N-CR model using the

model selection criteria discussed in Section 5.1. Note that the models with heavy tails (St-CR and

SSL-CR) perform signi�cantly better than the N-CR and SN-CR models. Moreover, it seems that adding

the extra skewness parameter also improves data �tting, as can be seen comparing the symmetric model

N-CR with its asymmetric version, SN-CR. In the end, the SSL-CR model outperforms all the rest. In
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Table 2 one can also �nd the values of pB, the Bayesian p-value calculated with the posterior sample of

the parameters. These values indicate no lack of �t at all.

Model Parameters Mean SD HPD (95%) R̂

N-CR β1 -2.752 1.748 (-6.133; 0.665) 1.000003
β2 -0.106 0.028 (-0.161;-0.051) 1.000007
β3 0.731 0.084 ( 0.569; 0.896) 0.999999
β4 -3.056 0.448 (-3.923;-2.188) 1.000000
β5 -0.215 0.153 (-0.521; 0.077) 1.000003
σ2 21.325 1.5999 (18.222;24.483) 1.000010

SN-CR β1 -1.034 1.632 (-4.178;2.206) 1.000004
β2 -0.120 0.026 (-0.170;-0.070) 0.999999
β3 0.675 0.081 ( 0.519; 0.836) 0.999999
β4 -3.243 0.442 (-4.112;-2.389) 1.000005
β5 -0.259 0.146 (-0.542;0.030) 1.000001
σ2 33.708 3.270 ( 27.143; 39.833) 1.000229
λ 1.803 0.380 ( 1.159; 2.576) 1.000663

St-CR β1 -3.058 1.516 (-5.856; 0.083) 1.000025
β2 -0.088 0.024 (-0.133;-0.040) 1.000011
β3 0.673 0.068 ( 0.540; 0.806) 1.000012
β4 -2.809 0.387 (-3.569;-2.065) 1.000011
β5 -0.267 0.128 (-0.510;-0.011) 1.000007
σ2 22.562 4.495 (13.774;31.283) 0.999999
λ -1.422 0.377 (-2.141;-0.656) 1.000060
ν 4.877 0.255 ( 4.656; 5.369) 1.006467

SSL-CR β1 -4.127 1.485 (-7.097; -1.349) 1.000003
β2 -0.079 0.023 (-0.124; -0.036) 1.000013
β3 0.669 0.065 ( 0.542; 0.796) 1.000006
β4 -2.688 0.366 (-3.406; -1.979) 0.999998
β5 -0.265 0.122 (-0.505; -0.030) 1.000003
σ2 13.424 2.369 ( 8.938; 18.123) 1.000026
λ -1.940 0.397 (-2.728; -1.183) 1.000036
ν 1.063 0.064 ( 1.001; 1.191) 1.000144

Table 1: Wage rate data. Posterior mean, standard deviation (SD), HPD (95%) interval and Gelman and Rubin potential

scale reduction statistic (R̂) for the parameters in the SMSN-CR models.

Model

Criterion N-CR SN-CR St-CR SSL-CR

LPML -1489.290 -1479.075 -1441.834 -1432.518

DIC 2975.017 2955.640 2881.913 2863.778

EAIC 2975.381 2955.402 2884.199 2864.841

EBIC 3003.126 2987.770 2921.192 2901.834

WAIC1 2978.080 2958.067 2883.431 2864.796

WAIC2 2978.651 2958.144 2883.766 2865.119

pB 0.3693 0.6098 0.5293 0.5425

Table 2: Wage rate data. Comparison between the SMSN-CR models.

6.2. Bayesian case in�uence diagnostics

Considering the samples of the posterior distributions of the parameters of the four models, q-

divergence measures, described in Section 5.2, were computed (using p=0.80). The cases #185, #349,

#394 and #408 were identi�ed as in�uential under the N-CR model by the K-L divergence, because they

exceed the speci�ed thresholds. When SN-CR model was �tted, observation #394 was not considered

in�uential anymore, although it was still close to the threshold. However, no observation was in�uential

for the St-CR and SL-CR models. Figure 1 depicts the index plot of the K-L divergence and, as expected,
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the e�ect of in�uential observations on the Bayesian estimates of the parameters are attenuated when

heavy-tailed and/or asymmetric distributions are considered.
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Figure 1: Wage rate data. K-L divergence for N-CR, SN-CR, St-CR and SSL-CR models

In order to reveal the impact of these four observations on the parameter estimates we re�tted the

N-CR and SSL-CR models (the ones with the worst and best values for model selection criteria in Table

2, respectively), �rst removing one by one and then all four in�uential points. In Table 3 we show the

relative changes (in percentage) of each parameter estimate, which is de�ned by

RCθ̂j(I)
=
∣∣∣(θ̂j − θ̂j(I))/θ̂j

∣∣∣× 100,

where θ̂j(I) denotes the Bayesian estimate of θj after the set I of observations was removed. In this Table,

(∗) indicates parameters that were not signi�cant in the original �tting and that became signi�cant when

in�uential observations were removed. Note that the intercept β1 is heavily impacted by these observations

when compared to the other regression coe�cients. Note that all the relatives changes are smaller under

the SSL-CR model than under the N-CR model, showing that SSL-CR is more robust, as expected.

Besides, the parameter signi�cance was unaltered under the SSL-CR model �t, while β5, which was not

considered signi�cant under the original �t of the N-CR model, became signi�cant when this model was

adjusted without observation #185, as well as when all in�uential observations were removed � this fact

shows one more time the robustness of the SSL-CR model when compared to the N-CR model.

7. Simulation study

In order to study the performance of our proposed models and algorithm, we present two simulation

studies. The computational procedures were implemented using the R software (R Development Core
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N-CR

Set{I} β1 β2 β3 β4 β5 σ2

All - {#185} 2.43 3.63 0.86 3.30 3.56(∗) 6.68
All - {#349} 22.59 10.19 1.01 0.44 19.85 6.35
All - {#394} 8.46 3.14 4.09 2.07 5.65 4.32
All - {#408} 7.16 0.36 0.80 3.48 19.47 7.73

All - 33.15 1.02 7.36 0.46 35.53(∗) 25.64
{#185,#349,#394,#408}

SSL-CR

Set{I} β1 β2 β3 β4 β5 σ2

All - {#185} 2.46 2.27 0.22 1.11 1.91 3.73
All - {#349} 0.37 0.06 0.19 0.62 0.59 3.09
All - {#394} 1.16 1.52 0.49 0.32 2.64 3.03
All - {#408} 2.06 1.42 0.14 0.39 1.65 4.03
All - 7.79 6.37 0.20 3.23 3.57 16.46
{#185,#349,#394,#408}

Table 3: Wage rate data. Relative changes (in %) for all parameters in N-CR and SSL-CR models.

Team, 2015). The �rst part of this simulation study shows the consequences on the parameter infer-

ence when the normality assumption is inappropriate. The goal of the second part is to compare the

performance of the three assymetric models, SN-CR, St-CR and SSL-CR, when some observations are

perturbed, generating outliers.

7.1. Study I

The main focus of this simulation study is to investigate the consequences on parameter inference

when the normality assumption is inappropriate for di�erent levels of censoring. To do so we generated

a left-censored variable with Normal Inverse Gaussian distribution (Barndor�-Nielsen, 1997) with shape

parameter 5, skewness parameter 4.9 and scale parameter 2. The vector with location parameters is given

by X⊤β, where β is the vector (−10; 2)⊤ and X is a 200× 2 matrix with a all-ones �rst column and a

second column generated from a Uniform distribution on the interval (0, 4).

We have chosen several censoring proportion settings (10%, 25%, 40% and 50%) and the prior spec-

i�cation has been �xed as in Subsection 4.1, with µ0 = 02, Σ0 = 100I2, µ∆ = 0, σ2
∆ = 100,aτ = 2.1,

bτ = 3, c = 0.02, d = 0.49, e = 0.02 and f = 0.9. Here, 02 denotes a vector with length 2 with all

components equal to zero and I2 denotes the identity matrix with dimension 2.

For each level of censoring, we simulated 150 data sets and, for each data set, we �tted the N-CR,

SN-CR, St-CR and SSL-CR models and recorded the MCMC estimates of the parameters. Then, we

computed the estimated bias and the estimated mean squared error (MSE) for the estimates of the

regression coe�cient β in each model. We ran 60,000 iterations of the Gibbs sampler, burned-in the �rst

18,000 and used a thin of 3, so each �nal chain of MCMC observations has size 14000. For the parameter

βj , j = 1, 2, we de�ne the estimated Bias and MSE as

Bias =
1

150

150∑
i=1

(β̂
(i)
j − βj) , MSE =

1

150

150∑
i=1

(β̂
(i)
j − βj)

2

where β̂
(i)
j is the Bayesian estimate of βj for the i−th simulated data set, for j = 1, 2 and i = 1, 2, . . . , 150.
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Figure 2 presents Bias and MSE for all the four models �tted and the four censoring patterns. Figure

3 summarizes via box-plot all the 150 pontual estimates for β1 and β2, comparing them with the real

values of these parameters, for all the models �tted and censoring patterns.
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Figure 2: Bias and MSE of parameters β1 and β2 for N-CR, SN-CR, St-CR and SSL-CR models with di�erent settings of
censoring proportions
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Figure 3: Box-plot for the 150 point estimates (posterior mean via MCMC samples) of β1 and β2, for N-CR, SN-CR, St-CR
and SSL-CR models with di�erent settings of censoring proportions, in comparison with the true value of parameters (red
line).
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From Figures 2 and 3 we can observe that the St-CR model presents better performance at all levels

of censoring and it is no much di�erent from the SSL-CR model. Comparing the symmetric and the

asymmetric versions of Normal model, it is clear that the �tting performance is improved a lot when

we add the skewness parameter for all the censoring levels, especially for the β1 estimation. This also

happens when we compare normal and skew-normal models with the heavy-tailed ones, showing that the

kurtosis parameter plays an important role on the estimation process. On the other hand, all the models

seems to loose performance when the censoring levels increases.

7.2. Study II

The goal of this study is to compare the performance of the parameter estimates for the SN-CR,

St-CR and SSL-CR models in the presence of outliers on the response variable.

We performed a simulation study based on the SN-CR model. Speci�cally, we considered β⊤ =

(β1, β2) = (10, 15), x⊤
i = (1, xi), and errors εi with skew-normal distribution with scale parameter σ2 = 2

and shape parameter λ = −4, i = 1, . . . , n. The values xi, i = 1, . . . , n, were generated independently

from a uniform distribution on the interval (1, 3). A sample of size n = 100 was generated from this

model with 10% of censoring. We perturbed observations #3 (y3 = 43.22178), #66 (y66 = 51.17056) and

#92 (y92 = 31.82169), which were randomly chosen among the non-censored observations, by increasing

them Λ% of their original value, for Λ = 10, 20, 30, . . . , 150. It means that, if y denotes the original

observation, the perturbed observation y∗ is given by:

y∗ =

(
1 +

Λ

100

)
y.

For each one of the 15 patterns of perturbation, we �tted the SN-CR, St-CR and SSL-CR models and

computed the relative change in β estimates (comparing with the �t of the non-perturbed data). Looking

at the graph, of Figure 4, of the relative change for β1 (the intercept) one can see that for perturbations

smaller than 100%, the relative changes are not so signi�cant (smaller than 5%) and there is no precise

pattern. But, when Λ becomes larger than 100, we see that the relative change for St-CR and SSL-CR

models seems to stabilize near 5%, while for the SN-CR model it presents an increasing pattern, reaching

10% when Λ = 150. For β2, one can see that for small (Λ ∈ {10, 20, 30}) perturbations the three models

behave in a very similar way but, when Λ increases, the SN-CR model loses performance as it is less

robust than the St-CR and SSL-CR models to deal with outliers.

We also recorded the LPML, DIC, WAIC, EAIC and EBIC criteria. Figure 5 shows the results for

the LPML and WAIC criteria. We observe that the SN-CR �t is as good as the the other ones for small

values of Λ, what is expected as the data were generated from a skew-normal distribution. However, as

perturbation increases, the St-CR and SSL-CR models are preferred. In Appendix Appendix C one can

�nd the graphs for DIC, EAIC and EBIC criteria, with similar results.
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Figure 4: RC (in %) for β1 and β2 for the SN-CR, St-CR and SSL-CR models with di�erent levels of perturbation Λ.
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Figure 5: Model selection criteria for the SN-CR, St-CR and SSL-CR models with di�erent levels of perturbation Λ.

8. Conclusions

In this paper, we proposed the class of SMSN distributions as a replacement for the conventional choice

of normal distribution for censored linear models where computational issues and outlier identi�cation

are concerned. It generalizes the works of Barros et al. (2010), Arellano-Valle et al. (2012) and Massuia

et al. (2015), using a Bayesian approach.

In order to explore the statistical properties of the proposed models, an e�cient Gibbs-type algorithm,

in the sense of Liu and Rubin (1994), has been coded and implemented using the R package BayesCR

(Garay et al., 2015c) which is available for download at the CRAN repository. Two simulation studies were

performed. The �rst simulation study revealed gain in e�ciency and accuracy for parameter estimates

(especially for the β1 esimation) for all the censoring levels when we add the skewness parameter and

the typical assumptions of normality is questionable. In the second simulation study, we showed that

the performnce of the parameter estimates for the St-CR and SSL-CR models are better that under the

N-CR and SN-CR models when the perturbation increases.

We also applied our method to the wage rate data set of Mroz (1987), in order to illustrate how

the procedure developed can be used to evaluate model assumptions, identify outliers and obtain robust

parameter estimates. As expected, our proposed SMSN-CR model showed considerable �exibility to
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accommodate outliers.
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Appendix A. Proof of Lemma 1

Proof. Let Y ∼ SMSN(µ, σ2, λ ; H). Using the pdf of Y given in Equation (5), we have that:

F (y) =

∫ y

−∞

∫ ∞

0

∫ ∞

0

2ϕ(z ; µ+∆t, κ(u)τ)ϕ(t ; 0, κ(u))dt dH(u) dz

=

∫ ∞

0

∫ ∞

0

2

[∫ y

−∞
ϕ(z ; µ+∆κ(u)1/2x, κ(u)τ) dz

]
ϕ(x) dx dH(u) (A.1)

= 2

∫ ∞

0

∫ ∞

0

Φ

(
y − µ−∆κ(u)1/2x

κ(u)1/2τ1/2

)
ϕ(x) dx dH(u)

= 2

∫ ∞

0

∫ ∞

0

Φ

(
y − µ

κ(u)1/2σ
√
1− δ2

− δ√
1− δ2

x

)
ϕ(x) dx dH(u) (A.2)

= 2

∫ ∞

0

∫ ∞

0

Φ

(
(y − µ)

√
1 + λ2

κ(u)1/2σ
− λx

)
ϕ(x) dx dH(u). (A.3)

Equation (A.1) is obtained using the transformation x = t/
√

κ(u). Equations (A.2) and (A.3) are

consequence of considering the relations ∆ = σδ, τ = σ2(1 − δ2) and δ = λ/
√
1 + λ2, and we have

obtained Equation (6).
To obtain Equation (7), we use the following result: let Z = (X,W )⊤ be a random vector with

bivariate normal distribution with E[X] = E[W ] = 0, V ar[X] = V ar[W ] = 1 and correlation coe�cient
ρ. Then, the cdf of Z can be written as

FZ(x,w) =

∫ x

−∞
ϕ(s)Φ

(
w − ρs√
1− ρ2

)
ds. (A.4)

A proof of this result can be found in Parrish and Bargmann (1981). Using expression (4), we have that
Y ∼ SMSN(µ, σ2, λ ; H) has cdf

F (y) = 2

∫ ∞

0

∫ y

−∞
ϕ(z;µ, κ(u)σ2)Φ

(
λ(z − µ)

σκ(u)1/2

)
dz dH(u).

Using the transformation s = (z − µ)/(σκ(u)1/2), we obtain

F (y) = 2

∫ ∞

0

∫ y−µ

σκ(u)1/2

−∞
ϕ(s)Φ(λs)ds dH(u).

If we make λ = −ρ/(
√
1− ρ2) in (A.4), which implies ρ = −δ, we have that

F (y) = 2

∫ ∞

0

FZ

(
y − µ

σκ(u)1/2
, 0

)
dH(u)

= 2

∫ ∞

0

P

(
σX + µ ≤ y

κ(u)1/2
,W ≤ 0

)
dH(u)

=

∫ ∞

0

2Φ2

(
y(u)∗;µ∗,Σ

)
dH(u). (A.5)
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Observe that the random vector (σX + µ,W )⊤ has a bivariate normal distribution with mean vector µ∗

and covariance matrix Σ, implying Equation (A.5).

Appendix B. Development of the pdf and cdf of the St distribution

In this Appendix, we derive the pdf and cdf of the St distribution. Using the general de�nition of pdf

of the SMSN family given in Equation (4), the density of the St distribution is given by

f(y) = 2

∫ ∞

0

ϕ(y ; µ, u−1σ2) Φ

(
λ(y − µ)

u−1/2σ

)
(ν/2)ν/2

Γ(ν/2)
uν/2−1 exp

{
−ν

2
u
}

du

=

√
2 (ν/2)ν/2√
πσΓ(ν/2)

∫ ∞

0

u
ν−1
2 exp

{
−u

(
ν

2
+

d(y)2

2

)}
Φ
(
λ d(y)

√
u
)
du

=

√
2(ν/2)ν/2√
πσΓ(ν/2)

Γ

(
ν + 1

2

) (
ν + d(y)2

2

)− ν+1
2

EX

[
Φ
(
λ d(y)

√
X ; 0, 1

)]
,

where d(y) = y−µ
σ and X ∼ Gamma

(
ν+1
2 , ν+d(y)2

2

)
. Using Lemma 2, we have that:

f(y) =
2 Γ(ν+1

2 )

Γ(ν/2)
√
πνσ

(
1 +

d(y)2

ν

)− ν+1
2

T

(
λ d(y)

√
ν + 1

ν + d(y)2
; ν + 1

)
.

Using Equation (7) of Lemma 1, the cdf of the Skew-t distribution becomes

F (y) = 2EU [Φ2 (y(U)∗ ; µ∗,Σ)] ,

where U ∼ Gamma(ν/2, ν/2), y(u)∗, µ∗ and Σ are de�ned in Lemma (1). Thus, by Lemma 2, we have

that

F (y) = 2 T2

 y

0

 ; µ∗,Σ, ν

 .
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Appendix C. Complementary results of the simulation study II: Performance of model

selection criteria
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Figure C.6: DIC, EAIC and EBIC criteria for simulation study II
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