
Martingales on Principal Fiber Bundles

Pedro Catuogno and Simão Stelmastchuk
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Abstract

Let P (M,G) be a principal fiber bundle, ω be a connection form
on P (M,G) and ∇P be a projectable connection on P (M,G). The
aim of this work is determine the ∇P -martingales in P (M,G). Our
results allow to establish new characterizations of harmonic maps from
Riemannian manifolds to principal fiber bundles.
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1 Introduction

This article is concerned with the characterization of martingales on a prin-
cipal fiber bundle P (M, G) which is endowed with a connection form ω and a
G-invariant symmetric connection∇P . Following to N. Abe and K. Hasegawa
[1], we says that ∇P is projectable if there exists an unique symmetric con-
nection ∇M on M such that for any vector fields X and Y on M

h∇P
XhY

h = (∇M
X Y )h,

where h denotes the horizontal projection which is associated to ω and −h

denotes the associated horizontal lift. Let A and T be the fundamental
tensors associated to π : P → M , see (5) and (6) below. The symmetrized
of a tensor R will be denote by RS.

In this situation, we prove the following results:
1) Let Y be a continuous semimartingale with values in P . Then Y is a
∇P -martingale if and only if∫

ω δY − 1

2

∫
(∇P ω)(dY, dY ) (1)
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is a local martingale and∫
α d∇

M

π ◦ Y +
1

2

∫
α ◦ π∗ ◦ (2AS + T S)(dY, dY ) (2)

is a local martingale for all α ∈ Γ(T ∗M).
2) Let N be a Riemannian manifold with metric g and F : N → P be a
smooth map. Then F is a harmonic map if and only if

d∗F ∗ω = trF ∗(∇P ω) (3)

and
τπ◦F = −tr π∗ ◦ (2AS + T S) ◦ F∗ ⊗ F∗. (4)

The motivation for this work is to understand the stochastic differential
geometry of principal fiber bundles, in particular the martingales of Kaluza-
Klein geometries. This paper is organized in the following way: In section
2 we review some fundamental facts on differential geometry of principal
fiber bundle and stochastic calculus on manifolds. In section 3 we prove our
principal results.

2 Preliminaries

We begin by recalling some fundamental facts on differential geometry of
principal fiber bundle and stochastic calculus on manifolds. We shall use
freely concepts and notations of S. Kobayashi and N. Nomizu [8], M. Emery
[7] and P. Meyer [9].

Let P (M, G) be a principal fiber bundle with projection π : P → M .
Let us denote the right action of G on P by Rg(p) = pg for p ∈ P and
g ∈ G. A horizontal lift H in P (M, G) is a smooth family of applications
Hp : Tπ(p)M → TpP such that π∗◦Hp = IdTπ(p)M for all p ∈ P and (Rg)∗Hp =
Hpg for all p ∈ P and g ∈ G. The horizontal lift H determines a unique
decomposition of each tangent space TpP which is the direct sum of the
vertical subspace VpP = Ker(π∗(p)) and the horizontal subspace HpP =
Im(Hp) at p ∈ P . This decomposition naturally defines the horizontal lifts
of X ∈ Tπ(p)M as the unique tangent vector Xh = Hp(X) ∈ HpP such
that π∗(X

h) = X. We denote by g the Lie algebra of G. For B ∈ g,
the right action of G into P defines a 1-parameter transformation group on
P and induces a vector field B∗ on P . B∗ is the fundamental vector field
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corresponding to B, which is a vertical vector field. For each p ∈ P , the
linear mapping σp : g → VpP defined by σp(B) = B∗

p is an isomorphism.
Let us denote by hUp and vUp the horizontal and vertical parts of U ∈

TpP , respectively. The connection form ω : TP → g is defined by

ω(Up) = B,

where vUp = B∗
p at p ∈ P .

We observe that the connection form is a g-valued 1-form on P satisfying
the following conditions:

1. ω(B∗) = B for B ∈ g,

2. R∗
gω = adg−1ω for g ∈ G,

where adg : g → g is defined by adg(B) = (Ig)∗B, Ig being the inner auto-
morphism of G, Ig(x) = gxg−1 for all g ∈ G.

Conversely, given a g-valued 1-form ω on P , which satisfies the above
conditions, there is an unique horizontal lift H in P that its connection form
is ω. For p ∈ P and X ∈ Tπ(p)M , we have that Hp(X) ∈ TpP is the unique
solution of π∗(Hp(X)) = X and ωp(Hp(X)) = 0.

The curvature form Ω of ω is the g-valued 2-form on P defined by

Ω(U, V ) = dω(hU,hV ),

where U and V are vector fields on P .
Throughout the paper we adopt the following convention. A connection

on a manifold means a torsion free covariant derivative operator on the tan-
gent bundle.

Definition 2.1 Let ∇P be a connection on P (M, G). Then we says that ∇P

is G-invariant if the right translations Rg are affine for all g ∈ G.
Let ω be a connection form on P (M, G). A G-invariant connection ∇P

on P (M, G) is projectable if h∇P
XhY

h is projectable for all vector fields X
and Y on M .

Proposition 2.1 Let P (M, G) be a principal fiber bundle and ∇P be a G-
invariant connection on P (M, G). Then ∇P is projectable if and only if there
exist an unique connection ∇M on M such that

h∇P
XhY

h = (∇M
X Y )h

for all vector fields X and Y on M .
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Proof: Let ∇P be a projectable connection. We define ∇M
X Y = π∗∇P

XhY
h,

clearly h∇P
XhY

h = (∇M
X Y )h. It remains to prove that ∇M is a connection.

Since (fX)h = (f ◦ π)Xh, for all f ∈ C∞(M),

∇M
gX(fY ) = π∗(∇P

(g◦π)Xh(f ◦ π)Y h)

= π∗((g ◦ π)Xh(f ◦ π)Y h + (g ◦ π)(f ◦ π)∇P
XhY

h)

= gX(f)Y + gf∇M
X Y.

The uniqueness follows from the definition. �
Let∇P be a connection on P (M, G) and ω a connection form on P (M, G).

Following to B. O´ Neill [10], we describe the geometrical quantities of our
interest in terms of the fundamental tensors T and A. They are defined by

TUV = h∇P
vUvV + v∇P

vUhV (5)

and
AUV = v∇P

hUhV + h∇P
hUvV, (6)

for U and V vector fields on P .
We observe that the vanishing of T means that the fibers of P (M, G) are

totally geodesic.

Lemma 2.1 Let P (M, G) be a principal fiber bundle, ω be a connection form
on P (M, G) and ∇P be a projectable connection on P (M, G). If X and Y
are vector fields on M and B, C ∈ g, then we have the following equations:

TB∗C∗ = TC∗B∗

TB∗Xh = ω(∇P
XhB

∗)∗

AXhY h = −2Ω(Xh, Y h)∗ + AY hXh

AXhB∗ = ∇P
XhB

∗ − ω(∇P
XhB

∗)∗ + [Xh, B∗]

(7)

and 
∇P

B∗C∗ = ∇̂B∗C∗ + TB∗C∗

∇P
B∗Xh = h∇P

B∗Xh + TB∗Xh

∇P
XhB

∗ = v∇P
XhB

∗ + AXhB∗

∇P
XhY

h = h∇P
XhY

h + AXhY h,

(8)

where ∇̂ is the induced connection by ∇P in the fibers.
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Proof: An easy computation shows the equations (8). To prove (7), we
recall that vU = ω(U)∗ for all U ∈ TP and v[Xh, Y h] = −2Ω(Xh, Y h)∗ for
all X,Y ∈ TM . �

From (7) it follows that the horizontal distribution {HpP : p ∈ P} is
integrable if and only if AXhY h = AY hXh for all X and Y vector fields on
M .

Example 2.1 Let M be a differentiable manifold and ∇ be a connection on
M . We consider the frame bundle BM(M, GL(Rn)), which is a principal
fiber bundle with base M and structure group GL(Rn).

The canonical lift ∇c and horizontal lift ∇h are projectable connections
on BM with the projection ∇. In the book of L. Cordero et al. [6] we find a
survey of elementary properties of these connections. Let X and Y be vector
fields on M and B, C ∈ gl(n, Rn). The canonical lift ∇c and horizontal lift
∇H are completely defined by the relations:

∇c
B∗C∗ = (BC)∗

∇c
B∗Xh = 0

∇c
XhB

∗ = 0
∇c

XhY
h = (∇XY )h + γ(R(−, X)Y )

(9)

and 
∇H

B∗C∗ = (BC)∗

∇h
B∗Xh = 0

∇H
XhB

∗ = 0
∇H

XhY
h = (∇XY )h,

(10)

where R is the curvature tensor of ∇ and γS is the vertical lift defined by
γS(p) = (p−1 ◦ S ◦ p)∗(p) for p ∈ BM .

We observe that, in both cases, T = 0 and AXhB∗ = 0, so π is affine.

Remark 2.1 In the 1920s T. Kaluza and O. Klein proposed the use of spaces
of dimension higher than four in order to unify general relativity and what we
now call Yang-Mills theories. From a mathematical view point Kaluza-Klein
theory is the differential geometry of a principal fiber bundle with invariant
Riemannian metric (see [5] for more details). In this context is fundamental
the following reduction theorem: Let P (M, G) be a principal fiber bundle and
k be a G-invariant Riemannian metric on P , namely Rg is an isometry for
all g ∈ G. Let Mad(g) denote the set of metrics on g invariant by adg for
all g ∈ G. Then there exist
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1. h a Riemannian metric on M ,

2. ω a connection form on P ,

3. F : M →Mad(g) a smooth function

such that
k(U, V ) = h(π∗(U), π∗(V )) + F ◦ π(ω(U), ω(V )) (11)

for all U and V vector fields on P .
Reciprocally, given h a Riemannian metric on M , ω a connection form

on P and F : M → Mad(g) a smooth function, we have that (11) defines
the unique G-invariant Riemannian metric k on P .

It is easy to check that π : P → M is a Riemannian submersion and
the connection form ω is associated to the horizontal lift Hk. For X ∈ TM ,
Hk(X) is completely determined by π∗(H

k(X)) = X and Hk(X) is orthogonal
to V P .

It is clear that ∇k, the Riemannian connection associated to k, is a pro-
jectable connection with projection ∇h, the Riemannian connection associated
to h.

Example 2.2 Let P (M, G) be a principal fiber bundle, ω be a connection
form on P , k0 be an ad(G)-invariant metric on g and h be a Riemannian
metric on M . We consider the G-invariant Riemannian metric k on P
defined by

k(U, V ) = h(π∗(U), π∗(V )) + k0(ω(U), ω(V )) (12)

for all U and V vector fields on P .
An easy computations shows that π : P → M is a Riemannian submersion

with T = 0 and

AXhXh = 0

AXhB∗ = −1

2
k0(B, Ω(−, Xh))]

for all X vector field on M and B ∈ g (see for instance [1] and [10]).

Let (Ω, (Ft), P) be a filtered probability space and M a smooth manifold
with connection ∇. Let X be a continuous semimartingale with values in
M , α a section of TM∗ and b a section of T (2,0)M . We denote by

∫
α δX

the Stratonovich integral of α along X, by
∫

α d∇X the Itô integral of α
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along X and by
∫

b d(X, X) the quadratic integral of b along X. We recall
that X is a ∇-martingale if and only if

∫
α d∇X is a local martingale for any

α ∈ Γ(TM∗).
Let M be a manifold and α a section of TM∗. The Stratonovich-Itô

conversion formula is given by:∫ t

0

αδX =

∫ t

0

αd∇X +
1

2

∫ t

0

∇α (dX, dX). (13)

Let M and N be manifolds, α a section of TN∗, b a section of T (2,0)N
and F : M → N a smooth map. We have the following Itô formulas for
Stratonovich and quadratic integrals:∫ t

0

α δF (X) =

∫ t

0

F ∗α δX (14)

and ∫ t

0

b (dF (X), dF (X)) =

∫ t

0

F ∗b (dX, dX). (15)

In the case that M and N are endowed with connections ∇ and ∇′,
respectively, we have the following Itô formula for the Itô integral:∫ t

0

α d∇
′
F (X) =

∫ t

0

F ∗α d∇X +
1

2

∫ t

0

β∗F α (dX, dX), (16)

where βF is the second fundamental form of F (see [3] for more details).
From the above formula, it follows that F is an affine map if it and only

if sends ∇-martingales to ∇′-martingales.
Let M be a Riemannian manifold with metric g. Let B be a continuous

semimartingale with values in M , we say that B is a g-Brownian motion in
M if B is a martingale with respect to the Levi-Civita connection of g and
for any section b of T (2,0)M we have that∫ t

0

b(dB, dB) =

∫ t

0

tr bBsds. (17)

Combining (14) with (17) we obtain the following Manabe’s formula:∫ t

0

αδB =

∫ t

0

αd∇B +
1

2

∫ t

0

d∗αBsds. (18)
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From (16) and (17) we deduce the useful formula:∫ t

0

αd∇
′
F (B) =

∫ t

0

F ∗αd∇B +
1

2

∫ t

0

τ ∗F αBsds, (19)

where τF is the tension field of F .
We recall that an application F : M → N is an harmonic map if

τF = 0.

Applying the above formula, we obtain the Bismut characterization of har-
monic maps: F : M → N is an harmonic map if and only if it sends Brownian
motions to ∇′-martingales.

3 Martingales on principal fiber bundles

In this section we prove our main results.

Theorem 3.1 Let P (M, G) be a principal fiber bundle, ω be a connection
form on P and ∇P be a projectable connection with projection ∇M . Let Y be
a continuous semimartingale with values in P . Then Y is a ∇P -martingale
if and only if ∫

ω δY − 1

2

∫
(∇P ω)(dY, dY ) (20)

is a local martingale and∫
α d∇

M

π ◦ Y +
1

2

∫
α ◦ π∗ ◦ (2AS + T S)(dY, dY ) (21)

is a local martingale for all α ∈ Γ(T ∗M).

Proof: Let Y be a ∇P -martingale. By the conversion formula (13), we
have ∫

ω δY =

∫
ωd∇

P

Y +
1

2

∫
(∇P ω)(dY, dY ).

Since
∫

ω d∇
P
Y is a local martingale, so is

∫
ω δY − 1

2

∫
(∇P ω)(dY, dY ). In

order to prove (21), we take α ∈ Γ(T ∗M). It is easy to check that

β∗πα = α ◦ βπ = −α ◦ π∗ ◦ (2AS + T S). (22)
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Combining the above identity and Itô formula we conclude that∫
α d∇

M

π ◦ Y +
1

2

∫
α ◦ π∗ ◦ (2AS + T S)(dY, dY )

is the local martingale
∫

π∗α d∇
P
Y .

Conversely, take η in Γ(T ∗P ). Since the C∞-module Γ(T ∗P ) is generated
by ω and by the differential forms π∗α with α ∈ Γ(T ∗M), we have that η is
a linear combination of differential forms fπ∗α and hω with f, h ∈ C∞(P ).
It is clear that

∫
hω d∇

P
Y =

∫
h(Y ) d(

∫
ω d∇

P
Y ) is a local martingale and

that ∫
fπ∗α d∇

P

Y =

∫
f(Y ) d(

∫
π∗α d∇

P

Y ).

Hence, in order to show that
∫

η d∇
P
Y is a local martingale, it is sufficient

to show that
∫

π∗α d∇
P
Y is a local martingale. Applying the Itô formula

(16) and (22) we deduce that

∫
π∗α d∇

P

Y =

∫
α d∇

M

π ◦ Y − 1

2

∫
β∗πα(dY, dY )

=

∫
α d∇

M

π ◦ Y +
1

2

∫
α ◦ π∗ ◦ (2AS + T S)(dY, dY ).

This completes the proof.
�

Theorem 3.2 Let P (M, G) be a principal fiber bundle, ω be a connection
form on P , ∇P be a projectable connection with projection ∇M and N be a
Riemannian manifold with metric g. Let F : N → P be a smooth map. Then
F is a harmonic map if and only if

d∗F ∗ω = trF ∗(∇P ω). (23)

and
τπ◦F = −tr π∗ ◦ (2AS + T S) ◦ F∗ ⊗ F∗. (24)

Proof: Let F be an harmonic map and B be a g-Brownian motion. From
the Bismut characterization of harmonic maps and Theorem 3.1 we see that∫

ωδF (B)− 1

2

∫
(∇P ω) (dF (B), dF (B)) (25)
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is a local martingale. Applying (14) and (15) we can rewrite (25) as∫
F ∗ωδB − 1

2

∫
F ∗(∇P ω)(dB, dB). (26)

From the Manabe formula (18) we have∫
F ∗ωδB =

∫
F ∗ωd∇

g

B +
1

2

∫
d∗F ∗ωBs ds, (27)

∇g being the Levi-Civita connection associated to g. Combining (26) and
(27) we conclude that∫

ωd∇
P

F (B) +
1

2

∫
(d∗F ∗ω − trF ∗(∇P ω))Bs ds (28)

is a local martingale. Doob-Meyer decomposition now yields∫
(d∗F ∗ω − trF ∗(∇P ω))Bs ds = 0.

Since B is arbitrary, it follows that d∗F ∗ω = trF ∗(∇P ω).
It remains to prove that τπ◦F = −tr π∗ ◦ (2AS + T S) ◦ F∗ ⊗ F∗. As F is

an harmonic map, it follows that F (B) is a ∇P -martingale. From Theorem
3.1, we see that∫

α d∇
M

π ◦ F (B) +
1

2

∫
α ◦ π∗ ◦ (2AS + T S)(dF (B), dF (B))

is a local martingale for all α ∈ Γ(T ∗M). Applying (17) and (19) we conclude
that∫

(π ◦ F )∗α d∇
g

B +
1

2

∫
(τ ∗π◦F α + tr α ◦ π∗ ◦ (2AS + T S) ◦ F∗ ⊗ F∗)Bsds

is a local martingale. Since B and α ∈ Γ(T ∗M) are arbitrary, we have

τπ◦F = −tr π∗ ◦ (2AS + T S) ◦ F∗ ⊗ F∗.

Conversely, suppose that B is a g-Brownian motion. From the Bismut
characterization is sufficient to show that F (B) is a ∇P -martingale. We have
that

∫
ωδF (B)− 1

2

∫
(∇P ω) (dF (B), dF (B)) can be written as∫

F ∗ωd∇
g

B +
1

2

∫
(d∗F ∗ω − trF ∗(∇P ω))Bs ds.

10



Since d∗F ∗ω = trF ∗(∇P ω), it follows that∫
ωδF (B)− 1

2

∫
(∇P ω) (dF (B), dF (B))

is a local martingale. It remains to prove that∫
α d∇

M

π ◦ F (B) +
1

2

∫
α ◦ π∗ ◦ (2AS + T S)(dF (B), dF (B)) (29)

is a local martingale for all α ∈ Γ(T ∗M). An straightforward calculation
shows that we can rewrite the semimartingale (29) as∫

(π ◦ F )∗α d∇
g

B +
1

2

∫
α ◦ (τπ◦F + tr π∗ ◦ (2AS + T S) ◦ F∗ ⊗ F∗)Bsds,

and so (29) is a local martingale. Therefore F (B) is an ∇P -martingale by
Theorem 3.1. �

Example 3.1 Let M be a differentiable manifold and ∇ be a connection on
M . We consider the frame bundle BM(M, GL(Rn)) which is endowed with
∇c and ∇h, the canonical lift and horizontal lift of ∇, respectively. Let ω
be the connection form on BM which is associated with ∇. The following
assertions are true.

1) T = 0 and π∗ ◦ A = 0 for ∇c and ∇h.
2) The symmetric part of ∇hω is −ω � ω.
3) The symmetric part of ∇cω is −ω � ω + ac (see [4] for the definition

of ac).
Applying Theorem 3.1 and Theorem 3.2 we recovering the main results of

[4]. A BM -valued semimartingale Y is a ∇h-martingale ( ∇c-martingale) if
and only if

π ◦ Y is a ∇-martingale in M and∫
ω δY +

1

2

∫
(ω � ω)(dY, dY )

is martingale local.
(π ◦ Y is a ∇M -martingale in M and∫

ω δY +
1

2

∫
ω � ω(dY, dY ) +

1

2

∫
ac (dY, dY )
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is martingale local.)
Furthermore, F : N → BM is (g,∇h)-harmonic map ((g,∇c)-harmonic
map) if and only if

π ◦ F is a (g,∇)-harmonic map and d∗F ∗ω + trF ∗(ω � ω) = 0.
(π ◦ F is a (g,∇)-harmonic map and d∗F ∗ω + trF ∗(ω � ω + ac) = 0.)

Corollary 3.3 Let P (M, G) be a principal fiber bundle, ω be a connection
form on P , k0 be the ad(G)-invariant metric on g and h be a Riemannian
metric on M . Let ∇k be the Riemannian connection associated to k and ∇
be the one associated to h. We consider the G-invariant Riemannian metric
k on P defined by

k(U, V ) = h(π∗(U), π∗(V )) + k0(ω(U), ω(V )) (30)

for all U and V vector fields on P . We have the following assertions:

1. A P -valued semimartingale Y is a ∇k-martingale if and only if

1)
∫

ω δY is a local martingale,

2)
∫

α d∇π ◦ Y −
∫

α ◦ π∗ ◦ AS(dY, dY ) is a local martingale.

2. Let N be a Riemannian manifold with metric ḡ. A smooth map F :
N → P (M, G) is a (ḡ,∇P )-harmonic map if and only if

1) d∗F ∗ω = 0,

2) τπ◦F = −2tr π∗ ◦ AS ◦ F∗ ⊗ F∗.

Proof: Since T = 0, it is sufficient to show that the symmetric part of ∇kω
is zero. From (8) an easy calculations shows that

∇kω(B∗, Xh) = −ω(∇k
B∗Xh) = 0

∇kω(Xh, B∗) = −ω(∇k
XhB

∗) = 0
∇kω(B∗, C∗) = −ω(∇k

B∗C∗) = −1
2
[B, C]

∇kω(Xh, Y h) = −ω(∇k
XhY

h) = −ω(AXhY h).

According to (30), we have AZhZh = 0 for all Z vector field on M . It follows
that the symmetric part of ∇kω is zero. �

Remark 3.1 M. Arnaudon and S. Paycha, in [2], shows that semimartin-
gales in a principal fiber bundle P (M, G) with G-invariant Riemannian me-
tric k can be decomposed into G- and M- valued semimartingales. More
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precisely, a semimartingale Y with values in P (M, G) splits in a unique way

into a horizontal semimartingale Ỹ and a semimartingale V with values in
G such that

Y = Ỹ · V.

Moreover, V is the stochastic exponential

V = ε(

∫
ωδY )

and Ỹ is the solution of the Itô equation

d∇
k

Ỹ = Hk
Ỹ
d∇(π ◦ Y ).

It follows that Ỹ is a ∇k-martingale if and only if π ◦ Y is a ∇-martingale.
In the case that k is given by (30), Corollary 3.3 shows that if Y is a ∇k-
martingale then V is a G-martingale.

Finally, we consider Y a solution of the Itô equation

d∇
k

Y =
n∑

i=1

Ei(Y )dBi,

where (B1, ..., Bn) is a Brownian motion in Rn and the Ei are vertical or
horizontal vector fields on P . It is clear that Y is a ∇k-martingale and
follows easily that Ỹ is a ∇k-martingale and V is a G-martingale.
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