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Abstract

Linear mixed models were developed to handle clustered data and have

been a topic of increasing interest in statistics for the past fifty years. Gener-

ally, the normality (or symmetry) of the random effects is a common assump-

tion in linear mixed models but it may, sometimes, be unrealistic, obscuring

important features of among-subjects variation. In this article, we utilize

skew-normal/independent distributions as a tool for robust modeling of linear

mixed models under a Bayesian paradigm. The skew-normal/independent dis-

tributions is an attractive class of asymmetric heavy-tailed distributions that

includes the skew-normal distribution, the skew-t distribution, the skew-slash

distribution and the skew contaminated normal distribution as special cases,

providing an appealing robust alternative to the routine use of symmetric

distributions in this type of models. The methods developed are illustrated

using a real data set from Framingham cholesterol study.

Keywords and phrases: Gibbs Algorithms; Linear mixed models; MCMC;

Metropolis-Hastings; Skew-normal/independent distribution

1 Introduction

Linear mixed model (LMM; Laird and Ware, 1982) has become the most frequently

used analytic tool for longitudinal data analysis with continuous repeated measures.

A linear mixed model consists of a fixed effects and random effects. The random ef-

fects account for the between–subject variation. In a linear mixed model framework
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it is routinely assumed that the random effects and the within–subject measurement

error have a normal distribution. While this assumption makes the model easy to

apply in widely used softwares such as SAS, the accuracy of this assumptions is

difficult to check and the routine use of normality is recently questioned by many

authors ( Verbeke and Lesaffre, 1997; Pinheiro, 2001; Zhang and Davidian, 2001;

Ghidey et al., 2004; Lin and Lee, 2007). Normality assumption is too restrictive as

it suffers from the lack of robustness against departures from the normal distribu-

tion, particularly when data show multimodality and skewness, and thus may not

provide an accurate estimation of between–subject variation. For example, Zhang

and Davidian (2001) showed that the estimated subject–specific intercept from the

Framingham heart study data was not normally distributed and thus use of normal

distribution in this scenario may obscure important features of between–subject

variation. Thus, it is of practical interest to develop statistical model with consid-

erable flexibility in the distributional assumptions of the random effects as well as

measurement error.

There has been considerable work in this direction. Verbeke and Lesaffre (1996)

introduce a heterogeneous linear mixed model where random effects distribution

is relaxed using a finite mixture of normal. Pinheiro et al. (2001) proposed a

multivariate t–linear mixed model and showed that it would perform well in the

presence of outliers. Zhang and Davidian (2001) proposed an LMM in which the

random effects follow the so–called seminonparametric (SNP) distribution. Rosa et

al. (2003) adopted a Bayesian framework to carry out posterior analysis in LMM

with the thick–tailed class of normal/independent (NI) distributions (Lange and

Sinsheimer, 1993). Ma et al. (2004) consider a generalized flexible skew–elliptical

distribution for the random effects density and proposed algorithms for maximum

likelihood (ML) estimation and Bayesian inference via Markov Chain Monte Carlo

(MCMC). Lachos et al. (2007) and Jara et al. (2008) propose a Bayesian approach

for drawing inferences in skew–normal LMM (SN-LMM) and skew-t LMM proposed

by Sahu et al. (2003), respectively, and noted that these robust models can be easily

fitted in freely available software with equivalent computational effort than the one

necessary to fit the normal (and symmetric) version of the model.

Recently, from a frequentist perspective, Lachos et al. (2008) proposed the skew–

normal/independent linear mixed model (SNI–LMM) based on the class of scale

mixtures of skew-normal distributions introduced by Branco and Dey (2001). This

generalization has the potential to make the inference robust to departures from
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a normal distribution, once an entire class of distributions is defined. As a special

case, this new class contains, the skew-normal distribution (Azzalini and Dalla–Valle,

1996), skew-t distribution (Azzalini and Capitanio, 2003; Gupta, 2003), skew-slash

distribution (Wang and Genton, 2006), the skew-contaminated normal distribution

and all the symmetric family of NI distribution studied by Lange and Sinsheimer

(1993). To our knowledge, although Bayesian analysis to skewed LMM has appeared

in the literature, the Bayesian approach to SNI-LMM has never been studied. Thus,

the objective of this paper is to propose a Bayesian approach for drawing inferences

in SNI-LMM, which is closely related to the one proposed by Rosa et al. (2003) in

a symmetric context. Our motivating data set is from the Framingham cholesterol

study whose distribution of the random effects has been found to be non–normal

and positively skewed by Zhang and Davidian (2001), Lin and Lee (2007), Lachos

et al. (2008), among others.

The rest of the article is organized as follows. After a brief introduction of SNI

distributions in Section 2, the SNI–LMM is presented in Section 3 as well as the

Bayesian formulation of the model. Prior distributions and joint posterior density

are also discussed. The measures of model selection are included in Section 4.

The advantage of the proposed methodology is illustrated in Section 5 using the

Framingham cholesterol data and finally, some concluding remarks are presented in

Section 6.

2 Skew-normal/independent distribution

A SNI distribution is a process of generating a p−dimensional random vector of the

form

Y = µ + U−1/2Z, (1)

where µ is a location vector, U is a positive random variable with cumulative dis-

tribution function (cdf) H(u|ν) and probability density function (pdf) h(u|ν), ν

is a scalar or vector of parameters indexing the distribution of U, which is a pos-

itive value and Z is a multivariate skew–normal random vector (Arellano–Valle et

al., 2005) with location vector 0, scale matrix Σ and skewness parameter vector λ.

In usual notation, we write Z ∼ SNp(0,Σ, λ). Given U , Y follows a multivariate

skew–normal distribution with location vector 0, scale matrix u−1Σ and skewness
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parameter vector λ, i.e., Y|U = u ∼ SNp(µ, u−1Σ,λ). The marginal pdf of Y is:

f(y) = 2

∫ ∞

0

φp(y|µ, u−1Σ)Φ(u1/2λ>Σ−1/2(y − µ))dH(u|ν), (2)

where φp(.|µ,Σ) stands for the pdf of the p–variate normal distribution with mean

vector µ and covariate matrix Σ, Φ(.) represents the cdf of the standard univariate

normal distribution. We will use the notation Y ∼ SNIp(µ,Σ,λ, H). When λ =

0, the SNI distributions reduces to the normal–independent (NI) class, i.e., the

class of scale–mixture of the normal distribution represented by the pdf f0(y) =∫∞
0

φp(y|µ, u−1Σ)dH(u|ν). We will use the notation Y ∼ NIp(µ,Σ, H) when Y has

distribution in the NI class. Some of these distributions are described subsequently.

2.1 Multivariate skew–t distribution

The multivariate ST distribution (Azzalini and Capitanio, 2003; Gupta, 2003) with

ν degrees of freedom, STp(µ,Σ,λ, ν), can be derived from the mixture model (2),

by taking U to be distributed as Gamma(ν/2, ν/2), u > 0, ν > 0. The pdf of Y is:

f(y) = 2tp(y|µ,Σ, ν)T

(√
p + ν

d + ν
A, ν + p

)
, y ∈ Rp,

where, tp(·|µ,Σ, ν) and T (·, ν) denote, respectively, the pdf of the p–variate Student–

t distribution, namely tp(µ,Σ, ν) and the cdf of the standard univariate t–distribution.

The mean and the variance of this skew-t distribution are given, respectively, by

E[Y] = µ +

√
ν

π

Γ(ν−1
2

)

Γ(ν
2
)

∆, ν > 1

V ar[Y] =
ν

ν − 2
Σ− ν

π
(
Γ(ν−1

2
)

Γ(ν
2
)

)2∆∆>, ν > 2.

where ∆ = Σ1/2δ. A particular case of the ST distribution is the skew–Cauchy

distribution, when ν = 1. Also, when ν ↑ ∞, we get the SN distribution as the

limiting case. Applications of the ST distribution to robust estimation can be found

in Lin et al. (2007) and Azzalini and Genton (2007).

2.2 Multivariate skew–slash distribution

Another SNI distribution, termed as multivariate skew–slash distribution denoted

by SSLp(µ,Σ,λ, ν), arise when the distribution of U is Beta(ν, 1), 0 < u < 1 and

4



ν > 0. Its pdf is given by

f(y) = 2ν

∫ 1

0

uν−1φp(y|µ, u−1Σ)Φ(u1/2A)du, y ∈ Rp.

From (1), it can be shown that

E[Y] = µ +

√
2

π

2ν

2ν − 1
∆, ν > 1/2, and

V ar[Y] =
ν

ν − 1
Σ− 2

π
(

2ν

2ν − 1
)2∆∆>, ν > 1.

The SL distribution reduces to the SN distribution when ν ↑ ∞. Applications of

the SL distribution can be found in Wang and Genton (2006).

2.3 Multivariate skew–contaminated normal distribution

The Multivariate SCN distribution is denoted by SCNp(µ,Σ,λ, ν, γ), 0 ≤ ν ≤ 1,

0 < γ ≤ 1. Here, U is a discrete random variable taking one of two states. The

probability function of U , given the parameter vector ν = (ν, γ)>, is denoted by

h(u|ν) = νI(u=γ) + (1− ν)I(u=1), 0 < ν < 1, 0 < γ ≤ 1,

It follows then that f(y) = 2{νφp(y|µ, γ−1Σ)Φ(γ1/2A) + (1 − ν)φp(y|µ,Σ)Φ(A)}.
In this case, we have

E[Y] = µ +

√
2

π
(

ν

γ1/2
+ 1− ν)∆,

V ar[Y] = (
ν

γ
+ 1− ν)Σ− 2

π
(

ν

γ1/2
+ 1− ν)2∆∆>.

The SCN distribution reduces to the SN one when γ = 1.

3 The SNI–LMM

Following Lachos et al. (2008), we consider a generalization of the classical N–LMM

in which the random errors are assumed to have a NI distribution and the random

effects are assumed to have a multivariate SNI distributions within the class defined

in (1). Simultaneously, the heavy-tail asymmetric model can be written as

Yi = Xiβ + Zibi + εi, (3)
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with the assumption that

(
bi

εi

)
ind.∼ SNIni+q

((
0

0

)
,

(
D 0

0 Σi

)
,

(
λb

0

)
, H

)
, i = 1, . . . , n, (4)

where the subscript i is the subject index, Yi is a ni×1 vector of observed continuous

responses for sample unit i, Xi is the ni×p design matrix corresponding to the fixed

effects, β is a p× 1 vector of population-averaged regression coefficients called fixed

effects, Zi is the ni × q design matrix corresponding to the q × 1 vector of random

effects bi, and εi is the ni × 1 vector of random errors. The matrices D = D(α)

and Σi = Σi(γ), i = 1, . . . , n, are dispersion matrices, corresponding to the within

and between subjects variability, and depend on unknown and reduced parameters

α and γ, respectively. Finally, as was indicated in the previous section, H = H(·; ν)

is the cdf-generator that determines the specific SNI model that we are assuming.

From now on, we assume that Σi(γ) = σ2
eRi, with Ri known, thus γ = σ2

e is a scalar

parameter. We refer to Lachos et al. (2008) for details and additional interesting

properties on this proposed model.

Classical inference on the parameter vector θ = (β>, σ2
e , α

>,λ>, ν>)>, is based on

the marginal distribution for Yi, which is given by (Lachos et al., 2008)

f(yi|θ) = 2

∫ ∞

0

φni
(yi|Xiβ, u−1

i Ψi)Φ
(
u

1/2
i λ̄

>
i Ψ

−1/2
i (yi −Xiβ)

)
dH(ui|ν), (5)

i.e., Yi
ind.∼ SNIni

(Xiβ,Ψi, λ̄i; H), i = 1, . . . , n, where Ψi = σ2
eRi + ZiDZ>i ,

Λi = (D−1 + σ−2
e Z>i R−1

i Zi)
−1 and λ̄i =

Ψ
−1/2
i ZiDζ√
1 + ζ>Λiζ

,

with ζ = D−1/2λ. It follows that the log-likelihood function for θ given the observed

sample Y = (y1, . . . ,yn) is given by

`(θ) ∝ −
n∑

i=1

log

[∫ ∞

0

φni
(yi|Xiβ, u−1

i Ψi)Φ
(
u

1/2
i λ̄

>
i Ψ

−1/2
i (yi −Xiβ)

)
dH(ui; ν)

]
,

(6)

The maximum likelihood estimates (MLEs) of θ can be obtained by direct maxi-

mization of (6) or alternatively by using the EM–type algorithm proposed in Lachos

et al. (2008), while inference for the parameters will be based on the asymptotic

normality of the MLEs (Cox and Hinkley, 1974). Instead, in this paper we de-

velop a Bayesian method for inference. Our approach relies on the Markov chain

Monte Carlo (MCMC) algorithms to obtain posterior inference for the parameters.
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Bayesian hierarchical modeling is very attractive due to its flexibility. It allows for

full parameter uncertainty and Bayesian inference does not depend on asymptotic

results (Gelman et al., 2006). Interval estimates for model parameters or functions

of model parameters can be easily obtained directly from the MCMC output. We

note that conditional on ui, some derivations are common to all the members of

the SNI-LMM ( see Appendix A). In the next section, we discuss aspects of model

(3) and (4) that are shared by all members of the family considered, and in the

Appendix we address aspects relevant to specific cases.

3.1 Prior distributions and joint posterior density

In this section, we implement the Bayesian methodology using MCMC techniques

for the SNI-LMM. A key feature of this model, which allows writing easily BUGS

codes, is that it can be formulated in a flexible hierarchical representation as follows:

Yi|bi, Ui = ui
ind.∼ Nni

(Xiβ + Zibi, u
−1
i σ2

eRi), (7)

bi|Ti = ti, Ui = ui
ind.∼ Nq(∆ti, u

−1
i Γ), (8)

Ti|Ui = ui
ind.∼ HN1(0, u

−1
i ), (9)

Ui
iid.∼ H(ui|ν), (10)

i = 1, . . . , n, where HN1(0, σ
2) is the half-N1(0, σ

2) distribution, ∆ = D1/2δ and

Γ = D − ∆∆>, with δ = λ/(1 + λ>λ)1/2 and D1/2 being the square root of D

containing q(q + 1)/2 distinct elements. Let y = (y>1 , . . . ,y>n )>, b = (b>1 , . . . ,b>n )>,

u = (u1, . . . , un)>, t = (t1, . . . , tn)> it follows that the complete likelihood function

associated with (y>,b>,u>, t>)>, is given by

L(θ|y,b,u, t) ∝
n∏

i=1

[φni
(yi|Xiβ + Zibi, u

−1
i σ2

eRi)φq(bi|∆ti, u
−1
i Γ)

×φ1(ti|0, u−1
i )h(ui|ν)]. (11)

Now, to complete the Bayesian specification of the model we need to consider prior

distribution to all the unknown parameters θ = (β>, σ2
e , α

>,λ>, ν>)> Since we have

no prior information from historical data or from previous experiment, we assign

conjugate but weakly informative prior distributions to the parameters. Note that

since we have assumed informative (but weakly) prior distribution, posterior is well

defined and proper. Assuming elements of the parameter vector to be independent

we consider that the joint prior distribution of all unknown parameters have density
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given by

π(θ) = π(β)π(σ2
e)π(Γ)π(∆)π(ν). (12)

The prior on β is taken to be normal with known hyperparameters β0 and Sβ. The

scale parameter σ2
e is taken to be IG( τe

2
, Te

2
) (inverted Gamma) with density function

given by

π(σ2
e) =

(
Te

2

) τe
2

Γ( τe

2
)

(
1

σ2
e

) τe
2

+1

exp

{
− Te

2σ2
e

}
.

The family of the random effects were chosen mainly for computational simplicity.

The inverted Wishart ( IWτ (T)) distribution was used as prior for the matrix Γ =

D −∆∆>. The prior for ∆ is taken to be Normal with known hyperparameters

∆0 and S∆. Finally, the prior distribution of ν, with density π(ν), depends on the

particular SNI distribution we use. Combining the likelihood function (11) and the

prior distribution, the joint posterior distribution for θ is given by,

π(β, σ2
e ,Γ,∆,b,u, t|y) ∝

n∏
i=1

[
φni

(yi|Xiβ + Zibi, u
−1
i Riσ

2
e)

× φq(bi|∆ti, u
−1
i Γ)φ1(ti|0, u−1

i )h(ui|ν)
]
π(θ). (13)

Distribution (13) is analytically intractable but MCMC methods such as the Gibbs

sampler and Metropolis-Hastings algorithm can be used to draw samples, from which

features of marginal posterior distribution of interest can be inferred. The Gibbs

sampler works by drawing samples iteratively from conditional posterior distribu-

tions deriving from (13). Given u, all conditional posterior distributions are as in a

standard SN-LMM and have the same form for any element of the SNI class. These

have closed form and will be present in the following Proposition:

Proposition 1. Under the full model as described in (13), given u, the full condi-

tional distribution of β, σ2
e , ∆, Γ, bi, ti, i = 1, . . . , n, are given by

β|b,u, t, σ2
e ,∆,Γ ∼ Np(A

−1
β aβ, A−1

β ), (14)

where Aβ = S−1
β + 1

σ2
e

∑n
i=1 uiX

>
i R−1

i Xi and aβ = S−1
β β0+

1
σ2

e

∑n
i=1 uiX

>
i R−1

i (yi − Zibi);

σ2
e |b,u, t,β,∆,Γ ∼ IG(

N + τe

2
,

Te +
∑n

i=1 uiµ
>
i R−1µi

2
), (15)

where N =
∑n

i=1 ni and µi = yi −Xiβ − Zibi;

∆|b,u, t, β, σ2
e ,Γ ∼ N(Σ−1

∆ µ∆, Σ−1
∆ ), (16)
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where µ∆ = S−1
∆ ∆o + Γ−1 ∑n

i=1 uibi, Σ∆ = Γ−1 ∑n
i=1 uit

2
i + S−1

∆ ;

Γ|b,u, t, β, σ2
e ,∆ ∼ IWτb+n((T−1

b +
n∑

i=1

ui(bi −∆ti)(bi −∆ti)
>)−1); (17)

bi|β, σ2
e ,∆,Γ,ui, ti ∼ Nq(A

−1
bi ai, u−1

i A−1
bi ), (18)

where Abi = ( 1
σ2

e
Z>i R−1

i Zi + Γ−1) and ai = 1
σ2

e
Z>i R−1

i (yi −Xiβ) + tiΓ
−1∆, i =

1, . . . , n;

Ti|β, σ2
e ,Γ,∆,bi, ui ∼ N(A−1

t ati, u−1
i A−1

t )I{Ti > 0}, (19)

where At = (1 + ∆>Γ−1∆), ati = b>i Γ−1∆, i = 1, . . . , n. Finally

D = Γ + ∆∆> and λ = D−1/2∆/(1−∆>D−1∆)1/2.

Proof. All of the full conditional distributions are straightforward to derive by work-

ing the complete joint posterior and using Lemma 2 as described in Arellano–Valle

et al. (2005).

To complete the specifications for a Gibbs sampling scheme, we need the full

conditional posterior distributions of u and parameter ν. For each element of u, the

density is:

π(ui|θ,y,b, t) ∝ u
ni/2+q/2+1/2
i h(ui|ν)

× exp

{
− 1

2σ2
e

ui(yi −Xiβ − Zibi)
>R−1

i (yi −Xiβ − Zibi)

−1

2
ui(bi −∆ti)

>Γ−1(bi −∆ti)− 1

2
uit

2
i

}
, (20)

i = 1, . . . , n. For ν, the density is:

π(ν|θ,y,b,u, t) ∝ π(ν)
n∏

i=1

h(ui|ν). (21)

The form of (20) depends on the specific SNI distribution adopted and, in the case

of (21), on the form of prior distribution of ν (see appendix A).

4 Models comparison

Model diagnostics and comparison measures based on the posterior predictive densi-

ties are often easier to work with in MCMC model fitting settings. MCMC methods
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are able to produce these measures without much extra effort. See for example

Gelfand (1996). In the discussion below, first we describe one criterion to perform

Bayesian model choice and then, we describe some other Bayesian criteria.

Let yobs with components yi,obs; i = 1, . . . , n denote the set of observed values of

y. Similarly we use the notation yrep with components yi,rep to denote a future set

of observations under the assumed model (here obs and rep are the abbreviations

for the observation and replicate, respectively). Let θ denote the set of parameters

of the current model.

The posterior predictive density, π(yrep|yobs), is the predictive density of a new

independent set of observable, yrep, under the assumed model given the actual data

set of observables, yobs. By marginalizing π(yrep|yobs) we obtain the posterior pre-

dictive density of one observation yi,rep, i = 1, . . . , n, as follows,

π(yi,rep|yobs) =

∫
π(yi,rep|θ)π(θ|yobs)dθ. (22)

Let µi and Σi denote the posterior predictive mean and covariance of yi,rep under

the density (22). We can easily estimate µi and Σi by Monte Carlo integration

as follows. Suppose that θ(1), . . . , θ(R) denote R Gibbs samples from π(θ|yobs).

Then, a random sample y
(r)
i,rep drawn from π(yi,rep|θ(r)), is a sample from the pre-

dictive density (22). See for example Gelfand (1996). To perform model choice,

first, we considered the Bayesian criteria called L- measure proposed by Laud and

Ibrahim (1995). It is defined as the expected squared Euclidean distance between

the vector of observations, yobs, and the vector of future observations, yrep, i.e.,

L = E
[
(yrep − yobs)

>(yrep − yobs)
]
, where the expectation is taken with respect to

the posterior predictive distribution given in (22). Straightforward algebra shows

that L measure can be written as

L =
n∑

i=1

tr(Σi) +
n∑

i=1

(µi − yi,obs)
>(µi − yi,obs),

and thus L can be written as a sum of two terms, one involving the predictive

variances and the other term is like a bias term involving the squared difference

between the predictive means and the observed data.

Many other Bayesian criteria have been proposed in the literature. In this paper

we are also going to consider some of these Bayesian model selection criteria: the

The Deviance Information Criterion (DIC; Spiegelhalter et al., 2002), the Expected

Akaike Information Criteria (EAIC), the Expected Bayesian Information Criteria
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(EBIC) as proposed by Carlin and Louis (2000) and Brooks (2002), and the con-

ditional predictive ordinate (CPO) (Gelfand, Dey and Chang 1992). Each of these

model criteria is simple to compute as the relevant quantities can be calculated

directly from the MCMC output.

The criteria DIC, EAIC and EBIC are based on the posterior mean of the de-

viance, i.e., E [D(β, σ2
e ,α, λ, ν)] which is also a measure of fit and can be approxi-

mated by using the MCMC output, considering the value of

D̄ =
1

B

B∑

b=1

D(β(b), (σ2
e)

(b),α(b)λ(b),ν(b)),

where B represents the number of iterations, and

D(β, σ2
e ,α, λ, ν) = −2log(f(y|β, σ2

e ,α,λ,ν))

= −2
n∑

i=1

log(f(yi|β, σ2
e ,α, λ, ν)),

where f(yi|β, σ2
e ,α,λ,ν) is given in (5). The criteria EAIC, EBIC and DIC can be

estimated using MCMC output by considering

ÊAIC = D̄ + 2p, ÊBIC = D̄ + plog(N) and D̂IC = D̄ + ρ̂D = 2D̄ − D̂,

respectively, where p is the number of parameters in the model, N is the total

number of observations. The ρD, is the effective number of parameters as described

in (Spiegelhalter et al., 2002), and is defined as

ρD = E
[
D(β, σ2

e ,α,λ,ν)
]−D(E[β], E[σ2

e ], E[α], E[λ], E[ν]).

The term D(E[β], E[σ2
e ], E[α], E[λ], E[ν]) is the deviance of posterior mean ob-

tained when considering the mean values of the generated posterior means of the

model parameters, which is estimated by

D̂ = D

(
1

B

B∑

b=1

βb,
1

B

B∑

b=1

(σ2
e)

b,
1

B

B∑

b=1

αb,
1

B

B∑

b=1

λb,
1

B

B∑

b=1

,νb

)
.

Smaller value of the DIC, EBIC and EAIC, implies better fit of the model. The

CPO is a cross-validated predictive approach i.e., predictive distributions condi-

tioned on the observed data with a single data point deleted. Chen, Shao, and

Ibrahim (2000, chapter, 10) show in detail how to obtain Monte Carlo estimates of

the CPO statistic. For model comparison we use the log pseudo marginal likelihood
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(LPML) defined by LPML =
∑

i log ĈPOi where ĈPOi is the Monte Carlo estimate

of the i th subjects CPO statistic. Models with greater LPML values will indicate

a better fit.

Figure 1: Histogram and normal Q-Q plots of empirical bayes estimates of: In the first

row subject–specific intercepts and the second row the subject–specific slopes.
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5 Illustrative example

The Framingham heart study has examined the role of serum cholesterol as a risk

factor for the evolution of cardiovascular disease. Zhang and Davidian (2001) pro-

posed a semiparametric approach to analyze a subset of the Framingham cholesterol

data, which consist of gender, baseline age and cholesterol levels measured at the

beginning of the study and then every two years over a period of ten years, for

200 randomly selected participants. Lachos at al. (2008), analyzed the same data

set by fitting a SNI–LMM from a frequentis perspective. In this section, we revisit

the Framingham cholesterol data with the aim of providing additional inferences by

using MCMC methods.

Assuming a linear growth model with subject–specific random intercept and

slopes, we fit a LMM model to the data as specified by Zhang and Davidian (2001)

Yij = βo + β1sexi + β2agei + β3tij + b0i + b1itij + εij , (23)

where Yij is the cholesterol level, divided by 100, at the j-th time for subject i; tij

is (time − 5)/10, with time measured in years from the start of the study; agei is

age at the start of the study; sexi is the gender indicator (0 = female, 1 = male).

Thus, xij = (1, sexi, agei, tij)
>, bi = (b0i, b1i)

> and Zij = (1, tij)
>. To verify the
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existence of skewness in the random effects, we start by fitting an ordinary N–LMM.

Figure 1 depicted histograms and corresponding envelopes of the empirical Bayes

estimates of bi, b̂i = DZ>i Ψ−1
i (yi−Xiβ) and shows that there are no apparent non-

normal pattern for subject–specific slopes. However, the subject–specific intercept

are positively skewed and therefore the suggested Gaussian model did not fit well.

Moreover, the QQ – plots clearly support the use of heavy-tailed distributions.

We reanalysed the data within a Bayesian perspective, adopting the model in (23)

using SNI distributions. The following independent priors were considered to per-

form the Gibbs sampler. βk ∼ N1(0, 103), k = 0, 1, 2, 3, ∆k ∼ N1(0, 103), k = 1, 2,

1/σ2
e ∼ Gamma(0.1, 0.01), Γ ∼ IW3(T) with T =

(
0.01 0

0 0.01

)
and ν ∼

Exp(0.1)I(3, ) for the skew-t model, ν ∼ Gamma(0.01, 0.001) for the skew-slash model,

ν ∼ U(0, 1) and γ ∼ U(0, 1), for the skew-contaminated normal model. Considering

these prior densities we generated two parallel independent runs of the Gibbs sam-

pler chain with size 25000 for each parameter, disregarding the first 5000 iterations

to eliminate the effect of the initial values and to avoid correlation problems, we

considered a spacing of size 20, obtaining a sample of size 2000. To monitor the

convergence of the Gibbs samples we used the methods recommended by Cowles

and Carlin (1996).

Table 1: Comparison between SNI–LMM by using different Bayesian criteria.

criterion SN–LMM ST–LMM SSL–LMM SCN–LMM

Measure L 90.9629 90.7765 91.0485 90.4635

LPML -167.6699 -139.6163 -144.0634 -136.0166

DIC 343.7494 285.7520 297.1779 278.5508

EAIC 353.3398 294.3327 304.1269 290.0132

EBIC 407.7987 348.8517 358.5858 344.4721

Several statistical models with differing distribution in the unobserved covariate

and random errors are compared. These models are:

Model 1: Skew-normal distribution for the random effects and normal distribution

for the random error (SN-LMM).

Model 2: Skew-t distribution for the random effects and Student-t distribution for

the random error (ST-LMM).

Model 3: Skew-slash distribution for the random effects and slash distribution for

13



the random error (SL-LMM).

Model 4: Contaminated skew-normal distribution for the random effects and contaminated-

normal distribution for the random error (SCN-LMM).

Table 1 presents the comparison among the five different models using the model

selection criteria discussed in Section 4. Notice that the asymmetric heavy–tailed

SNI–LMM improves the corresponding SN-LMM in all the criteria displayed in Table

1, specifically the SCN-LMM presents the best fit. In Table 2 we report posterior

mean and standard deviation for all the SNI-LMM. We note from Table 2 that the

intercept and slope estimates are similar among the four fitted models, however the

standard errors of the ST–LMM , SCN–LMM and SSL–LMM are smaller than those

in the SN model, indicating that the three models with longer tails than SN seem

to produce more accurate estimates. The estimates for the variance components are

not comparable since they are in different scale.

On the other hand, the normal distribution is a limiting case of the skew-t,

skew-slash and skew-contaminated normal distributions. The approximate poste-

rior densities of the parameter ν are presented in the Figure 2. Note that for the

ST-LMM and SSL-LMM, the densities are concentrated around small values of ν,

indicating the lack of adequacy of the normality assumption for the model. A similar

picture emerged considering the SCN–LMM. These results are in accordance with

the result present in Lachos et al. (2008). In Figure 3, we showed the box-plots for

skewness parameter estimates for the four models. Note that the credible interval

for λ1 does not include zero for all models, which confirms the asymmetry of the

data.

Influence of a single outlier

The robustness of the SNI models can be studied through the influence of a single

outlying observation on the posterior distribution of the parameters. We study

the influence of a change of ∇ units in a single individuals on the posterior mean

and 95% credible interval of βk, k = 2, 3. We replace a single observation y1j for

y1j(∇) = y1j +∇, j = 1, . . . , 6 with ∇ between -5 and 5.

In Figure 4 and 5, we depicted the posterior mean and 95% credible interval of

β2 (sex) and β3 (age) respectively, for the SN, ST, SSL and SCN models. Note also

that heavy–tailed models are less affected by variations of ∇ than the SN model. In

the SN model, the outlying observation has also considerable more impact on the

size of the credible interval for both β2 and β3.
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Table 2: Summary results from the posterior distribution, mean, standard deviation

(SD), of the parameter of the SNI distributions to the Framingham cholesterol data

set. (d11, d12, d22), are the distinct elements of the matrices D.

SN–LMM ST–LMM SCN–LMM SSL–LMM

Parameter Mean SD Mean SD Mean SD Mean SD

β0 1.3782 0.1346 1.3985 0.1278 1.4057 0.1369 1.3838 0.1340

β1 -0.0571 0.0489 -0.0621 0.0454 -0.0634 0.0451 -0.0575 0.0460

β2 0.0135 0.0033 0.0138 0.0031 0.0138 0.0034 0.0143 0.0033

β3 0.3324 0.1305 0.3412 0.0913 0.3649 0.1102 0.3241 0.1207

σ2
e 0.0437 0.0023 0.0332 0.0025 0.0265 0.0028 0.0228 0.0023

d11 0.3299 0.0502 0.2277 0.0411 0.1757 0.0340 0.1549 0.0298

d12 -0.0054 0.0874 -0.0039 0.0449 -0.0141 0.0450 -0.0030 0.0416

d22 0.0589 0.0259 0.0436 0.0174 0.0417 0.0205 0.0330 0.0135

λ1 7.1600 3.0030 5.2750 2.2610 5.2091 2.2960 4.4970 2.0350

λ2 -2.8200 2.6051 -2.2970 1.8100 -2.7231 2.2070 -1.8700 1.9710

ν - - 8.4684 1.8738 0.3399 0.0888 2.0219 0.3105

γ - - - - 0.3437 0.0391 - -

6 Concluding remarks

In this article, we have developed a new class of linear mixed models to handle

clustered and clumped data. By considering various types skewed distributions we

developed a class of asymmetric, heavy-tailed distributions of the random effects in

the linear mixed models. Consequently, we developed robust and very flexible class

of models. Due to the complexity of the model, Bayesian paradigm was used through

Markov chain Monte Carlo method. The proposed methodology is exemplified using

a real data set from Framingham cholesterol study. This methodology can be further

extended to modeling categorical and survival data analysis, which will be pursued

in future research.
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Figure 2: Marginal posterior densities of parameters ν for each tick-tailed distri-

bution, (a) degrees of freedom - skew-t distribution, (b) Parameter ν - skew-slash

distribution and (c) Parameter ν- skew-contaminated distribution (d) Parameter

γ-skew-contaminated normal distribution.

Appendix A: Conditional posterior distributions

for specific skew-normal/independent cases

• Skew-t

Here ν is a scalar parameter and when ν = 1, the models is skew-Cauchy. We

adopt a truncated exponential prior for ν of the form E(
%

2
)I(2,∞). The density of

the conditional posterior distribution in (20) takes the form:

ui|θ,y,b, t ∼ Gamma((ni + q + ν + 1)/2; ν/2 + Ci/2),

where Ci = 1
σ2

e
(yi−Xiβ−Zibi)

>R−1
i (yi−Xiβ−Zibi)+(bi−∆ti)

>Γ−1(bi−∆ti)+t2i .
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Figure 3: Boxplots of parameters λ for each tick–tailed distribution, (a) skew–

normal distribution, (b) skew-t distribution (c) Parameter ν skew–slash distribution

and (d) skew–contaminated normal distribution .

The full conditional posterior density of ν is:

π(ν|θ(−ν),y,b,u, t) ∝ (2ν/2Γ(ν/2))−nνnν/2 ×

exp

(
−ν

2

[
n∑

i=1

(ui − log ui) + %

])
I(2,∞). (24)

It is seen that π(ν|θ(−ν),y,b,u, t) ∝ π1(ν)×Gamma(
nν

2
−1,

1

2

n∑
i=1

(ui−log ui))I(2,∞),

where π1(ν) = (2ν/2Γ(ν/2))−n. Notice that(24) does not have a closed form but a

Metropolis-Hastings or rejection sampling step can be embedded in the MCMC

scheme to obtain draws for ν.

• Skew-slash

A Gamma(a, b) distribution with small positive values of a and b (b ¿ a) can

be adopted as a prior distribution for ν; this is convenient, because of conjugacy. In

this case, the fully conditional posterior density of each ui is:

ui|θ(−ν),y,b, t ∼ Gamma((ni + q + 2ν + 1)/2; Ci/2)I{0 < ui < 1}.
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Figure 4: Posterior mean (dashed line) and 95% credible interval (solid line) for β2

of fitting SNI models for different contaminations of ∇ of a single observation

Further, the conditional posterior density of ν is

π(ν|θ(−ν),y,b,u, t) ∝ νn+a−1 ×

exp

(
−ν

[
b−

n∑
i=1

log ui

])
, (25)

that is, the conditional density of ν is ν|θ(−ν),y,b,u, t ∼ Gamma(n + a, b −∑n
i=1 log ui).

• Skew contaminated normal distribution

The possible states of the ”weights” ui are either γ or 1, with ν = (ν, γ)>. A

U(0, 1) distribution is used as a prior for ν, and an independent Beta(a, b) is adopted
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Figure 5: Posterior mean (dashed line) and 95% credible interval (solid line) for β3

of fitting SNI models for different contaminations of ∇ of a single observation

as prior for γ, because of conjugacy. The fully conditional distribution of each ui is

proportional to {
νγ

ni+q+1

2 exp{−1
2
γCi}, if ui = γ,

(1− ν) exp{−1
2
Ci}, if ui = 1,

(26)

and the conditional probabilities are arrived at readily by suitable normalisation.

The full conditional posterior density of the proportion of outliers ν is:

π(ν|θ(−ν),y,b,u, t) ∝ ν
(a +

n−∑n
i=1 ui

1− γ
− 1)

× (1− ν)
(b +

∑n
i=1 ui − nγ

1− γ
− 1)

.
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It follows that this distribution is:

ν|θ(−ν),y,b,u, t ∼ Beta

(
a +

n−∑n
i=1 ui

1− γ
; b +

∑n
i=1 ui − nγ

1− γ

)
.

The conditional posterior density of γ is:

π(γ|θ(−γ),y,b,u, t) ∝ ν
(
n−∑n

i=1 ui

1− γ
)
× (1− ν)

(

∑n
i=1 ui − nγ

1− γ
)
.

An interesting Metropolis–Hastings method to update from γ is described in

Rosa et al. (2003).

References

[1] Arellano-Valle R. B., Bolfarine, H. and Lachos, V. H. (2005). Skew-normal

linear mixed models. Journal of Data Science, 3, 415-438.

[2] Azzalini, A., Capitanio, A. (2003). Distributions generated by perturbation

of symmetry with emphasis on the multivariate skew-t distribution. Journal

of the Royal Statistical Society, Series B, 65, 367-389.

[3] Azzalini, A. and Genton, M. (2007). Robust likelihood methods based on the

skew–t and related distributions. International Statistical Review (In press).

[4] Branco, M. and Dey, D. (2001). A general class of multivariate skew-elliptical

distribution. Journal of Multivariate Analysis, 79, 93-113.

[5] Brooks, S. P. (2002). Discussion on the paper by Spiegelhalter, Best, Carlin,

and van de Linde (2002). Journal of the Royal Statistical Society Series B,

64, 3,616-618.

[6] Carlin, B.P. and Louis, T.A. (2000). Bayes and Empirical Bayes Methods for

Data Analysis Second edition. New York: Chapman & Hall/CRC.

[7] Chen, M-H., Shao, Q-M. and Ibrahim, J.G. (2000). Monte Carlo Methods in

Bayesian Computation. New York: Springer-Verlag.

[8] Cowles, M. K., Carlin, B. P. (1996). Markov chain Monte Carlo convergence

diagnostics: a comparative review. Journal of the American Statistical Asso-

ciation, 434, 883-904.

20



[9] Cox, D. R. and Hinkley, D. V. (1974). Theoretical Statistics. New York: Chap-

man & Hall.

[10] Gelfand, A.E. (1996). Model determination using sampling based methods. In

Markov Chain Monte Carlo in Practice (Eds. W.R. Gilks, S. Richardson and

D.J. Spiegelhalter), Chapman and Hall: London, 145-161.

[11] Gelman, A., Carlin, J. B., Stern, H., and Rubin, D. (2006). Bayesian Data

Analysis, Second Edition, Chapman & Hall/CRC.

[12] Gelfand, A. E., Dey, D. K. and Chang H. (1992). Model determination us-

ing predictive distributions with implementation via sampling-based methods

(with Discussion). In Bayesian Statistics 4, Bernardo, J. M., Berger J. O.,

Dawid A. P., Smith AFM (eds). Oxford University Press: Oxford, 1992.

[13] Ghidey, W., Lesaffre, E., and Eilers, P. (2004). Smooth random effects distri-

bution in a linear mixed model. Biometrics, 60, 945-953.

[14] Gupta A. K. (2003). Multivariate skew t-distributions. Statistics, 37, 359-363.

[15] Jara, A., Quintana, F. and San Martin, E. (2008). Linear mixed models with

skew-elliptical distributions: A Bayesian approach . Computational Statistics

and Data Analysis, 52, 5033–5045.

[16] Lachos, V. H., Bolfarine, H. and Arellano-Valle, R. B. (2007). Bayesian infer-

ence for skew-normal linear mixed models. Journal of Applied Statistics, 34,

663-682.

[17] Lachos, V. H., Ghosh, P. and Arellano–Valle, R. B. (2008). Likelihood based

inference for skew–normal/independent linear mixed models. Statistica Sinica,

to appear.

[18] Lange, K., and Sinsheimer, J. S. (1993). Normal/independent distributions

and their applications in robust regression . Journal of Computational and

Graphical Statistics, 2, 175-198.

[19] Laird, N. M. and Ware, J. H. (1982). Random effects models for longitudinal

data. Biometrics, 38, 963-974.

[20] Laud, P. W. and Ibrahim, J. G. (1995). Predictive model selection. Journal

Royal Statistical Society, B, 57, 247-262.

21



[21] Lin, T. I. and Lee, J. C. (2007). Estimation and prediction in linear mixed

models with skew-normal random effects for longitudinal data. Statistics in

Medicine. Available online early view.

[22] Lin, T. I., Lee, J. C. and Hsieh, W. J. (2007). Roubust mixture modeling using

the skew t distribution. Statistics and Computing. 17, 81-92.

[23] Ma, Y., Genton, M. G., and Davidian, M. (2004). Linear mixed models with

flexible generalized skew-elliptical random effects. In Skew-Elliptical Distribu-

tions and their Applications: A Journey Beyond Normality, Genton, M. G.,

Ed., Chapman & Hall/CRC, Boca Raton, FL, pp. 339-358.

[24] Pinheiro, J. C., Liu, C. H. and Wu, Y. N. (2001). Efficient algorithms for robust

estimation in linear mixed-effects models using a multivariate t-distribution.

Journal of Computational and Graphical Statistics, 10, 249-276.

[25] Rosa, G. J. M., Padovani, C. R., and Gianola, D. (2003). Robust linear mixed

models with Normal/Independent distributions and Bayesian MCMC imple-

mentation. Biometrical Journal 45, 573–590.

[26] Sahu, S. K., Dey, D. K. and Branco, M. D. (2003). A new class of multi-

variate skew distributions with aplications to Bayesian regression models. The

Canadian Journal of Statistics, 31, 129-150.

[27] Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Linde, A. V. (2002).

Bayesian measures of model complexity and Journal Royal Statistical Society,

B 64, 583-639.

[28] Verbeke, G. and Lesaffre, E. (1996). A linear mixed-effects model with hetero-

geneity in the random-effects population. Journal of the American Statistical

Association, 91, 217–221.

[29] Verbeke, G. and Lesaffre, E. (1997). The effect of misspecifying the random ef-

fects distribution in linear mixed models for longitudinal data. Computational

Statistics and Data Analysis 23, 541-556.

[30] Wang, J. and Genton, M. (2006). The multivariate skew-slash distribution.

Journal of Statistical Planning and Inference, 136, 209–220.

[31] Zhang, D., Davidian, M. (2001). Linear mixed models with flexible distribu-

tions of random effects for longitudinal data. Biometrics, 57, 795–802.

22


