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Abstract

We show that the neutron interferometric experiments do not imply that the
neutron wave function must be described by a Pauli c-spinor wave function
that changes sign under a 27 rotation. We argue that the papers supporting
the opposite view have jumbled up the time evolution of the Pauli c-spinor
wave function with its transformation law under rotations. Even more, we
show that the experiment can be well described using a Pauli algebraic spinor
wave function that does not change sign under a 2= rotation.

PACS: 03.65.Bz  03.65.Fd

There are essentially three different definitions of spinors in the literature: (i)
the covariant definition, where a particular kind of covariant spinor (c-spinor)
is a set of complex variables defined by their transformations under a particular
kind of spin group; (ii) the ideal definition, where a particular kind of algebraic
spinor (e-spinor) is an element of a lateral ideal (defined by the idempotent e) in
an appropriate Clifford algebra (when e is a primitive idempotent we call it an
a-spinor, instead of e-spinor); and (iii) the operator definition, where a particular
kind of operator spinor (o-spinor) is a Clifford number in an appropriate Clifford
algebra IR, , determining a set of tensors by bilinear mappings. In [1,2] we have
clarified the relations between and the possible equivalence of all these kinds
of spinors and in [3,4] we studied the corresponding spinor fields as sections of
appropriate bundles over a manifold modelling spacetime.

Physicists use almost exclusively c-spinor fields (despite the fact that oper-
ator spinor fields have been introduced by Ivanenko and Landau [5] already in
1928 and rediscovered by Kahler[6] in 1961) as the representatives of spin 1/2
fermionic matter. As is well known, a c-spinor wave function has the property
of changing its sign under an active 2r rotation, which is not the case for al-
gebraic or operator spinor wave functions interpreted as sections of appropriate



Clifford bundles [4]. Which kind of spinor fields, covariant or algebraic/operator
gives the best mathematical and physical representation of fermionic matter is a
very important problem, since algebraic and operator spinor fields can be written
as sums of non-homogeneous differential forms [1,2,4,5,7,8] thus challenging the
“majority view” that spinors are objects more fundamental than tensors [9,10,11].
(We emphasize here that when a-spinor fields are interpreted as sections of the
so called Spin-Clifford bundle they have the usual transformation law [4].)

Bernstein [12], Aharanov and Susskind [13] and Moore [14] proposed exper-
iments for the verification of the sign change of c-spinors under an active 27
rotation. Hegerfeldt and Krauss [15] put forth a critical remark on the Aharanov
and Susskind argument, showing that it is in flaw (a point on which we agree).
Also Jordan [16] invoked the spin statistics theorem for spin 1/2 particles to argue
that 27 rotations are unobservable.

After the neutron interferometric experiments [17,18,19] the controversy on
the interpretation of the sign change of the neutron c-spinor wave function in a
magnetic field went out, as it is well illustrated by the many papers that appeared
on this subject [20-30]. It seems to be the “majority view” that the neutron in-
terferometric experiments do indeed prove that the neutron wave function must
be described by a Pauli c-spinor wave function (on the nonrelativistic limit ap-
propriate for the experiment) that changes sign under an active 2x rotation.

Here we challenge such a viewpoint. Indeed, we are going to show that the
neutron interferometric experiment as described e.g. in [30] can be perfectly
explained when the spin 1/2 neutron matter is described by a Pauli a-spinor wave
function that does not change sign under a 2x active rotation. What happens is
simply that the unitary evolution operator for such a wave function is an element
of Spin(3) ~SU(2) ! For what follows nonrelativistic (first quantization) quantum
mechanics will suffice. We are going to use elementary definitions of the c-spinor
and a-spinor wave functions, i.e. we are not going to present these objects as
sections of some vector bundle. (The interested reader may consult e.g. [4] on
that topic.)

We take as arena of physical phenomena the Newtonian spacetime N = IR x
IR and define a Pauli c-spinor wave function as a mapping

U:N -2 (1)

where €? is a two-dimensional vector space over the complex field €. The space
€? is equipped with the spinorial metric

B, :C? xC? - C; B,(¥,8) = v1a (2)



¥,
¥,
is invariant under the action of SU(2)~Spin4(3) (in fact it is invariant under the
action of U(2) [2]). As it is well known Pauli c-spinors carry the fundamental
representation D'/2 of SU(2). Under an active rotation R in the Euclidian space
IR® the Pauli c-spinor wave function transforms as

where ¥ = and { stands for Hermitian conjugation. The spinorial metric

¥ B U(R)¥, U(R) € SU(2) (3)

and if R is a 2 rotation around a given axis, then ¥ 25 —¥. In a given magnetic
field B : N — IR® the neutron wave function ¥ satisfies as it is well known [31]

Pauli’s equation
i 2
iGF = 0¥ - X ®)

where we use units such that i = 1, m is the neutron mass and
H;=-u-B = —u(o1By + 02B3 + o3B3) (5)

where &j, j = 1,2,3 are the Pauli spin matrices, B;, j = 1,2,3 are the com-
ponents of B in a given reference frame of IR* and p is the neutron’s magnetic
moment. In what follows we are interested only in the spin precession motion
and so we consider instead of eq.(4) the equation

0L = B, ¥:t ¥(t) €C? (6)
We choose B in the z-direction and then write H; = —uBoi. We now write
¥=c ( ; ) + ¢y ( (1} ) = Y ¢;|7 > and observe that oy0203|1 >= i|]1 > and

010203|2 >= —i|2 >. Then eq.(6) can be written

0'10'20’3%% = —puBo3V. (7)

We now define the Pauli a-spinor wave function and write the (Pauli) equation
satisfied by this object for the situation of the neutron interferometric experiment.
We first recall [1,2] that the Pauli algebra IR3 is the Clifford algebra generated by
1 and ej, j = 1,2,3 such that e;e; + eje; = 26;; where {e;; j = 1,2,3} is a basis
of the Euclidian vector space V ~ IR® — IR3. We take {oi; 1 =1,2,3} as a basis
of V*, the dual space of IR3, with oi(e;) = 6;; and call IP(~ IR3) the Clifford
algebra generated by 1 and the ;, i = 1,2,3. A Pauli a-spinor wave function in
then defined as a mapping

$: N — {Pe} (8)



where e = 1(1 + o3) is a primitive idempotent of IP and {IPe} is the class
of equivalent minimal left ideal of IP generated by e, i.e. ¢ is a sum of non-
homogeneous differential forms [3,4,7). Under an active rotation R in R? the
_Pauli a-spinor wave function transforms as

v 8 u(R)pu~'(R) (9)

where u € Spin(3)(~ SU(2)) C IP. (More precisely this is the transformation
law when (z,%(z)) is taken as a section of the Clifford bundle. See [3,4] for
details.) This has as a consequence that under a 2x rotation ¢ 25 %. The spinorial
metric defined by eq.(2) can also be defined within the Pauli algebra [1,2] but it
is not necessary here.

The spinorial basis generated by e = 1(1 4 o3) is {e,01€} [1,2] and we can
write ¥ = cje + cy0ye with ¢, ¢; € T, generated by {1,i}. Also i = 070203 is the
volume element of IR® and iA, is essentially #A,, where A, € A(T*IR?) is a p-form
and * is the Hodge dual operator. To write the (Pauli) equation satisfied by ¢
for the neutron interferometric experiment we need only to take ¢ : t — {IPe}
and to make in eq.(7) the substitutions ¥ — ¢, &; — a;, (i = 1,2,3). We get

O — uB(ios)y. (10)

The solution of this equation is

¥(t) = exp(uBiost)P(0) (11)

where Spiny(3) 3 u(t) = exp(uBiost) = cos(uBt) + o102 sin(uBt) [33].

Equation (11) shows that the predictions for the neutron interferometric ex-
periment when one uses a Pauli a-spinor wave function are the same as when
a Pauli c-spinor wave function is used. Since these two kinds of spinor wave
functions have different transformation laws under rotations (eq.(3) and eq.(9)),
it follows that the experiment does not prove that the fermionic matter of the
neutron must be described by a Pauli c-spinor wave function.

Before we end we must add that the notion of algebraic spinor fields leads
to a new point of view [4] concerning the spinor structure of spacetime and the
relation between bosons and fermions (supersymmetry) [34]. Also our translation
of the Pauli equation satisfied by ¥ into the (Pauli) equation satisfied by ¢
provides a geometrical meaning for the imaginary unit i = v/=1, a fact that may
have nontrivial consequences as already emphasized by Hestenes [35-38] who
has been since long using algebraic and operator spinor wave functions for the
interpretation of the relativistic quantum mechanics of the electron.



At least, to those who might not be convinced by our arguments, we recall
the fact that there are many two-state quantum systems described by equations
identical to eq.(6). Indeed as shown in Chap. 11-3 of [31] this is the case of the
amonia molecule (a boson) in an eletric field. In a (possible) interferometric two-
slit experiment with amonia molecules, with one of the paths passing through
an eletric field E, we could see for an appropriate E a phase change ¢ — —¢.
Nevertheless we are sure that in such a case nobody would claim that we are
observing a 27 rotation of a spinor!
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