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Abstract

We show that for any semilinear partial differential equation of order m, the infinitesi-
mals of the independent variables depend only on independent variables and, if m > 1 and
the equation also is linear in derivatives of order m — 1 of the dependent variable, then the
infinitesimal of the dependent variable at most is linear on it. Many examples of important
partial differential equations in Analysis, Geometry and Mathematical - Physics are given
in order to enlighten the main result.
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1 Introduction

Let x € M CR", u: M — R a smooth function and & € N. We use 0*u to denote the jet
bundle corresponding to all kth partial derivatives of u with respect to 2. We simply denote d'u
by Ju. A partial differential equation (PDE) of order m is a relation F(x,u,du,---,0™u) = 0.

If there exists an operator

am
dx™ - - Qxim (1)

and a relation f(z,u,du,---,0™ 'u) such that F' = Lu+ f(z,u,du,--- ,0™ 'u), then F' = 0 is
said to be a semilinear partial differential equation (SPDE). In this article we use the Einstein
summation convention.

Partial differential equations are used to model many different kinds of phenomena in science
and engeneering. Linear equations give mathematical description for physical, chemical or
biological processes in a first approximation only. In order to have a more detailed and precise
description a mathematical model needs to incoporate nonlinear terms. Nonlinear equations
are difficult to solve analytically. However, in the end of century X7X Sophus Lie developed
a method that is widely useful to obtain solutions of a differential equation. This method is
currently called Lie point symmetry theory. Some applications of this method in (nonlinear)
differential equations can be found in [1, 2, 3, 5, 6, 8, 7, 9, 10, 11, 12, 13, 14, 15, 16].

Lie used group properties of differential equations in order to actually solve them, i.e., to
construct their exact solutions. Nowadays symmetry reductions are one of the most powerful
tools for solving nonlinear PDEs.

A Lie point symmetry! of PDE of order m is a vector field

0

, 0
S:fl(x,u)%—f—n(x,u)% (2)

on M x R such that S F = (0 when F = 0 and

Ly, i= A" (1)

Sm) ::S+m(1)(x,u,8u) 0 o™ (2w, Ou, -, 0™) 0

Ou, fim Oy ..,
is the extended symmetry on the jet space (z,u,0u, - - ,0%u).
The functions ) (x,u, du, - - -, #u), 1 < j < m, are given by
1 .
n = Dm—(Di&)uy,
(4) (3-1) 3)
mfla = D’i]‘nif...ij71 - (Dijfl)ui1“~ij71l7 2 S j S m7
where
D fud du bt A
8x2 (9u ]an L 8u,;1...im

n fact, a Lie point symmetry is given by the exponential map (exp S)(x,u) =: (2*,u*) € R" x R. We are
identifying the point transformation with its generator.
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is the total derivative operator. We shall not present more preliminaries concerning the Lie
point symmetries of differential equations supposing that the reader is familiar with the basic
notions and methods of group analysis [5, 12, 15].

In [4], Bluman proved some relations between symmetry coefficients wich simplify drasticaly
their calculus. He worked with a PDE of the form

A (), + fa,u, Ouy -, 0™ ) = 0. (4)

Depending on the relations between coefficients A% (x,u) of equation (4), Bluman’s the-
orems gives us conditions to determine, a priori, if the coefficient ¢ depends or not of u, and
in many cases, it also gives us some information about the dependence of coefficient n with
respect to u.

The purpose of this article is twofold. First, we intend to give a detailed proof of a theorem
(Theorem 1) wich gives us conditions to state the coefficients £ with respect to u of a symmetry
of a SPDE and, in many cases, we can conclude that n is a linear function with respect to u
(see [4, 5]).

The second purpose is to present and summarize some important PDEs arising from Anal-
ysis, Geometry and Mathematical - Physics, which are linear PDEs or SPDEs (see Section 3),
illustrating Theorem 1.

Our main purpose is to proof the following result:

Theorem 1. Consider the SPDE
Ailmim (x)ulllm + f(fl?, u, aua e ’amflu) = 07 <5>

where A" (z) is symmetric with respect its indeces. Suppose that the vector field S given in
(2) is a symmetry of (5). Then & =0,1<1i <n.

If m > 1 and f(x,u,0u,--- 0™ u) = a1 (x)uy..q _, + h(z,u,0u, -, 0™ %u), for
some function h, then 1y, = 0.

The paper is organized as follows. In section 2 we prove Theorem 1. In section 3 we
give some examples, from Analysis, Geometry and Mathematical - Physics, illustrating the
Theorem.

2 Proof of the main results

In this section, we shall prove Theorem 1. We shall do this in three steps: first, we prove
Theorem 1 when m = 1. In this case we, at most, can conclude &' = £'(z). The case m = 2
is done because many of most importants equations in Analysis, Geometry and Mathematical
- Physics are second order SPDE and this proof is a good way to understand the proof of
arbitrary m, which is the third step.



2.1 The case m =1

Proof. Let L := A'(z)5 2 a linear operator and f(z,u) a smooth function. Consider the first
order semilinear partlal dlfferentlal equation

F(z,u,0u) := Lu+ f(x,u) = 0. (6)

Suppose (6) admits a symmetry S given by (2). Its first order extension is

SO0 = €, u) g+ )+ ) a0 — € s — €L )
Apllying SM to (6), we have
SOF = (§'fi+nfu+ A'm) + (€'A] + Al — A'g)u; — A'Guzu;.
Then, by the symmetry condition (see Ibragimov [12] or Olver [15])
SWF = \a,u)F
and since F' is a linear function with respect to Ou, we conclude that
A uu; =0 (7)

Choising i such that A% # 0, the equation (7) implies that necessarily we must have & = 0.
Thus, & = &(x) and this conclude the proof for the case m = 1.

2.2 The case m =2

Let
F = A (x)uy; + f(z,u,0u) =0

be a SPDE and S the second order extension of symmetry (2). Then,

0 0 0 0
S@) — 5’“(:1:,u)8 =+ n(z, u)a— 4—77/,(C )(:v u, 8u)6— +77,(cl (z,u, Ou, O*u )8ukl
and the coefficients in the jet spaces are given by (see equation (3))
I Y I
M = Mk — Sptty — Eute + Null,
nl(cl) = Mkl + MUk — éiluj T Meu U — fiuujuk - éiuujul — giuujUkUI — £iulj — fljujk

(8)
—fiujulk - fiukuﬂ - giulukj + MUk + Ny Ui
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Let Fy := 2L then

- 6$k,

SOF = € F 4+ nF, +nuFu, + A + (wen — Euj) Py, + AMmguy — AME u;
+ ARy — Aklfzjuujuk + APy — Aklfiuujul - Aklﬁiuua‘ukul

kl kl¢#g kl¢g kleg kl¢j kl¢j
—|—A NuUgkr — A £kulj — A fl uk]’ — A fiuljuk — A Eiulkuj — A fiulujk.
The symmetry condition is

SAF = Xz, u)F. (9)

Since F'is a linear function in the second order derivatives of u, the symmetry condition
(9) implies that terms w;u;;, have to be zero. Then,

Kl /i . .
A (fiuljuk + fiulkuj + §iulujk) =0. (10)
Since )
up = 5kup7 Uy = lr Js'ur37
— P _ Y
Uj = 6jup7 Ul = 51 kUrs,
— 510 R 57’ s
u = 1 Up, Uy; = j kUrs,

and substituting this into (10), we have the following relation
(Aklgiéiéﬁj + Aklfiéﬁ.’(ﬂéz + Aklé”{;éf’é;d,i)upum =0.
Since the set {ujuy} is linearly independet set, the following identity must be satisfied:
AN eI 510705 + AMEL SR 51 8y + AMEL6T67 67 = 0. (11)
Taking p = r = s, we conclude that
APPER = ().
Let N1 e Ny be the set of indeces such that APP # 0 and APP = 0, respectively. Then, for
all i € Ny, & = 0 and hence, &' = £(x).
Suppose N, # (0. Thus, there exists ng € N, such that A™? £ 0, for some p. Taking
p# k, p# j and choising s = ng in (11), we obtain
AmPer = (.
By hypothesis, to ng fixed, there exist py such that AP0 =£ (. Taking p = pgy, we conclude that

&, =0 for all r.
Now, suppose that f = b (z)u; + h(z,u). Since & = 0, we can write

SOF = "B+ nF, + mFy, + A + (upny — Elug) Fu, + A nug — AME u;

+ AR+ AR — Aklfiulj - Aklfljukj + A

Since the SPDE F' = 0 is linear in the first and the second order derivatives of u, the condition
(9) implies that the coefficients of ugu; have to be zero. Then, AFly, = 0 and, finally, n,, = 0.
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2.3 The case m > 2

Lemma 1. Let k > 2. Then, there exists a function® h depending of x,u,Ou,--- ,0%u, such
that

Miyi, = h(x, u, 8u, T aa u) - gviujuuzk - 5:17j,uiluj’52*"'ik - .Egbuiku’il"'ik—lj

TN Wiy iy, T nuu(uilui?“ikfl T Uiy Uiigeiyy_y + 000 uikuil'“ik71>'

Proof. We shall prove that the Lemma is valid for all £ > 1. If k£ = 2, we turn back to equation
(8). Suppose that the result is valid to k, k > 2. Then,

(k) _ k i j j
Moy, = h(x,w, Ou, - -+ ,0%u) — ELujt, i, — ELWi Wjigeiy, — + -+ — ELU Wiy i

—|—77uu7;1...ik71 + T]uu<ui1ui2...ik71 + Uiy Uiy g-ig_ + -+ uikuil...ikfl).

From equation (3), we have, after a straigthforward calculation,

(k+1) . g j
Mioigines =  (Digr ) = (Digy § )i iy, — (Dig ) Wiy Wiy, —
—(D: N 2 £ N S XTI o
(Dzk+1£u)ulk uZl"'lkflJ ik+1u7»1"'2k.7 guuﬂwrluzl'“zk
— Iy R < PV B o P S o
guulllk-»—luju'“lk Suu121k+1u21ﬂ3'“lk Suu1k1k+1ull"'lk—1]

(12)

TNigpruliy iy, + UUU<ui1ik+1ui2-"ik +eeet uikik+1ui2"-ik>

—Chay . Ty e N < T T
fuujuumw;cH guuzluﬂ?"zklk-&-l guulkull"'lk—ljlk-s-l
fuulkJrlull""Lk] + nuuzl--.zk1k+1 + nuu(uzl ul2"'2klk+1 + + U1k+1ul2._,lk>

Let

h(z,u,0u, - 0" ) == (D, h) — (Diyy, E)ujti iy, — (Diy € Wiy iy, —
~(Diye i E Wi Uiy iy — &l Wiy i — ELWjig Wiy

= DY N o X T T . 7. o
ElWirig 1 Wgin-wi, ) Wiy Wiy i1 j Nigp1uliy iy

+77uU(ui1ik+1ui2“'ik +oot uikik+1ui2“'ik)'

2This function is a polinomial function in du,--- ,%u (see [4, 5]).
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Then, we conclude that equation (12) can be written as

(k+1)

A LT T = Py N < YT T T
ni1~~-ikik+1 = h guujull”'zkzk«rl guullu]ZQ"'lklk+1 guulkull”'zk—ljlkJrl

guulk-uuzl"'lkj + nuull“'lklk+1 + nuu(unu%z'“lklk+1 + + ulk+1ul2'“lk)7

proving the Lemma.
Now, we are in position to prove the general case: Let
F o= AV (o), + f(2,u, 0u, -+, 0™ )

and S(™) the extended symmetry of (2). Then, by Lemma 1, we have

SE = Ay € f 0 1T Fusim

11 im—1
Bim [ g ey Ty . Y < VY T T .
+A m[h £uujull"'lklk+1 guulluﬂz“'lkllwrl éuulkull'"lkflﬂlwl

§l Wiy Wiy i+ Ty iy T nuu(uuuumzwkﬂ + + u1k+1uzz-~1k)]'

By the symmetry condition S(™ F = \(x,u)F, necessarily we have to have

AT (Ui iy Wiy Wiy Uiy Uiy i) = 0.

Since Llood 11
. PL1t2:-bm—1tm
u]ulllglm - upulll2”'lm5ji1’i2"'7;m717;m’
. plilo-lm—1lm
Uy Ujigm iy, = upuzlzz..-lm5,-1]-...%,1% )
- plila L —1lm
Wi Wirig-ip—1j =  UpUlilolm Oipiyigervip 157
where
lll2"'lm71lm O ll l2 lm
(5k1k2"'km—lkm T 6k15k2 5km

Equation (14) becames

’Lllm ] plllgn-lm_llm pl1l2"'lm—llm plll2“‘lm—1l’m J—
A Eo(Oirinimrim T+ Oy jecim vim Y+ Oisrisigeimes ) UpWydy = 0,

pe i, - ,im}, s €{1l,---,n}, se{l,--- ,m}, je{l,--- ,n}

(13)

(14)

(15)

Whereas the set {upuy,...,, } is a linearly independent set, in order that equation (15) be

true, we necessarily have

i1im ¢ ( sPll2 - lm—1lm plilolm—1lm plilalm—1lm
AT G (i rigmimvime T Ot jecimvim T Oiiniz-imes

) = 0.
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Taking I}, = ix, 1 < k < m, such that A™ := Altim-1im £ () like in the case m = 2, we
obtain
m¢j ll lm —
A™EL () 407 05 -+ + 67 65m) = 0.

)

Since the term 67 4 J7 (5§-1 ce 5fm5§-'” cannot be zero, we necessarily have & = 0. Thus
§' = ().

Suppose now that f(x,u,du,--- ,0% 1u) is linear in 9*'u. Then, from equation (13) and
the symmetry condiction (9), we can see that the term

Ailmimnuu<ui1uig”'iki]ﬁLl + e + uik+1u12"'ik> = O
In the same way, as in the case m = 2, we easily conclude that 7,, = 0. Then, there exist
functions o = a(x) and 8 = [(z) such that n = a(z)u + 5(z). O

3 Some Examples

The following examples illustrate the Theorem 1. For another examples of equations where
the theorem could be applied in order to obtain the symmetries coefficients, see [1, 2, 3, 14].

3.1 Poisson Equation

The Poisson Equation in R” is

Au+ f(u) =0, (16)
where 5 g
_sij 9 9
A=0 Ozt OxJ

denotes the Laplace operator in R".

When n = 2, the group classification was obtained for Sophus Lie in the end of XIX
century. He proved the following result:

The widest Lie point symmetry group admitted by (16), with arbitrary f(u), is determined
by translations

0 0
Y| = o’ Y, = 8_y (17)
and the rotation 9 5
Ys=y — —2x —. 1
3=Y O xz By ( 8)

For some special choices of f(u) it can be expanded by operators additional to (17) and
(18), which are listed below.

o If f(u) =0, then
0
Ve =85 +&5- (19)



0 g .

where ¢! = ¢!z, y), €2 = £%(z, y) satisfy the Cauchy-Riemann equations:
=6, &=-¢ (21)

e The case f(u) = const can be easily reduced to the preceding one.
o If f(u) = ku, k # 0 is a constant, we have Y; and Yj, where A + k5 = 0.

e For f(u) =kuP, p# 0, p # 1, the additional operator
Y: = To +y—+ —u— (22)

generates a dilation.
e For f(u) = ke", we have

. o .0 )
Yo =8 +85 -

1_
5~ % (23)

where &' and &2 satisfy the Cauchy-Riemann system (21).

Note that the projection of Y g2y on the (z,y)-space is the conformal group of (R? ds?),
where ds? = dz? + dy?. For more details about two-dimensional Poisson equations, see [10].

When n > 2, the group classification is the same of the Polyharmonic equation taking m = 1
in equation (24). See next section.

3.2 Polyharmonic Equations

The semilinear polyharmonic equation
(=)™ A™u = f(u), (24)

where A is the Laplace operator in R",n > 2 and m € N is one of the most studied elliptic
PDE. In [16], Svirshchevskii proved that for any function f(u), the widest Lie point symmetry
group admitted by (24) is determined by translations and rotations, given, respectively, by the
following vector fields in R"

0 o, .0
1t

X; .
ox? oxJ

In this paper, we consider equation (24) in R" with n > 2.
For special choices of function f(u) in (24), the symmetry group can be enlarged. Below we
exhibit these functions and their respective additional symmetries.
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o If f(u) =0, the additional symmetries are

- 0 . 0
Y, = (2z'27 — ||£CH2(5”)@ + (2m — n)azlua—u, (26)
where 6% is the Kroenecker delta and ||z|| is the Euclidean norm of z,
0 0
U=u—, Wg=p-— 27
You P 582/ (27)

where (—A)™5 = 0.
o If f(u) = u, the additional summetries are U and Wy as in (27), and [ satisfies
(—=)™AY"B+ 3 =0.

o If f(u) =uP, p#0,p+# 1, we have the generator of dilations

0 N 2m 0
ox’ 1—pU8u'

i
Dy =

If n# 2m and p = (n+ 2m)/(n — 2m), there are n additional symmetries given by the
vector fields (26).

o If f(u) = e" the additional symmetry is

. 0 0
W=z2"— —2m—
¥ or " ou
When n = 2m, there are the following additional vector fields:
o 0 0
E; = (22'27 — ||2]]?0Y)=— — 4m—,
(2ata — Ja][257) - —

For more details about Group Analysis of equation (34), see [6, 16].

3.3 Wave Equations

Hyperbolic type second-order nonlinear PDEs in two independent variables are used to
describe different types of wave propagation.
Consider the following semilinear wave equation in two independet variables

For any function f(u), the vector fields
0 0 0 0

are Lie point symmetries of equation (28). For some choices of functions f(u), we have the
following additional symmetries:

10



If f(u) =0, then the symmetry group is

0 0 0 0
We o = 5(93,75)% + ¢($,t)§> U= Uz Ws = 5%,
where the functions &, ¢, 5 satisfy
fz_gbtzoa gt_ﬁbz:ou (30>
ﬁ:cx - ﬂtt =0.
If f = u, then the symmetry group of (28) is generated by (29) and by
U= 9 W—ﬁ(xt)g here By — B + 3 =10
—uau, 8= 5 8”&, W rx tt — Y.

If the nonlinearity is a power of u, i.e., f(u) = u?, with p # 0,1, whe have the dilation

symmetry

b0, 2D
R T 1—pu8u'

If f(u) = e€", then the symmetry group is

9,
ox

0

e 0

where &, ¢ satisfy (30).

The projection of symmetry W¢, to the plane is the conformal group of (R2, ds?), where
J y Y Weg

ds? = da?® — dt®. Tt is analogous to the Euclidean case.

In [13] there is a wide list of many kinds of wave equations. Here, we considered only a

particular case. For more details, see [13].

3.4 Heat Equations

Consider the one-dimensional heat conduction equation

Up = Ugy + fu). (31)

The symmetry group is generated by the following vector fields:

e For any function f(u), the symmetries

0 0
= — = — 2
Hy e H, g (32)

is a symmetru group of equation (31). In addition to symmetries (32), for some choices
of function f(u), we have:
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o If f(u) =0, then

0 0 0
0 9,
H3 = IE% + 225&,

0 0
H, = 4to— + 4>— — (22 + 2
4 maertat (x” +2t)

U%,
Hg = ﬁ%, where (3, — Bxx = 0.

o If f(u) = u, we have the symmetries (33) and the following additional generators

0 0 0
H5 = .1'% + Qta + Qtu%,
0,0, a2t D
0
Hg = B—, where 3, — fzx = 0.

ou

o If f(u) =uP,p+#0,1,2, we have

0 0 2 0
d __ _
Hy = xax + 2tc‘9t + 1 —puﬁu‘

o If f(u) = u?, then
o ,0 o 9

0 0 0
di — —_— —
H; _x8x+2t8t Quau.

o If f(u) =e€", then
0 0 0

Ho—ol 1909 99
ST T T Yo

3.5 Kohn - Laplace Equations

The Heisenberg Group H! is the three-dimensional nilpotent Lie group, with composition
law defined by

R*xR® 3 ((x,y,t), (2o, Yo, to)) — &((x, y, 1), (T0, Yo, to)) := (x+z0, y+yo, t+to+2(zyo—yxo)) € R®.
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In H! there is the subeliptic Laplacian defined by

Ap =X +Y?
) 0 0 0
here X = — 4+ 2y— and Y = — — 20 —.
where & =5 T g oy o
The Kohn-Laplace equations is
Uy + uyy + 4(ZE2 + y2)utt + 4yuxt - 4!L‘uyt + f(u) - Oa (34>

where f: R — R is a smooth function.
In [8] a complete group classification for equation (34) is presented. It can be summarized

as follows. o
Let Gy :={T, R, X,Y}, where

0 0 0 ~ 0 0 ~ 0 0
T=—, R=y——a2—, X=——2y— dY = — +2z—.
ot Yor " "oy oz Yo oy o
For any function f(u), the group Gy is a symmetry group.
For special choices of function f(u) in (34), the symmetry group can be enlarged. Below we
exhibit these functions and their respective additional symmetries.

o If f(u) =0, the additional symmetries are

0 0 0 0
1= (2t =2ty —y7) o+ (yt e +:vy)ay+( (@ +y) )5, —tug.,  (35)
0 0 0 0
= (t — day) =— 2= —(2 22% + 22y%) = + 2yu——
Vo = (t —day) - + (3¢ y)ay (2yt +22° + 20y°) o + 2y -, (36)
0 0 0 0
= (2% — 3y} — day)=— + (2t — 22°%y — 2°) = — 2ru—
Vs = (x 3y)8$~|—(t+ a:y)ay—ir(:z:t %y y)c’?t Uz, (37)
0 0 0 0 0
Z =x— +y— +2t— = u— = —, where A1 6 =0.
$8$+y8y+ tat’ U us Ws B(x,y,t)au,were mpB=0
o If f(u) = u, there are two additional symmetries
U= 9 Ws = 3( t)2 here A+ 5=0
= Uz, s = Plz,y,t) 5, where Am = 0.
o If f(u)=uP, p#0,p+#1,p+# 3, we have the generator of dilations
3} 0 0 2 0
Dy=ao by vl =y
P~ Tor +y8y + ot + 1 —puﬁu (38)
o If f(u) = e" the additional symmetry is
0 0 0
E=a— 2l o
Yor "oy T8 T “ou



e In the critical case, f(u) = u?, there are four additional generators, namely V;, V5, V3 and Ds,
given in (35), (36), (37) and (38) respectively.

For more details about Group Analysis of equation (34), see [8, 7, 9, 11].
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