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Abstract
In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions
for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the
critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained
by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constant
together with an approach developed by Brezis and Nirenberg.
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1 Introduction

In this paper, we deal with the following degenerate quasilinear elliptic problem with weights and
nonlinearity involving critical Hardy-Sobolev exponent and a sign-changing function

—div(|z|P|VuP2Vu) = |z|"? |ulP " 2u 4 |z| P f(x) u]"" e in Q,
_ (1)
u = 0 on 0,
where
Q) is a bounded smooth domain in RY with 0 € €. (Hgq)

The exponents verify
1<p<N, —oo<a<¥, a<e<a+l,

pt = NJXZP the Hardy-Sobolev exponent, d=1+a —e, (Heap)

f<(a+1)pr+N(1-1),

with 1 <7 <p*, 1 <py < Np/(N —p), and r < p; < Np/(N — p) such that p%+ =1 and

o
f e Lo, |z|=?).

In the regular case; that is, when a = e = = 0; with p =2 and f = A > 0, our problem is reduced
to
—Au = Mt 4+u¥1 inQ, )
u = 0 on 01,

where 1 < ¢ < 2* and € is a bounded domain in RY, which has been studied by many authors.

In the celebrated paper of Brezis and Nirenberg [3], it was proved that problem (2) possesses a positive
solution for each A > 0 if 2 < ¢ < 2* and for A € (0, Ag) if ¢ = 2, for an adequate Ay > 0.

Ambrosetti, Brezis, and Cerami [1] proved that if 1 < ¢ < 2 the problem (2) possesses at least two
positive solutions if A € (0, 5\1)7 a positive solution if A = A1, and it does not possess any weak solution
if A > \; for an adequate A > 0.

Still in the regular case with p = 2, but with f being a sign-changing function the problem (1) becomes

~Au = AM@)u'+u¥ " in Q, 3)
v = 0 on 01,
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where 1 < ¢ < 2* = 2N/(N—2), N > 3, and Q is a bounded domain in RY. Actually, we know that Wu [16]
in 2008, proved the existence of two positive solutions for problem (3) when 1 < ¢ < 2 < 2* =2N/(N —2),
N >3, and Q is a bounded domain in RY. For more general results involving Laplacian operator we refer
de Figueiredo-Grossez-Ubilla [6, 7].

The problems involving the critical Sobolev exponent have been studied by many authors after the
work of Brezis and Nirenberg [3]. We would like to mention some papers about problems whose the
nonlinearities involve the critical Sobolev exponent and p—Laplacian operator. For instance, the problem
(1) with a = e = =0 and f being a nonnegative function, namely

~Apu = f(@)ut w7 in Q, (4)
u = 0 on 0%},

where 1 < ¢ < p* = Np/(N —p), N >3, and Q is a bounded domain in RY, was studied by Gongalves
and Alves in [10]. Also, for f = A, we cite the survey papers [2, 9].

Elliptic problems involving more general operator, such as the degenerate quasilinear elliptic operator
given by —div(|z|~%|Vul[P~2Vu), were motived by the following Caffarelli, Kohn, and Nirenberg’s
inequality (see [5, 18])

P

(/ |xep*|up*dx>” <Co. </ |x“p|Vu|pd:c>,Vu€C§°(RN), (5)
RN RN

where 1l <p< N, —co<a< (N-p)/p,a<e<a+1,p*:=Np/(N—-dp),d=1+a—e,and C,. > 0.
In particular, if r = p, 5 = (a+ 1)p — ¢, and f = X the problem (1) becomes

—div(|z|~®|VulP~2Vu) = 2|7 |ulP" 2w+ Nz| PlulP~?u in Q, (6)
u = 0 on 01},

where ¢ > 0 and (2 is a bounded smooth domain in RY with 0 € Q, and, in Xuan [18] was proved that
problem (6) possesses a nonnegative nontrivial weak solution for each 0 < A < A1, where A; > 0 is a first
eigenvalue related to our operator.

The aim of the our work is to extend some of the results mentioned above for the degenerate quasilinear
elliptic problem with weights and nonlinearity involving critical Hardy-Sobolev exponent and a sign-
changing function given in (1). The main difficulty will be due to lack of compactness of the embedding
WP (Q, x| =) — LP (Q,|z|~%*"), where Q@ C R is a bounded smooth domain with 0 € Q. Because of
the singularity in the weights, we need to work in an appropriate Banach space framework instead of a
Hilbert space, and that requires a careful analysis. In the next section, the precise definitions of these
spaces, as well as some properties of them, will be given.

The lack of compactness is overcome proving that is possible to obtain a Palais Smale sequence for
the Euler-Lagrange functional associated to the problem with the level below a certain number which is
said to be critical level (see Theorem 3.1). The best constant of Hardy-Sobolev Cj; , is characterized by

Jo lz| 7P|V ulPd
(fQ |z|=eP” [ulp” dx) P*

Our first two results treat the concave-convex case, in other words, when max{1,p — 1} <r < p.

Cop = Cap() = inf{ tu € Wol(Q[2]7) \ {0}} '

Theorem 1.1 Suppose (Hq), (Hegp), and max{l,p—1} < r < p. Then, we can find explicitly \g > 0 such
that problem (1) possesses a monnegative nontrivial weak solution for each f € LPo(Q,|z|™?) satisfying
f(x) > 0 forae. x € O and f £ 0 in ', for some Q' C Q with || > 0; here || is the Lebesgue’s
measure of Q'; and

0 <[ fllLro(,j2|-5) < Ao-

The next theorem treats the existence of two nonnegative nontrivial weak solutions for problem (1).

Theorem 1.2 Suppose Ry and cy positive constants with B(0,3Ry) C Q. In addition to (Hg) and (Hegp),
assume that max{l,p — 1} <r < p and a > 0. Then, there exists Ao > 0 such that problem (1) possesses
at least two nonnegative nontrivial weak solutions for each f € LP°(Q, |z|~?) satisfying f(z) > 0 for a.e.
x € B(0,3Ry),

—(N—dp)r

p(N—p—ap) D
(1 + R(dp—zlvﬂN—dP)) ‘ RN=P inf f > ¢y, for some R € (0, Ry, (Hy)
B(0,2R)

and
0 < |[Ifl Lo (@,2-2) < Ao-



The next two results treat the cases p—linear (that is, r = p) and p—superlinear (that is, p < r < p*),
respectively.

Theorem 1.3 In addition to (Hq) and (Hesp), assume that a >0, r =p, and
et e < 5 < (a+ Dpy + N(1— 2): (7)

Then, we can find explicitly Ao > 0 such that problem (1) possesses a nonnegative nontrivial weak solution
for each f € LP(Q, |x]|=P) satisfying f(z) > 0 for a.e. x € B(0,3R), infpar) f > 0 for some R > 0,
with B(0,3R) C , and

0 < |[fllzro(@,jz-2) < Ao-

Theorem 1.4 In addition to (Hq) and (Hesp), assume that a >0, p <r < p*, and

Nt OCpoenleslo-tr] < < (a+ py+ N(1 - %), ®)

Then, problem (1) possesses a nonnegative nontrivial weak solution for each f € LP° (S, |z|~?) satisfying
f(x) >0 for a.e. x € B(0,3R) and infpar) f >0 for some R >0, with B(0,3R) C Q.

Our last result deal with nonexistence of weak solution for problem (1).

Theorem 1.5 In addition to (Hq) and (Hesp), assume that a > 0, max{l,p—1} <r <p, and

8 <min{(a+p, ep’, (a+ py+ N1 - 2)}. 9)

Then, there exists A\g > 0 such that problem (1) does not possess any nonnegative nontrivial weak solution

in Wy (Q |z|~%) 0 C(Q) N C1(Q\ {0}) for all f € LP(Q, |z|~P) satisfying
f(z) > Xo for ae. x el

Remark 1.1 The theorems for the subcritical version of problem (1) can be obtained by usual arguments
that we will omit here. However, we would like to mention that in the subcritical version, we can
obtain similar results to the Theorems 1.1, 1.2, and 1.3, with f € LPo(,|x|~?) satisfuing the same
conditions of Theorem 1.1, and the analogous result of Theorem 1.4 with f € LPo(Q, |z|™%) satisfuing
f(x) >0 for a.e. 2 €Q and f Z0 in ', for some Q' C Q with || > 0.

In Section 2, we give some definitions and preliminary results about the Nehari manifold. In Section
3, we will study Palais Smale sequences. In Sections 4, 5, 6, and 7, we will prove Theorems 1.1, 1.2,
1.3, and 1.4, respectively, by splitting the Nerahi manifold and by exploring some properties of the best
Hardy-Sobolev constant together with an approach developed by Brezis and Nirenberg. In Section 8, we
will give the proof of a nonexistence result Theorem 1.5.

2 Preliminaries

We will now define the spaces that we deal in this work with their respective norms. Consider Q2 a
bounded smooth domain in RY with 0 € Q. If « € R and I > 1, let L!(2,|z|*) be the subspace of L!(f)
of the Lebesgue measurable functions u : 2 — R satisfying

1
l[ull Lol = (/Q leaulldx) < 0.

If1 <p< Nand —co < a < (N —p)/p, we define W,?(Q,|x|~°") as being the completion of C§°(Q)
with respect to the norm || - || defined by

1
all = Hellyy.m g oy -ory = ( /Q |xap|vu|pdx> .

First of all, by using the inequality (5) and the boundedness of 2, was proved in [18] that there exists
C > 0 such that

(/Q |x|_‘5|u|rdx> ' <C (/Q |x|_‘”’|Vupdx> , Vu € Wy P(Q, |z =), (10)



where 1 < r < Np/(N—-p) and § < (a+ 1)r+ N[1— gr/p)]7 which is said Caffarelli, Kohn, and
Nirenberg’s inequality. In other words, the embedding W,"(Q, |z|~%) — L"(£,|z|~°) is continuous
if1 <r < Np/(N—-p)and 6 < (a+ 1)r+ N[1—(r/p)]. Moreover, this embedding is compact if
1<r<Np/(N—-p)and § < (a+1)r+ N1 — (r/p)], see [18, Theorem 2.1].

Let us consider  a domain in R (not necessarily bounded), 0 € 2, 1 <p < N, 0<a < (N —p)/p,
a<e<a+1l, d=1+4+a—e, and p* = Np/(N — dp). We define the space

W) = {u e I(Q |2|7") : |Vu| € L7(Q,]a] ") },
equipped with the norm
lullwae )y = lulloos o) -cr=) + IVUllLo (0, 12)=0r)-
We consider the constant S’ayp given by

SVa‘ p = inf { fRN |z|7ap|Vu\pdx
| (fan lx[=eP" [ulP"da) 7™

Ry2(Q) = {u € WyP(Q) : u(z) = u(lz])},

wEWi,’é’(RN)\{O}}'

Also, we define

endowed with the norm
HUHR};}C’(Q) = ||U'Hwal_j§(9)-

Actually, Horiuchi in [11] proved that, if a > 0,

. N —P |\ ulPd -
Sup.r = inf Jex a7Vl L ue RVBRN)\ {0} b = S, (11)
(Jn =P [ulP” da) ¥

and it is achieved by functions of the form

Ye(2) := ko p(e)Uq p.e(x),Ve >0,

where Nu
dp(N—p—ap))*( wr)

Fap(€) = GeN =)/ and Uy, (@) = (e + |2 G-0F=0)

We observe that by the Caffarelli, Kohn, and Nirenberg’s inequality follows that WD1 P(Q,|z]7%P) is a
subset of W1 P(RY), then

Sap <O, (12)

We have remarked in Section 1 that the lack of compactness is overcome proving that is possible to

obtain a Palais Smale sequence for the Euler-Lagrange functional associated to problem (1) with the level

below the critical level; for that matter the following lemma will be crucial. The proof of this lemma

follows exactly as in [13], with the observation that in the proof what matters is the fact that the function
f is greater or equal zero in a ball about the origin.

Lemma 2.1 Suppose that (Hq) and (Heyp) are satisfied.  Let Ri, ¢ be positive constants with
B(0,3R1) C Q and ¢ € C§°(B(0,3Ry)) with ¢» > 0 in B(0,3Ry) and ¢ = 1 in B(0,2R;), then the
function given by

— "l}(a:)Ua,p,e(l)
() = 0l o o)
satisfies
el g oy = 1o IVtel L@ g -ery < Sap.r + OV =0/2P),
and ) N (p1
O(N =/ if r < By %; )ﬁ’)( H
O(eN =P/ |in(e)|) of r = ST,
||f1/r Ue| 27-(9 |z|—#) Z (N—dp)(p=1)[(N=B)p—(N—p—ap)r] N=p=ap (13)
’ Ofe dp2(N—p—ap)
ifr > (N-B)(p—1)

N—p—ap



for all f € LP(Q,|x|~7) with f > 0 for a.e. in B(0,3R;) and infpap) f > 0 for some 0 < R < Rj.
Moreover, the inequality (13) is uniform in f € LPo(Q, |z|=?) satisfying: f > 0 for a.e. in B(0,3Ry) and

—(N—dp)r
dp(N—p—ap) ;
(1 + R(:—lxﬁ—d};)) " RN-B inf f > c1, for some R € (0, Ry].
B(0,2R)

Our approach will be using variational techniques, that is, we will study the critical points of the
Euler-Lagrange functional I : Wol’p(Q, |x]~%) — R given by

1 1 - 1
Iu) = */|$|_ap|vu|pdm - 7/ ]~ ] dr — f/ |~ u, da,
pJa p"Ja rJo

which is well defined and is of class O, with Fréchet derivative given by
I'(u),w) = 2| 7P |\ VulP 2 VuVwds — | |z|7% b " twdr — [ |x =B wda
< ’ + + )
Q Q Q

where ut = max{0, +u} € Wy (Q, |z|~).
We consider W : W, P (£, |z|~*) — R given by

Wy(u) = (I'(u),u),
which is of class C''. Moreover, we consider the Nehari manifold associated to problem (1) given by
Ny = {u € WP(Q,|2|=7)\ {0} : ¥ (u) = O},
Similar to Tarantello [14] and Wu [15], we consider the split of Ay in three parts:
N = {u € Ny : (W (u),u) > o};
ND = {u € Nyt (Wy(u),u) = 0};
Nj = {u € Ny : (W (u),u) < o}.

Before concluding this section, we will study some properties of the sets N7, N/ 19, and NV 7 - We will
begin by characterizing each one of them.

Theorem 2.1 Assume that (Hq), (Heyp), and max{1l,p — 1} < r < p are satisfied. Then, we have

N = {u eNy: ol f ulfde > (p;:f)fﬂ |x\_€p*ui*da:} 12
= {ue Nyl > (E20) o lol=r"uf, do}

NP = {ueNg s folel Pf ude = (B=E) [y le| ="t do'} i~
= {ueNg s llullr = (B55) o lol ="t da}

Ny o= {u eNy: [olz| P fulde < (pp*:f)fﬂ \x|_ep*u§’:da:} 16)
= {ue Nyl < (B f ol 2 d)

Proof. We have for all u € Ny that

[l /Q 2|~ dr /Q o]~ f ud = W () = 0.

Then, we obtain

(W), u) = (p—p*)/g|x|—ep*ufdx+<p—r)/ﬂ|x|—ﬂf ) da (17)



and
(Wr(u)yu) = (p—r)l[ullf — (" — T)/Szlx\_e”*ugdﬂf- (18)

We have by (17) that u € ./\/]j' if, and only if, u € Ny and

/Q|a:|—5f u'y dr > (f%f)/ﬂm—ep*uzj:d%

*

N = {u ENy: [ |z f ulfde > (B=0) o |x|*ep*uf’:dx}-

therefore

Similarly, we get from (18) that

N = {u e Ny o ||ul|P > (B=5) [i) ||~ dw}-

=
Analogously, we prove (15) and (16). [
We immediately deduce by Theorem 2.1 the following result:

Corollary 2.1 Assume that (Hq), (Hegp), and max{1l,p — 1} <r < p are satisfied.
i) Ifue./\/f"' UNY then [olx|™P f ude > 0.
ii) IfueN; and [,|o|7Pf ude <0 then u € N;.
Now, we will define a functional that will help us in some proofs. Let max{1l,p — 1} <r < p,
W+ = {u e WyP(Q,|z|7%) : uy # 0},
and Fy: W — R given by
1
Fyty = 1 [N g (19
u) = —_—_ — | |= u’ dz,
’ Jolal=ev"ul da o *

where

K = (P**P) (p*r )1+P*71*P
p—r pr—r ’
Lemma 2.2 Assume (Hq), (Hezp), and max{l,p — 1} < r < p. Then, there exists Ag > 0 such that
NP =0 for all f e LP(Q,|x|7) with 0 < ||f||Lro(0,e|-#) < Ao

Proof. Let

. ., o o e ki
{5 () e (5] e

where C' is from Caffarelli, Kohn, and Nirenberg’s inequality (10).
Suppose, by contradiction, that for some f € LPo(Q, |z|~%) with 0 < [ f1| Lo (2,]2)-5) < Ao we have
NP # 0. From Corollary 2.1, we have NP C W*. Moreover, if u € N} then

[|ul||P —/ |x|_ep*u{):dx —/ 2| 7P f u' da = 0.
Q )

Therefore, we have by (15) of Theorem 2.1 that

/ 2| 7P f ', da
Q

P = [ fol 77" do
=l (Z=) il (20)

pr—=r
*_
= (222 llulle.

Then, using Holder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality, and equality (20) we get

hell < [(E22) Ufllzoogenger-CF] ™ (21)



Using the functional F'y defined in (19) and (15) of Theorem 2.1 we obtain

J

*_ g Cep* p* p*—p+1 F
K{ KP”*T )fﬂ |2~ ul dw] }p p B (p*:rp>/ |$|_6p*uﬁ:dx
Q

Fy(u)

Ja |Tf|7ep*“i*dx P

N\t . o . .
K(y) pt—p / |x‘fep u;i de — (P ::D)/ |x‘fep uﬂ’_ dx
P Q =7 Ja

= 0.

On the other hand, by using Hoélder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality, and by
(21) we get

|[u|[p@®"—p)+p | P77 -
Fr(u) > B _HfHLPO(Q,\wl—ﬁ)CpHUHT
Cw |lullP
__ " r
= lull” [KCT7 [l P17 = || fl| oo a9 CF 23)
B A = g -
>l { KT [(555) €T Al ~ Il |
> 0,

since 0 < [|f|[zro (0,o|-5) < Ao- Therefore, by (22) and (23), we have a contradiction.
Hence, we conclude that NP = 0 if f € LPo (€, |z|77) and 0 < || f||1r0(0,j2|-#) < Ao- ]

3 On the Palais Smale sequences

In this section, we will study the existence of Palais Smale sequences for functional I and some of
their properties.

Definition 3.1 Let us consider {u,} in Wy (Q,|z|=%). We say that the sequence {u,} is a Palais
Smale sequence for functional I at the level ¢ (or simply, (PS).-sequence) if

I(up) — ¢ and I'(u,) — 0 in (WP (Q,|z|~%))*, as n — oo.

Lemma 3.1 Consider (Hg) and (Heyp) satisfied and assume that {u,} C Wy (Q,|x|~%) is a Palais
Smale sequence for functional I at the level ¢y with f € LP°(Q,|z|75).

i) Suppose max{1l,p — 1} < r < p. Then, {u,, } C Wy (2| =) is a bounded Palais Smale sequence
for functional I at the level cf.

ii) Suppose v = p. Then, there exists \g > 0 such that {u, } C WyP(Q, x| =) is a bounded Palais
Smale sequence for functional I at the level ¢y provided that 0 < || f||Lro (. jz|-5) < Ao

iii) Supposep < r < p*. Then, {u,, } C Wol’p(Q, |x|~%P) is a bounded Palais Smale sequence for functional
I at the level cy.

Proof. First, we are going to prove that for each one of cases (i), (ii), and (iii), that {u,} is a bounded
sequence in WyP(Q, |z|~%). Let 6 € (1,p*]. By definition of (PS)c; —sequence we obtain

cp A+ o(D)|lunl| +0(1) > T(un) = 5(I'(un), un)
= (i d)hall = (3 3) [ o ”

(=) [Jel s

where o(1) — 0 as n — oo.
Suppose max{1l,p — 1} < r < p and fix § = p*. Then, we have

er+ollunll +o(1) = (3 =) luallr = (£ = &) Ifllzsoc@er-») CF llunll”,

it follows that {u,} is bounded in Wy* (€, |z|~®).



Assume that r = p and fix in (24) the constant § = p*. Then, by using Holder’s inequality, Caffarelli,
Kohn, and Nirenberg’s inequality, we get

e+ ollull+0(1) > (2= L) (1= Cllflumoojol-») lunll?-

Therefore, we obtain that {u,} is bounded in Wy?(Q, |z|=%) if 0 < £l Lro (@, z|-5) < Ao :=C~t
If p<r<p*, wefix 0 =rin (24). Then, we have

er+olunll+o(1) = (L= 1) [funlP,

so, it follows that {u,} is bounded in Wy"* (€, |z|~*).
Consequently, for each one of the cases (i), (ii), and (iii), since that {u,, } is bounded in Wy (Q, [z|~%P),
the sequences {u,_} and {u, } are bounded in WP (€2, |2|~*). Then, we achieve

—upn_|P = I (up), un_) — 0 as n — oo.

Moreover, we get
I(umr) = I(un) + %Huanp

and, for all w € WP (9, |z =),
(I'(upy )y w) = I'(up), w) + / |z| |V, [P~ 2Vu,_Vwdr,
o)
then, we conclude

I(up,) — ¢y and I'(up,) — 0 in (Wol’p(Q,\xr“p)) , as n — o0.

In the next result we will see that the weak limit of a Palais Smale sequence is a weak solution of
problem (1). However, in principle, we can not assert that the weak solution is nontrivial.

Theorem 3.1 Suppose (Hq) and (Huyp). Let {u,} © WyP(Q,|x|~%) be a Palais Smale sequence for
functional I at the level ¢, with u, >0 a.e. in Q for alln € N, and u,, — u weakly in Wy (Q, |z| =) as
n — oo, for some u € Wy (Q, |z|~*). Then, u is a nonnegative weak solution of problem (1). Moreover,
Uy — u strongly in Wol"p(Q, |x]~%P), as n — oo, provided that

*

c< (% — 1%) (C;p)l’fi*” — (% — %) lim /Q\x|_5f ul dx. (25)

n— o0

Proof. Combining the compact embedding theorem (see [18, Theorem 2.1]) and Lebesgue’s dominated
convergence theorem, we obtain u,(z) — u(x) > 0 as n — oo for a.e. x € Q,

tim [ fol = furdo = [ fof P urds (26)
and, for each w € Wy (Q, || =),

lim [ |z ful "t wde = / lz| =2 fu" "t w de. (27)
Q

n—oo

By arguing as in [8] we can prove that Vu,(x) — Vu(z) as n — oo for a.e. = € Q. Also, by the
continuous embedding W'P(Q, |2|~9) — LP (2, |x|~?"), we infer that {u? ~'} is a bounded sequence

in P /" =1(Q, [z[~¢P") and {|Vu,[P~2Vu,} is a bounded sequence in (LP/(P=1(Q, \x|"‘p))N , therefore,

we obtain uf ' — wP "1 weakly in LP"/®"=1(Q, |z[~°"") and |Vu,|P"2Vu, — |Vu[P"2Vu weakly in

(LP/(P=1(Q, \x|"”’))N, as n — oo. Thus, by using (27), for each w € W; (%, |z|~), we obtain
(I'(u),w) = Tim (I'(up), w) =0,

n—oo

that is, u is a nonnegative weak solution of problem (1).



Define @, = u,, — u. From Brezis-Lieb Lemma and by (26), we have
|n| P = [Jul|P — ;
= ("(un),un) — (I'(u),u) + o(1)

laal = |
= o),

where o(1) — 0 as n — oo. Hence, there exists | > 0 satisfying

/ ||~ |u|p*dﬂc} +o(1)
Q

I= Tim [jin|? = lim /m— (28)
If I = 0 the proof is finished. Otherwise, let us suppose by contradiction that [ > 0. By using the
definition of (PS).-sequence and the Brezis-Lieb Lemma, we get
cto(D)|lunll +0(1) = I(un) = 3{I'(un), un)

T

L= 1) (fjnll? + [l )

(=) ([ e o) o).
Q Q

But, as u is a weak solution of problem (1), we obtain using (28) that

et o(D)lfunl| +0(1) = (L= L) [lanllP+ (1 </ |~ ﬁfurdx+/|x| P yp dx>
- (% - %) (/Q|x|_6p i P dm+/g|x|—ep uP dx) +o(1) (29)

> (3= () [ s

Since [ > 0, by the definition of C; , we obtain

(/ m|—€p*anp*dx> < |lnllP, Vn € N.
Q
Therefore, by taking the limit as n — oo,

m=cs, <1,

then

*

2

1> (C, )7 7. (30)
Hence, from (26), (29), and (30), we find

B
¢ > @—ﬁﬂqdri_g_gggﬁm”mma

which contradicts (25). Consequently, lim,_,o0 ||un, —u|| =1 =0. [ |

Theorem 3.2 Suppose that (Hq), (Hegp), and max{l,p — 1} < r < p are satisfied. Then, there exists
Xo > 0 such that, for each f € LPo(Q, |xz|7%) satisfying f(z) > 0 for a.e. x € ' and f #Z 0 in ', for
some ' C Q with || > 0, and 0 < ||f||1ro(q,1z|-5) < Ao, there ezists {u,} C J\/f+ a bounded Palais
Smale sequence for functional I at the level c}' where

cf =inf{I(u) :u e N} <0.

Proof. We will proof this theorem in three steps. First, we will prove that N ]j' is not empty and
—00 < ¢f < —n < 0. In second step we will obtain a bounded sequence {u,} in N~ such that I(u,) — ¢}
as n — oc. In third step we will prove that I’ (u,) — 0 in (W, (9, |z|~%"))* as n — oo.

Step 1. We will prove that N]ﬁ' is not empty and —oo < c}' < —n < 0, for each f € LP(Q, |z|79)
satisfying f(z) > 0 for a.e. = € @ and f # 0 in &/, for some Q' C Q with || > 0, and
0 < [[f[lLro(0,)z|-8) < Ao Where

No = min{AO, (522 (22) 7 o }




Ay is originating from Lemma 2.2.

Fixed f € LPo(Q, |x|~?) satisfying f(x) > 0 for a.e. € Q' and f # 0 in ', for some ' C  with
|| > 0, we can choose wy € W with wg > 0 for a.e. in Q and [, |z|~" f wida > 0.

We define ¢ : (0,4+00) — R given by

g(t) =t [Jwo| [P — 7" [ |2~ wf" da.

It is easy to verify that

1

P p*—p
e = [(22) Ll 177
max pr—r fﬂlII_w*wg s )

is the unique maximum point of g. Moreover, we have ¢'(t) > 0 for all ¢ € (0,tmax), g'(t) < 0 for all
t € (tmax, +00), and

p—r P

x = p*—p p(p r)
I(tmax) = (g*,’;) — 7; ” - (/ |z~ w}) dx) |Jwol| 7=

> (522) (325) " Ry
> 0

(31)

Since that 0 < ||f]|zro(,1z|-#) < Ao, We obtain by using the Holder’s inequality, Caffarelli, Kohn, and
Nirenberg’s inequality, and (31) that

90 =0 < [[olf upds
< £l Leo (@) -#)C? | lwol|”
£ .
— r \2p*—p T IS
< (E2) (22)" 7 oo ul
S g tmax M

Consequently, there exists 0 < ¢ < tyax such that ¢’(t7) > 0 and

g(t+) = / 2|2 whda

Then, we get
(I'(tTwo), ttwe) = (tF)" {9@*) / |f|5fw5dx]
Q

so, tTwy € Ny. Moreover, by equation
(W (tTwo), tTwo) = (p—n)[[tFwollP — (p* —’“)/ |~ (T wo ) d
= () "

> 0,

we obtain tTwg € ./\/JT Hence, we conclude that Nf+ #£ () for each f € LPo(Q,|z|~?) satisfying f(z) > 0
for a.e. x € Q" and f # 0 in &, for some Q' C Q with [Q'| > 0, and 0 < || f||Lro(q,jz|-#) < Ao-

Next we are going to proof that —oco < c}" < —n < 0. We claim that I is bounded below in JF, where
/\Tf is the closure of ./\/'JZ|r with respect to the norm || - ||. Indeed, for u € J\Tf C Ny, we have

P = [ fol 7" do = [ ol atida =0, (32)

Then, by Holder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality, and (32), we obtain

U - L <|u||P - /Q x|ﬁfu:dx) 1 /Q (a2 f uda

(2= &) P = (2= &) Ifllzoo e pop- P lull

I(u)

Y]



so, as 7 < p, I is bounded below in ./\T)T Evidently, we have
—o0o < ¢t :=inf{I(u):u¢€ /\T;—} < c}' =1inf{I(u):u € ./\/?'}

Now, we will prove that ch < —n < 0 for some n > 0. We know that tTw, € J\ff+ C Ny, then

Hetun) = il = 2 [l o de = 2wl = [ 17 ¢ uo do
Q Q
= (l _ l) ||t wol [P + (1 _ %) /|1.|7ep* (t+wo)?" dx
p T o) g
Thus, by using (14) of Theorem 2.1, it follows

Ietwg) < (5= 2)lirtwoll + (2= &) (225) litwoll
= = (50 (2 ) ltrwole
= -0
< 0,

therefore o
—o00 < ¢t Sc}'<—n<0. (33)

Step 2. We will prove that there exists a bounded sequence {u,} in N ]j' such that I(u,) — c;f as
n — oo, for each f € LPo(Q,|x|~7) satisfying f(z) > 0 for a.e. 2 € Q' and f # 0 in €, for some Q' C Q
with [Q'| >0, and 0 < [[f]| o (2,2 -5) < Ao- We choose ng € N satisfying
0< - < —(ct+n),¥n€N.

n+ngo

By definition of ¢*, for each n € N, there exists wo,n € NJZ" such that

ct < Iwyy,) <t + 2

— n+ng

Applying Ekeland’s variational principle, we obtain u,, € N ; satisfying

et < I(up) < Hwon) <t + 5 (34)
and 1 L
I(uy,) <I(w)+ﬁ||w7un||, Vwe NS\ {un}. (35)

We will prove that {u,} is bounded in Wy (9, |z|~%?) and u,, # 0 for all n € N. Since that ./\TJT C Ny,
we find

Iw) = w%w—;hww—ém%hamyﬁéﬂ%n%m

(36)
- @—%M%W+G¢$)Am%ﬂ%m.
Then, follow by (33), (34), and (36) that
P 1
(}9 - 1%) [[tn|[P + (p% - %) /Qm Ofup, do < cf+ W << 0, (37)
so, we get
—1
luallr < (=) (=) [lal 7w, do
—1 -
< (3-%) (A=) Wllzroq@ei-»CFllual "
hence, we have
1
—1 r | P
loll < (3= )7 (= #) Wil 03] (39)

therefore, {u,} is bounded in W, ?(Q, |z ~).



Follows from (37) that

n

1 -3 r
(2= %) [lel s ui o

1

p

1
T
(2= 2 ) 11w oy CF a7
1

ol > {n[(2 = ) Ilmarac3] "} (39)

consequently, u,, #Z 0 for all n € N.
We observe that ./\/?' C N]T UN7F U{0}. Moreover, follows from (39) that {u,} C N;' UN?. However,

we obtain by Lemma 2.2 that NP = 0, because 0 < || f| ro (0,12/-#) < Ao < Ag. Then, we have {u,} C N;r
and

<
<

then, we find

c}'ﬁ[(uﬁﬁc}f—l— L

n+no

Step 3. The next step is to prove that I'(u,) — 0 in (W, ?(Q, |z|~%))* as n — oo. The following
lemma will be proven below.

Lemma 3.2 For each u € N7, there exist ¢ > 0 and a differentiable function ¢+ : B(0,¢) C
WP (S, |z|~%) — R satisfying £7(0) = 1, £ (w)(u — w) € J\/f+ for all w € B(0,¢€), and

/|:E| P|Vul|P2VuVude — p /|:17| ep” (T vdxfr/ lz| =P f w7
o= llull = G =) [ Jal "o

{(€7)(0),v) (40)

for all v e WyP(Q, |z|~P).

By Lemma 3.2, for each u, € N, there exist ¢, > 0 and a differentiable function & : B(0,¢,) C
WoP(Q, |z|~%) — RT satisfying & (0) = 1, & (w)(u, — w) € N7 for all w € B(0,¢,), and (£5)/(0) is
given by (40). Fixed n € N, we choose for each u € Wy (€, |z|=%) \ {0} a positive constant 0 < p < €,
satisfying

w, = € B(0,¢,) and 1, = &5 (wp)(un — w,) € N}

We obtain by using (35) and the definition of Fréchet derivative that

_%an_“nH < I(np)_l(un)
= <I/(“n)v77p_un> +O(|‘77p_un|‘) (41)
—p(I" (un), ) + (&4 (wp) = 1) (I (un), wn — wp) + (|1, — unl])-

Follows from 7, € N C Ny that

gi(wp) (I'(np), un —wp) = Wy(u) =0

and, observing that & (w,) > 0, we get

(I'(np), un — wp) = 0. (42)

Combining (41) and (42), we obtain
(I (un), i) < 5 [0 — wnll + (& (wp) = DI (un) = I'(0,) tn — wp) + 0(llnp —uall)] . (43)

We observe that

17, — un|| < p&F(wp) + 161 (wy) — 1] ||un]| (44)
nd €5 (w,) — 1]
. n\Wp) — o / u

IN
=
e
sS4
SN—
—~

(e}
=
=



where || - ||+ is the norm of space (W, (Q, |z ~7))*.
Hence, by passing the limit in (43) as p — 0T, using (44), and (45), we find

(), ) < SELIED O]+ 1] (46)

We will prove that ||(&;)"(0)|]. is uniformly bounded in n € N. By using the expression of (&;7)(0)
given by (40) and boundedness of {u,}, we obtain for all v € W, ?(Q, || =) that

() (0),0)] < Ml wneN, (47)

|(p=r)lunllP=(p* =) [q |2|~cPul;, dz|

where M > 0 not depends of n € N.
We claim that there exists ¢ > 0 such that

‘(p—r)||un||p—(p*—r)/ﬂ|x|_€puf’;da: >c>0,YneN. (48)

Suppose, by contradiction, that there exists a subsequence of {u, }, which will be denoted by {u,}, such
that

’@ = llwall? = @ =) [ ol x| = of0)

where 0(1) — 0 as n — oo. Then, follows from (39) that

Lelr i de = (£2) luall +o01) |
> (,%) {77 [(% - ﬁ) HfIILpom,m—ﬁ)Cﬂ _l}r +o(1) 1)
> 0

for n large enough, and, as {u,} C N;r C Nf,

Ll r s de =l = [ ol da
Q
=l - (2 ,r)||un||p+o< )
= (Z22) fluall? + o(1) (50)

p—"
P
T

(f;:if) {77 K% - pi) ||f|mo<9,|xlﬁ>0£}1} oty
0

b

AV

for n large enough.
Due to (14) of Theorem 2.1 we have N]j' C WT. Consider the functional Fy defined in (19). Hence,
from (49) and (50), we get

1 . P
Ff(un) — (P*—p) (p—r )1+p*_p [Jwn, ||PPT—P)FP DR (p*—P) [|un||? + o(1)
p—r p*—r (=) llunl[P+o(1) pr—r

P —p p—r L+ p—r 75 P —p (51)
= (53) ()T () Il = (52l o)
= o(1).

On the other hand, we have

*_ _ 1+% p(p™ —p)+p p*l’p T
Frm) = (522) (325) 7 {"'} ~ 11250 051

LTl (52)
= lunll’ {(pp:f) (22) 77 T P = |l el -2y CF
Follows from (50) that
lunll < [(B=5) W llzsoc - CF] 7 +o0(1). (53)



Then, substituting (39) and (53) in (52), we obtain

11
Flun) = K% - pi) ||f||LP0(Q,|x\*ﬁ)C;i| X
p =\ (p=r \ T ek pr—r 215
{( p,r) (p*fr) ¢ e [(p»_p) [ f1lzro (@,[a|-2)CP

—|1f 1o (a5 C7 }—i—o(l)
> 0,

because 0 < || f]|zro (,)x|-5) < Mo and 7 is large enough.

(54)

Since that (54) contradicts (51), we conclude that (48) is held. Then, by (47) and (48) follow that

e Ol < =

Hence, follows from (46) that i
(I (un), i) < SEAE 11,

[ul] c

so, we have
I'(uy) — 0 in (WgP(Q, |z|~%))* as n — oc.

Then, we conclude that {u,} C NJ}" is a bounded (PS)C? —sequence with c}' < 0.

Proof of Lemma 3.2. Let us consider u € N;' In particular, we have

|\u||P—/\x|—GP*u{fdx—/|x|—5f W de = U5 (u) = 0.
Q Q

We define the functional H, : R* x W, "*(€, |z|~*) — R given by

H,(t,w) = {I'(t(u—w)),tlu—w))
= tpHu—pr—tp*/ﬂ|ac|_e”*(u—w)f):dgc—t’"/Q 2| 7P f (u— w), da.

We observe that

H x - x
0 “(t,w) = ptPH|u — wl||P — p*tP _1/ ||~ (u—w)t de —rtr_l/ 2| P f (u—w) da
ot Q Q
and
H
<8 u(t,w),v> = —p t”/ |z| |V (u — w) P72V (u — w) Vovdz
87.0 Q

+p*t1’*/ 2|~ (u — w)ﬁ*_lvdm + rtr/ 2| 7P f (u— w)} M vda.
) Q

In particular, we have H,(1,0) = ¥(u) =0 and

oH, e _
S0 = plllp = [ o e [ ol e
= (W)
> 0,

because u € N;r

(56)

(57)

Hence, by implicit function theorem, there exists ¢ > 0 and a differentiable function £ : B(0,¢) C

W()Lp(Qa |x|~9P) — R* satisfying g*(()) =1,
H, (£ (w),w) =0 for all w € B(0,¢),

and
/ (G (¢t (w), w), v)
N (w),v) = — 19w ,
<(£ ) ( )1 > 85{5” (§+(w), w)

(58)

(59)



for all w € B(0,¢€) and v € WP (€, |z|~%P).
By definition of H,, and (58), we get

(I'(€" (w) (u — w)), € (w) (u — w)) =0,
that is, {7 (w)(u — w) € Ny for all w € B(0,¢).

Since that ag“ (1,0) > 0 and the functions \I/’f and £1 are continuous, replacing € > 0 by other smaller

one, if necessary, we have

(W€ () o~ ), € () o — ) = € () 22 (€ () w) >,

s0, we conclude that £* (w)(u—w) € /\/'Jjr for all w € B(0, €). Moreover, substituting (56) and (57) in (59)
and by using (55), we obtain (40). [

Theorem 3.3 Consider (Hq), (Hesp), and a > 0 satisfied.
i) Suppose Ry and cq positive constants with B(0,3Rg) C Q as in Theorem 1.2 and max{1l,p—1} < r < p.
Then, there exists Ay > 0 such that, for each f € LP° (S, |z|=?) satisfying f(z) > 0 for a.e. x € B(0,3Ry),
(Hy), and 0 < |[f]|Lro(0,)a|-5) < A1, there exists {u,} C WP (2, |2|~*) a bounded Palais Smale sequence
for functional I at the level cy with

0<cy< (lfi>(0* )77,

P p*

uniformly in f and u, >0 a.e. in Q for all n € N.

ii) Suppose that r = p and (7) are satisfied. Then, there exists \g > 0 such that, for each f € LP (S, |z|~7)
satisfying f(x) > 0 for a.e. x € B(0,3R), infgar) f > 0 for some R > 0, with B(0,3R) C Q, and
0 < [[fllzro(,jzj-5) < Mo, there ewists {u,} C Wol’p(Q, |z| =) a bounded Palais Smale sequence for
functional I at the level cy with

p*

0<cy< (% - pi) (Cr )7 e

and U, >0 a.e. in Q for alln € N.

iii) Suppose that v > p and (8) are satisfied. Then, for each f € LPo(Q, |z|~?) satisfying f(x) > 0 for a.e.
r € B(0,3R), infp2r) f > 0 for some R > 0, with B(0,3R) C Q, there exists {u,} C I/Vol’p(Q7 |x|~eP)

a bounded Palais Smale sequence for functional I at the level cy with

*

0<cp< (l — %) (Cr )77

p p

and u, >0 a.e. in Q for alln € N.

Proof. We will make the proof in two steps. In the first step, we will verify the geometric conditions
of the mountain pass theorem without the Palais Smale condition. In the second step, we will apply the
mountain pass theorem without the Palais Smale condition for obtain the Palais Smale sequence.

Step 1. Firstly, we will verify the geometric conditions of the mountain pass theorem without the
Palais Smale condition for (i), (ii), and (iii), that is, there exist ,d > 0 such that

I(u) >0 >0 forall ue WyP(Q,|z|~*) with ||u|| =0, (60)

and
I(tu) — —c0 as t — +oo for all w e Wt. (61)

We notice I(0) = 0. We obtain by Holder’s inequality and Caffarelli, Kohn, and Nirenberg’s inequality
that

Mwé%MW—iémfﬂﬁw+%mmmmeWW“ﬂ—w%t—ﬂm (62)

for all u € W™, and

I(w) 2 GllullP = 32O 7 [[ullP” = L[ fllzro (a5 C7 |[ull”, (63)



for all u € WyP(, |z| =),
Supposing max{l,p — 1} < r < p, we define H : (0,+00) — R given by

H(s) = (p%c§) s7P (%C%HfHLPo(Q,lxI*B)) s,

which the unique minimum point is

so{Qﬁ@)(éci)*<icauumwﬁxlmﬂp

1

*—r

*

pr—r

p—r -1 »* —p-r _p_—p p*—p
— p*—r *_ p_ pT—r r pT=r
Ay =<1 (2= b= ~=C% +C» )
P \pP —Pp p =P p T

we find that

rT—p " p—T
_ *— *_ p_ - r
L H(sa) = b (222)7 (22) (205)7 (st
p p p*—p p*—p p r

for each f € LP(Q, |z|=7) with 0 < |[f||1ro(0,2|-#) < A1. Hence, from (63) and (64), we get

*

P**P
p*—r
f||LPo<ﬂ,|mrﬁ>) >0, (64)

I(u) > 2 (% - H(so)) >0 if [Jul] = so.

Also, we infer by (62) that

I(tu) < Ejjul|P — £ /Q|xrep*u€fdx + LA C% [Ju]|" — —o0 as t — oo, (65)

uniformly in f € LPo (€, |z|~?) with 0 < [ f1|Lro (02,2)-5) < A1
Now, considering r = p we get of (63) that

p*

1) > (= LISl joi-C) 1P = 2CF |Jul

Then, for each f € LP(Q, |z|~7) with 0 < || f||ro (0,1z|-5) < Ao := C%, there exist 0,6 € (0, 1) satisfying
I(u) > o if ||ul| = 0.
Assume that p < r < p*. Then, from (63) we see that there exist o,d € (0,1) satisfying
Tw) > o if flull =6,

for each f € Lro(Q, |x|=5).

Step 2. We will apply the mountain pass theorem without the Palais Smale condition to obtain the
Palais Smale sequence.

Before applying the mountain pass theorem we will need the following lemma that will be proven
below.

Lemma 3.3 For each one of the cases (i), (i), and (iii), there exist a function u. from Lemma 2.1 and
€ > 0 satisfying

sup I(tue <(lf%> Cx Vit

Sup (tue) < {5 — 77 ) (Ca,) (66)
Moreover, in the case (i), the inequality (66) is uniform in f € LP°(Q, |x|~%) satisfying f(z) > 0 for a.e.
x € B(0,3Ro) and (Hy).

For each one of the cases (i), (ii), and (iii), we take u. and ¢ > 0 as in Lemma 3.3. Also, by (62) there
exists a real £ > 0 such that I(fu.) < 0. Moreover, in the case (i), due to (65) we see that ¢ not depends
of f e LPo(Q, |.’L‘|_ﬁ> with 0 < ||fHLp0(Q"z‘—5) < Aj.



Applying the mountain pass theorem without the Palais Smale condition we get a (PS).,-sequence
{un} in Wy P(Q, |z|~%"), where

0<er=inf max I (v(1)) (67)

and
0= {7 € 00, 1, W5 7@ [a=)) : 5(0) = 0 and (1) = Fuc }

It is apparent that the previous lemma implicates

*

0<er<(b-32)(Cr,)™ . (68)

p p*

Moreover, in the case (i), we have that the inequality (68) is uniform in f € LPo(Q, |z|~?) satisfying
f(z) >0 for a.e. x € B(0,3Ry), (Hy), and 0 < || zro (0, j2|-5) < A1

From Lemma 3.1, we can suppose that {u,} is bounded in Wy"* (2, |z|~*?) and u,, > 0 a.e. in 2 for
all n € N. [ |

Proof of Lemma 3.3. Case (i). We fix in Lemma 2.1 the constants Ry = Ry and ¢; = ¢g. Due to
(60) and (61) , we have for each € > 0 a real ¢, > 0 such that

0 <o <sup I(tue) = I(teue).
7%%( ) ( ) (69)

Moreover, if we suppose by contradiction that there exists a subsequence {t. } such that t., — 0 as
€, — 0, we obtain by using Lemma 2.1 that

0 < o
S I(tfnufn)
< llue, [P
P ~ N;dp
< P Sapr+ 0™ )] —0,

as €, — 0, which is an absurd. Then, we have [ > 0 with t. > [ for all ¢ > 0. Consequently, by using
Lemma 2.1 and (69), we get

7
P

sup I(tu.) =
>0

wllr = S [ ol do = 4 [ o170 fuda
<

uellP — e — %/Ixrﬁfu:dx.
P Q

4
P

IN

Notice that

P
p*—p

tr, = [Juel

is the unique maximum point of A : (0,4+00) — R given by

he(t) = %Huer - t:* )

Moreover,
he(tr,) = (5= &) (lud )™= . (71)
The following inequality is well known
(A+B)F < A¥ + k(A + B)F !B, (72)

for all A,B >0 and k > 1.
Substituting (71) in (70), from Lemma 2.1 and (72), we obtain

A

_p* r
= ) Ul = & [ 2179 e

0 | A 73)

*

%) (ga,p,R)m + 0 (eNd_Pdp) - %/ |$‘_ﬂ.f u:dl‘
P Q

hSEE

sup I(tu.) < (
>0

IN
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=
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Hence, by combining (11), (12), and (73), we find

supI(tu) < (% - p%) (Sa’p)p +O 6 S /\x| Bfurde
>0 » (74)
< (- 2) ()77 o (55 "/m o urda.
We observe that
N—dp)r —
( dp2p) < Ndpdp. (75)
Suppose r < %~ The inequalities (74) and (75), and Lemma 2.1 implicate
—dp (N—dp)r
supI(tue) < (%——) (C* )P*p +O<€ dp )—O<€ dp? )
>0
< 7
< (A-F) @)™,

uniformly in f € LPo(Q, |z|~?) satisfying f(z) > 0 for a.e. z € B(0,3Ry) and (H}), for some 7 > 0 and
€ > 0 small enough.
Let r = &=A@=1) 0 inequalities (74) and (75), and Lemma 2.1 follow that

N—p—ap
ig}? I(tu,) < (% _ pL) (C; )p - 40 (6 e ) —_0 <E(NJP%P)T|1n(e)>
<7 i
< (-#) .

uniformly in f € LP0(Q, |z|~7) satisfying f(z) > 0 for a.e. € B(0,3Ry) and (Hy), for some 1 > 0 and
€ > 0 small enough.

Ifr> %7 then

N 1)(N—d N—d,
W=D (Ndp) . (Nedp)r, (76)

Hence, by inequalities (74), (75), and (76), and Lemma 2.1, we have

1 1 N—dp (N—dp)(N—ﬁ)(P—l)i(N—dP)T+(N—d:D)T
sup I(tue) < (5 - F*) (Cs, )” - +0 (6 > ) —0O|e ®E-p-ap) > dp?
>0

< 7
o

1 1 * w

< (5 o F) (Ca,p)p "

uniformly in f € LPo(€, |z|~?) satisfying f(z) > 0 for a.e. z € B(0,3Ry) and (Hy), for some n > 0 and
€ > 0 small enough.

Case (ii). Consider f € LPo(Q, |z|P) satisfying f(z) > 0 for a.e. z € B(0,3R), infpar) f > 0
for some R > 0, with B(0,3R) C Q, and 0 < [[f[|zro(0,jz|-5) < Ao- We fix in Lemma 2.1 the constant
Ry = R. Arguing as in the previous case we obtain

sup I (tu.) < (l——) (Cs, )" P —|—O 6 S /|x| Bfurde. (77)

>0 p  p*

By inequality in (7) and r = p we obtain

r=p> G
Supposing
r=p= (NN—ﬁ)(p—l)
—p—ap

we get from (77) and Lemma 2.1 that there exists € > 0 small enough such that

2121%)) I(tu.) < (1% - —) (Cs, )PP*” +0 (e 7 ) -0 (eNd_pdp|ln(e)|>

*

< (3-#) @)



If we have

rp> Uy, )
then (N=8)(p=1)( )
N 1) (N—d —d
d:v(J\]? p—ap) P B d £ (79)

Hence, by using (78), (79), and Lemma 2.1, we achieve e > 0 small enough such that

(N—dp)(N=B)(p—1) — —
sup I(tu) < (L-3%)(Ci, )7F7 4+0 (55) — 0 (B
t>0

< G-

Case (iii). In this case, we consider f € LPo(Q, |z|~%) satisfying f(z) > 0 for a.e. z € B(0,3R) and
infp(o,2r) f > 0 for some R > 0, with B(0,3R) C €. We fix in Lemma 2.1 the constant R; = R. Also,
similar to the case (i), we obtain

sup I (tu.) < (% - z%) (Cz, )p 40 (6 dpp> - %/ |z| =P f urdz. (80)
>0 Q
Moreover, we have by r > p and inequality (8) that
(N=B)(p—1) (N =dp)(p=D[(N =f)p—(N—p—ap)r] . N—d
r> prfpap and B dp?(N— ppap) B dpp' (81)

Hence, by using (80), (81), and Lemma 2.1, we find € > 0 small enough such that

dp (N—=dp)(p=D)[(N=B)p—=(N—=p—ap)r]
_ ;Di*) (C;’ )p -p _|_O (6 dp ) —0|(e€ dp2(N—p—ap)

*

— ) (C)T

=

sup I(tu.) < (

t>0
< |

=

4 Proof of Theorem 1.1

Let /\0 be

omin 3o (5-34) (1) 7 (- 3)7 o7 (@)W
where )\ is originating from Theorem 3.2. We have by Theorem 3.2 that if f € LP°(Q, |z|~") satisfies
f(z) >0 forae. x€Q and f # 0 in ', for some Q' C Q with [Q'| > 0, and 0 < || f|[Lro (0,z|-5) < Aos
then, there exists {u,} C N JT a bounded Palais Smale sequence for functional I at the level c}’ <0.In
particular, there exists u € Wy (9, || ~%") such that u,, — u weakly in Wy "* (2, |z|~*?) as n — cc. Thus,
from compact embedding theorem (see [18, Theorem 2.1]), Lebesgue’s dominated convergence theorem,
and (38), we get

nh_)rr;o |w| Bfur = /Q 2| 7P f ', da
< A llzmoogop-5)C7 Il (82)
-1 P
11 11
< [(p—p*> (r—p*ﬂ Crr T|‘f||LpoQ|m\ 6y

Then, as 0 < [|f|[ro(0,z|-#) < Ao, We obtain of (82) that

C?<O§ (%—1%) (C;p)p*fp _ ,_l nh_)ngo |$| ﬁfur dr.
Due to Lemma 3.1 we can suppose u, > 0 a.e. in {2 for all n € N. Hence, by applying Theorem 3.1, we
get
u, — u strongly in W, *(Q, |z|7%) as n — ooc.
In particular, u,(x) — u(x) > 0 as n — oo for a.e. x € ().
Consequently, we have
I(u) = Jim I(up) =¢f <0 and I'(u) = lim I'(u,) =0 in (WyP(Q, |z|~%)),

n—oo

that is, u is a nonnegative nontrivial weak solutions of problem (1). ]



5 Proof of Theorem 1.2

We have by Theorem 3.3 (i) that there exists A; > 0 such that, for each f € LPo (€, |x|~#) satisfying
f(x) > 0forae. x € B(0,3Ry), (Hy), and 0 < || f||Lro (q,j«|-5) < A1, there exists {wy,} C WyP(Q, |z|~P)
a bounded Palais Smale sequence for functional I at the level c; with

*

0<cp< (f —~ —) (Cx )77, (83)

uniformly in f and w, >0 a.e. in Q2 for all n € N.

Hence, from boundedness of {w,} in W, (€, |z|~%), there exists w € Wy P (Q,|z|~%) such that
w, — w weakly in W, (€, |z|~*) as n — oo. Thus, from compact embedding theorem ([18, Theorem
2.1]) and Lebesgue’s dominated convergence theorem, we obtain

tim [ fol 2 f wide = [ o]0 wde < |fllusogoa0CF

n—oo O

(84)

Since that the inequality (83) is uniform in f € LPo(Q,|x|7#) satisfying f(z) > 0 for ae. z €
B(0,3Ro), (Hy), and 0 < || f||Lro(0,jz|-#) < A1, and by using (84), there exists Ao € (0, A;) such that

0<cf<(f—p%)(0* )Pfifp— —l lim |x| Bfawrde,
for each f € LPo (€, |z|~7) satisfying f(z) > 0 for a.e. x € B(0,3Ry), (Hy), and 0 < || f]| zro (0, 1z|-#) < Ao-

Then, by Theorem 3.1, we obtain that w, — w strongly in Wol’p(Q, |x]~%) as n — oo. In particular,
wp(x) = w(xz) >0 as n — oo for a.e. x € Q). Moreover, we have

I(w) = lim I(w,) = c¢; >0 and I'(w) = lim I'(w,) =0 in (WyP(Q, |z]~%))*,

n—oo n—oo

that is, w is a nonnegative nontrivial weak solution of problem (1).
Next, by applying Theorem 1.1 and replacing A\g by other smaller, if necessary, we obtain u €
WP (€2, |z| %) a nonnegative nontrivial weak solution of problem (1) with I(u) = c? < 0.
Hence, since that
I(u) < 0 < I(w),

we conclude that v and w are distincts. [ |

6 Proof of Theorem 1.3

Applying Theorem 3.3 (ii) there exists Ao > 0 such that, for each f € LP°(Q, |z|~?) satisfying f(z) > 0
for a.e. w € B(0,3R), infp(o2r) f > 0 for some R > 0, with B(0,3R) C €2, and 0 < || f||zro(q,|z|-5) < Mos

there exists {u,} C Wy P(Q, |z|~%") a bounded Palais Smale sequence for functional I at the level ¢; with
0<Cf<(*—*> (Cr )77, (85)

and u, > 0 a. e in Q for all n € N. From boundedness of {u, }, we have u € W, ?(Q, || =) with u,, — u
weakly in W, (9, |x|~%) as n — co. Then, as r = p, by Theorem 3.1 follows that u, — u strongly in
W, P (2, |2|~%) as n — oo. Hence, we obtain

I(u) = lim I(u,) =c; >0 and I'(u) = lim I'(u,) =0 in (W, P(Q, |z]|~%))*,

n—oo n—oo

that is, u is a nonnegative nontrivial weak solution of problem (1).

7 Proof of Theorem 1.4

Follows of Theorem 3.3 (iii) that, for each f € LPo(Q, |x#|~?) satisfying f(x) > 0 for a.e. z € B(0,3R)
and infp g or) f > 0 for some R > 0, with B(0,3R) C €, there exists {u,} C WyP(Q,]x)~%) a bounded
Palais Smale sequence for functional I at the level ¢y with

O<cf<<——i>(0* )%,

p*



and u, > 0 ae. in Q for all n € N. Since that {u,} is bounded in WyP*(Q,|z|~%) we have
u e WyP(Q, |z|~*) with u,, — u weakly in Wy (Q,|z|~%") as n — co. Then, from Theorem 3.1 we
get that u is a nonnegative weak solution of problem (1).

We will conclude the proof of this theorem proving that the weak solution u is nontrivial. Suppose,
by contradiction, that u(x) = 0 for a.e. x € . We have by compact embedding theorem ([18, Theorem
2.1]) and Lebesgue’s dominated convergence theorem that

lim [ |z| P fuPdx =0.
Q

n—oo

Then, we obtain

n—oo

0= lim (I (up),u,) = lim <||un||p/|x|ep*ug*dx>.
n—oo Q

Thus, we can take [ > 0 such that
I = lim |ju,|[’ = lim / 2|~ uP da.
n—oo n—oo Q

Therefore, we obtain
¢y = lim I(uy) = (5 — p%)l > 0. (86)

n—oo

If [ =0, then ¢y = 0, which is an absurd. Thus, we can suppose that [ > 0, and by definition of Cy ,

we have .
. s ¥
(/Q|a:|6p P dx) < lunl PP, V.

Hence, taking the limit in the above inequality we get

O cx <1,

a,p —

then

*

1> (Cr )7 (87)
We obtain substituting the equation (87) in (86) that

p*

er=(L-2) (€))7,

that contradicts the equation (85), therefore, we conclude that u # 0. [ |

8 Proof of Theorem 1.5
Due to (9) we can consider 8 = (a + 1)p — ¢ with
c>(a+ 1)p—min{(a—|— 1)p, ep*, (a+ 1)p1 + N(1 — %)} >0-

Applying Theorem 2.3 of [12], we have A\ = A1(Q) > 0 and ¢ = ¢1,, the eigenvalue and eigenfunction,
respectively, of problem

) —a 9 _ _ .
{ —div (|z|~*P|Vw|P~2Vuw) 7o PlwP~2w  in Q, (88)
w = 0 on 0,
where ¢1 € W, P(Q, |z|~?)NCO(Q) N C* (Q2\ {0}) and ¢; > 0 in Q. Moreover, by Theorem 4.4 of [17], we
have that A is isolated, that is, there exists € > 0 such that problem (1) does not possess any nonnegative
nontrivial weak solution for each 7 € (A1, A1 + ¢).
Suppose, by contradiction, that u € Wy (€, |z|~*) N C°(Q) N C*(Q\ {0}) is a nonnegative nontrivial
weak solution of problem (1) for some f € LPo(Q, |z|~?) satisfying f(x) > Ao for a.e. € Q with Ao
given by

_pior
p=r)(B—ep™) | p*-p

Ao = max < (A + 1), [()\1 +1)1 (p*_r> (ﬂ)‘é*ﬂ- Ry, " 7

—r

p*—p p*—p



where Ry > 0 is such that |z| < Ry for all z € Q.

From strong maximum principle theorem (see [12, Theorem 2.1]) we get that u > 0 in 2. Moreover,
arguing as in Theorem 2.2 of [12], we obtain g—;‘ < 0 on 09, where v : 9Q — RY is the outer unity normal
vector to 0f). Thus, there exists § > 0 such that

dp1 <wu in Q.

Consider W = d¢y and 1 € (A1, A1 +€). Then, for all p € WOLP(Q» |z|~*P) with ¢ > 0, we achieve
/|x‘*ap|V\I/|P*2V\I/Vgpdx = )\1/ ||~ PUP—lp d
@ Q
< M/ x| 7P U=ty d,
Q

that is, ¥ is a lower-solution of problem (88) with 7 = p.
Supposing the case r = p, for all ¢ € Wol’p(Q7 |x|~P) with ¢ > 0, we can see easily that

/Q|(E|*ap|Vu‘P*2vuv(pdx — /Q|x‘76p*up*71g0dl'+/Q|l’|7’8f($)upilsﬁd$

> /\0/|x|_ﬁup_1<pda:
Q

> M/|x\_5up_1<pdm,
Q

that is, u is a upper-solution of problem (88) with 7 = p.
In the case max{l,p—1} < r < p, we define for each x € Qf := {o € Q\ {0} : f(z) > Ao} the function
gz : (0,400) — R given by
Go(t) = f(2) 7P + |z|P =P 7P,
whose the unique minimum point is
to, = [ ]*— .

(p*—p)|=[P-ep”

Moreover, we have

p*—p (p=r)(B—ep*)

o) > (2:22) (222) 77 () (F58) oy 5

Then, as f(z) > Xo for all 2 € Q¢, we find that

F@) P 4+ [z P > g () > (M + 1), VE >0, Vo € Q.
Thus, as Q \ 2 has Lebesgue’s measure null and v > 0 in §, follow that
B (f()urP + |z|PmP wP P wP Lo d
(M + 1)/ lz| 7 PuP~ o da

Q
,u/ |z| ~PuP~Lpdz,
Q

/|x|’“p|Vu|p*2Vqua dx
Q

Il
S
8

Y

v

that is, u is a upper-solution of problem (88) with 7 = p.

Hence, for max{1l,p— 1} < r < p, we have that ¥ and u are lower and upper-solution of problem (88)
with 7 = p, respectively. Then, the lower and upper-solution theorem (see [4, Theorem 1.1]) implicates
that problem (88) possesses a positive solution with 7 = 1 € (A1, A1 + €), which is an absurd. [ ]
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