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Abstract

In this paper, we deal with the existence and nonexistence of nonnegative nontrivial weak solutions
for a class of degenerate quasilinear elliptic problems with weights and nonlinearity involving the
critical Hardy-Sobolev exponent and a sign-changing function. Some existence results are obtained
by splitting the Nerahi manifold and by exploring some properties of the best Hardy-Sobolev constant
together with an approach developed by Brezis and Nirenberg.

Key words: Quasilinear elliptic equations, Nehari Manifolds, critical Hardy-Sobolev exponent.

2000 Mathematical Subject Classifications: 35A15, 35B33, and 35J70.

1 Introduction

In this paper, we deal with the following degenerate quasilinear elliptic problem with weights and
nonlinearity involving critical Hardy-Sobolev exponent and a sign-changing function{

−div(|x|−ap|∇u|p−2∇u) = |x|−ep∗ |u|p∗−2u+ |x|−βf(x) |u|r−2u in Ω,
u = 0 on ∂Ω,

(1)

where
Ω is a bounded smooth domain in RN with 0 ∈ Ω. (HΩ)

The exponents verify

1 < p < N, −∞ < a < N−p
p , a ≤ e < a+ 1,

p∗ = Np
N−dp the Hardy-Sobolev exponent, d = 1 + a− e,

β < (a+ 1)p1 +N(1− p1
p ),

(Hexp)

with 1 < r < p∗, 1 < p0 ≤ Np/(N − p), and r < p1 < Np/(N − p) such that 1
p0

+ r
p1

= 1 and

f ∈ Lp0(Ω, |x|−β).

In the regular case; that is, when a = e = β = 0; with p = 2 and f ≡ λ > 0, our problem is reduced
to {

−∆u = λuq−1 + u2∗−1 in Ω,
u = 0 on ∂Ω,

(2)

where 1 < q < 2∗ and Ω is a bounded domain in RN , which has been studied by many authors.
In the celebrated paper of Brezis and Nirenberg [3], it was proved that problem (2) possesses a positive

solution for each λ > 0 if 2 < q < 2∗ and for λ ∈ (0, λ0) if q = 2, for an adequate λ0 > 0.
Ambrosetti, Brezis, and Cerami [1] proved that if 1 < q < 2 the problem (2) possesses at least two

positive solutions if λ ∈ (0, λ̃1), a positive solution if λ = λ̃1, and it does not possess any weak solution
if λ > λ̃1 for an adequate λ̃1 > 0.

Still in the regular case with p = 2, but with f being a sign-changing function the problem (1) becomes{
−∆u = λf(x)uq−1 + u2∗−1 in Ω,

u = 0 on ∂Ω,
(3)
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where 1 < q < 2∗ = 2N/(N−2), N ≥ 3, and Ω is a bounded domain in RN .Actually, we know that Wu [16]
in 2008, proved the existence of two positive solutions for problem (3) when 1 < q < 2 < 2∗ = 2N/(N−2),
N ≥ 3, and Ω is a bounded domain in RN . For more general results involving Laplacian operator we refer
de Figueiredo-Grossez-Ubilla [6, 7].

The problems involving the critical Sobolev exponent have been studied by many authors after the
work of Brezis and Nirenberg [3]. We would like to mention some papers about problems whose the
nonlinearities involve the critical Sobolev exponent and p−Laplacian operator. For instance, the problem
(1) with a = e = β = 0 and f being a nonnegative function, namely{

−∆pu = f(x)uq−1 + up
∗−1 in Ω,

u = 0 on ∂Ω,
(4)

where 1 < q < p∗ = Np/(N − p), N ≥ 3, and Ω is a bounded domain in RN , was studied by Gonçalves
and Alves in [10]. Also, for f ≡ λ, we cite the survey papers [2, 9].

Elliptic problems involving more general operator, such as the degenerate quasilinear elliptic operator
given by −div(|x|−ap|∇u|p−2∇u), were motived by the following Caffarelli, Kohn, and Nirenberg’s
inequality (see [5, 18])(∫

RN

|x|−ep
∗
|u|p

∗
dx

) p
p∗

≤ Ca,e

(∫
RN

|x|−ap|∇u|pdx
)
,∀u ∈ C∞0 (RN ), (5)

where 1 < p < N, −∞ < a < (N − p)/p, a ≤ e ≤ a+ 1, p∗ := Np/(N − dp), d = 1 + a− e, and Ca,e > 0.
In particular, if r = p, β = (a+ 1)p− c, and f ≡ λ the problem (1) becomes{

−div(|x|−ap|∇u|p−2∇u) = |x|−ep∗ |u|p∗−2u+ λ|x|−β |u|p−2u in Ω,
u = 0 on ∂Ω,

(6)

where c > 0 and Ω is a bounded smooth domain in RN with 0 ∈ Ω, and, in Xuan [18] was proved that
problem (6) possesses a nonnegative nontrivial weak solution for each 0 < λ < λ1, where λ1 > 0 is a first
eigenvalue related to our operator.

The aim of the our work is to extend some of the results mentioned above for the degenerate quasilinear
elliptic problem with weights and nonlinearity involving critical Hardy-Sobolev exponent and a sign-
changing function given in (1). The main difficulty will be due to lack of compactness of the embedding
W 1,p(Ω, |x|−ap) ↪→ Lp

∗
(Ω, |x|−ep∗), where Ω ⊂ RN is a bounded smooth domain with 0 ∈ Ω. Because of

the singularity in the weights, we need to work in an appropriate Banach space framework instead of a
Hilbert space, and that requires a careful analysis. In the next section, the precise definitions of these
spaces, as well as some properties of them, will be given.

The lack of compactness is overcome proving that is possible to obtain a Palais Smale sequence for
the Euler-Lagrange functional associated to the problem with the level below a certain number which is
said to be critical level (see Theorem 3.1). The best constant of Hardy-Sobolev C∗a,p is characterized by

C∗a,p = C∗a,p(Ω) := inf

{ ∫
Ω
|x|−ap|∇u|pdx(∫

Ω
|x|−ep∗ |u|p∗dx

) p
p∗

: u ∈W 1,p
0 (Ω, |x|−ap) \ {0}

}
·

Our first two results treat the concave-convex case, in other words, when max{1, p− 1} < r < p.

Theorem 1.1 Suppose (HΩ), (Hexp), and max{1, p−1} < r < p. Then, we can find explicitly λ0 > 0 such
that problem (1) possesses a nonnegative nontrivial weak solution for each f ∈ Lp0(Ω, |x|−β) satisfying
f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω with |Ω′| > 0; here |Ω′| is the Lebesgue’s
measure of Ω′; and

0 < ||f ||Lp0 (Ω,|x|−β) < λ0.

The next theorem treats the existence of two nonnegative nontrivial weak solutions for problem (1).

Theorem 1.2 Suppose R0 and c0 positive constants with B(0, 3R0) ⊂ Ω. In addition to (HΩ) and (Hexp),
assume that max{1, p− 1} < r < p and a ≥ 0. Then, there exists λ0 > 0 such that problem (1) possesses
at least two nonnegative nontrivial weak solutions for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e.
x ∈ B(0, 3R0), (

1 +R
dp(N−p−ap)
(p−1)(N−dp)

)−(N−dp)r
dp

RN−β inf
B(0,2R)

f ≥ c0, for some R ∈ (0, R0], (Hf )

and
0 < ||f ||Lp0 (Ω,|x|−β) < λ0.
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The next two results treat the cases p−linear (that is, r = p) and p−superlinear (that is, p < r < p∗),
respectively.

Theorem 1.3 In addition to (HΩ) and (Hexp), assume that a ≥ 0, r = p, and

(a+1)p2−N
p−1 ≤ β < (a+ 1)p1 +N(1− p1

p )· (7)

Then, we can find explicitly λ0 > 0 such that problem (1) possesses a nonnegative nontrivial weak solution
for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R), infB(0,2R) f > 0 for some R > 0,
with B(0, 3R) ⊂ Ω, and

0 < ||f ||Lp0 (Ω,|x|−β) < λ0.

Theorem 1.4 In addition to (HΩ) and (Hexp), assume that a ≥ 0, p < r < p∗, and

N(p−1)p−(N−p−ap)[p+(p−1)r]
(p−1)p < β < (a+ 1)p1 +N(1− p1

p )· (8)

Then, problem (1) possesses a nonnegative nontrivial weak solution for each f ∈ Lp0(Ω, |x|−β) satisfying
f(x) ≥ 0 for a.e. x ∈ B(0, 3R) and infB(0,2R) f > 0 for some R > 0, with B(0, 3R) ⊂ Ω.

Our last result deal with nonexistence of weak solution for problem (1).

Theorem 1.5 In addition to (HΩ) and (Hexp), assume that a ≥ 0, max{1, p− 1} < r ≤ p, and

β < min
{

(a+ 1)p, ep∗, (a+ 1)p1 +N(1− p1
p )

}
· (9)

Then, there exists λ0 > 0 such that problem (1) does not possess any nonnegative nontrivial weak solution
in W 1,p

0 (Ω, |x|−ap) ∩ C0(Ω) ∩ C1(Ω \ {0}) for all f ∈ Lp0(Ω, |x|−β) satisfying

f(x) ≥ λ0 for a.e. x ∈ Ω.

Remark 1.1 The theorems for the subcritical version of problem (1) can be obtained by usual arguments
that we will omit here. However, we would like to mention that in the subcritical version, we can
obtain similar results to the Theorems 1.1, 1.2, and 1.3, with f ∈ Lp0(Ω, |x|−β) satisfuing the same
conditions of Theorem 1.1, and the analogous result of Theorem 1.4 with f ∈ Lp0(Ω, |x|−β) satisfuing
f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω with |Ω′| > 0.

In Section 2, we give some definitions and preliminary results about the Nehari manifold. In Section
3, we will study Palais Smale sequences. In Sections 4, 5, 6, and 7, we will prove Theorems 1.1, 1.2,
1.3, and 1.4, respectively, by splitting the Nerahi manifold and by exploring some properties of the best
Hardy-Sobolev constant together with an approach developed by Brezis and Nirenberg. In Section 8, we
will give the proof of a nonexistence result Theorem 1.5.

2 Preliminaries

We will now define the spaces that we deal in this work with their respective norms. Consider Ω a
bounded smooth domain in RN with 0 ∈ Ω. If α ∈ R and l ≥ 1, let Ll(Ω, |x|α) be the subspace of Ll(Ω)
of the Lebesgue measurable functions u : Ω → R satisfying

||u||Ll(Ω,|x|α) :=
(∫

Ω

|x|α|u|ldx
) 1

l

<∞.

If 1 < p < N and −∞ < a < (N − p)/p, we define W 1,p
0 (Ω, |x|−ap) as being the completion of C∞0 (Ω)

with respect to the norm || · || defined by

||u|| = ||u||W 1,p
0 (Ω,|x|−ap) :=

(∫
Ω

|x|−ap|∇u|pdx
) 1

p

.

First of all, by using the inequality (5) and the boundedness of Ω, was proved in [18] that there exists
C > 0 such that (∫

Ω

|x|−δ|u|rdx
) p

r

≤ C

(∫
Ω

|x|−ap|∇u|pdx
)
, ∀u ∈W 1,p

0 (Ω, |x|−ap), (10)
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where 1 ≤ r ≤ Np/(N − p) and δ ≤ (a + 1)r + N [1− (r/p)] , which is said Caffarelli, Kohn, and
Nirenberg’s inequality. In other words, the embedding W 1,p

0 (Ω, |x|−ap) ↪→ Lr(Ω, |x|−δ) is continuous
if 1 ≤ r ≤ Np/(N − p) and δ ≤ (a + 1)r + N [1− (r/p)] . Moreover, this embedding is compact if
1 ≤ r < Np/(N − p) and δ < (a+ 1)r +N [1− (r/p)] , see [18, Theorem 2.1].

Let us consider Ω a domain in RN (not necessarily bounded), 0 ∈ Ω, 1 < p < N, 0 ≤ a < (N − p)/p,
a ≤ e < a+ 1, d = 1 + a− e, and p∗ = Np/(N − dp). We define the space

W 1,p
a,e (Ω) =

{
u ∈ Lp

∗
(Ω, |x|−ep

∗
) : |∇u| ∈ Lp(Ω, |x|−ap)

}
,

equipped with the norm

||u||W 1,p
a,e (Ω) := ||u||Lp∗ (Ω,|x|−ep∗ ) + ||∇u||Lp(Ω,|x|−ap).

We consider the constant S̃a,p given by

S̃a,p := inf

{ ∫
RN |x|−ap|∇u|pdx(∫

RN |x|−ep∗ |u|p∗dx
) p

p∗
: u ∈W 1,p

a,e (RN ) \ {0}

}
·

Also, we define
R1,p
a,e(Ω) =

{
u ∈W 1,p

a,e (Ω) : u(x) = u(|x|)
}
,

endowed with the norm
||u||R1,p

a,e(Ω) = ||u||W 1,p
a,e (Ω).

Actually, Horiuchi in [11] proved that, if a ≥ 0,

S̃a,p,R := inf

{ ∫
RN |x|−ap|∇u|pdx(∫

RN |x|−ep∗ |u|p∗dx
) p

p∗
: u ∈ R1,p

a,e(RN ) \ {0}

}
= S̃a,p (11)

and it is achieved by functions of the form

yε(x) := ka,p(ε)Ua,p,ε(x),∀ ε > 0,

where

ka,p(ε) = c̃ε(N−dp)/dp
2

and Ua,p,ε(x) =
(
ε+ |x|

dp(N−p−ap)
(p−1)(N−dp)

)−(N−dp
dp )

.

We observe that by the Caffarelli, Kohn, and Nirenberg’s inequality follows that W 1,p
0 (Ω, |x|−ap) is a

subset of W 1,p
a,e (RN ), then

S̃a,p ≤ C∗a,p. (12)

We have remarked in Section 1 that the lack of compactness is overcome proving that is possible to
obtain a Palais Smale sequence for the Euler-Lagrange functional associated to problem (1) with the level
below the critical level; for that matter the following lemma will be crucial. The proof of this lemma
follows exactly as in [13], with the observation that in the proof what matters is the fact that the function
f is greater or equal zero in a ball about the origin.

Lemma 2.1 Suppose that (HΩ) and (Hexp) are satisfied. Let R1, c1 be positive constants with
B(0, 3R1) ⊂ Ω and ψ ∈ C∞0 (B(0, 3R1)) with ψ ≥ 0 in B(0, 3R1) and ψ ≡ 1 in B(0, 2R1), then the
function given by

uε(x) = ψ(x)Ua,p,ε(x)
||ψUa,p,ε||Lp∗ (Ω,|x|−ep∗ )

satisfies
||uε||p

∗

Lp∗ (Ω,|x|−ep∗ )
= 1, ||∇uε||pLp(Ω,|x|−ap) ≤ S̃a,p,R +O(ε(N−dp)/dp),

and

||f1/r uε||rLr(Ω,|x|−β) ≥


O(ε(N−dp)r/dp

2
) if r < (N−β)(p−1)

N−p−ap ,

O(ε(N−dp)r/dp
2 |ln(ε)|) if r = (N−β)(p−1)

N−p−ap ,

O(ε
(N−dp)(p−1)[(N−β)p−(N−p−ap)r]

dp2(N−p−ap) )
if r > (N−β)(p−1)

N−p−ap ,

(13)
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for all f ∈ Lp0(Ω, |x|−β) with f ≥ 0 for a.e. in B(0, 3R1) and infB(0,2R) f > 0 for some 0 < R ≤ R1.

Moreover, the inequality (13) is uniform in f ∈ Lp0(Ω, |x|−β) satisfying: f ≥ 0 for a.e. in B(0, 3R1) and

(
1 +R

dp(N−p−ap)
(p−1)(N−dp)

)−(N−dp)r
dp

RN−β inf
B(0,2R)

f ≥ c1, for some R ∈ (0, R1].

Our approach will be using variational techniques, that is, we will study the critical points of the
Euler-Lagrange functional I : W 1,p

0 (Ω, |x|−ap) −→ R given by

I(u) =
1
p

∫
Ω

|x|−ap|∇u|pdx− 1
p∗

∫
Ω

|x|−ep
∗
up

∗

+ dx−
1
r

∫
Ω

|x|−βf ur+dx,

which is well defined and is of class C1, with Fréchet derivative given by

〈I ′(u), w〉 =
∫

Ω

|x|−ap|∇u|p−2∇u∇wdx−
∫

Ω

|x|−ep
∗
up

∗−1
+ wdx−

∫
Ω

|x|−βf ur−1
+ wdx,

where u± = max{0,±u} ∈W 1,p
0 (Ω, |x|−ap).

We consider Ψf : W 1,p
0 (Ω, |x|−ap) −→ R given by

Ψf (u) = 〈I ′(u), u〉 ,

which is of class C1. Moreover, we consider the Nehari manifold associated to problem (1) given by

Nf = {u ∈W 1,p
0 (Ω, |x|−ap) \ {0} : Ψf (u) = 0}.

Similar to Tarantello [14] and Wu [15], we consider the split of Nf in three parts:

N+
f =

{
u ∈ Nf : 〈Ψ′

f (u), u〉 > 0
}

;

N 0
f =

{
u ∈ Nf : 〈Ψ′

f (u), u〉 = 0
}

;

N−
f =

{
u ∈ Nf : 〈Ψ′

f (u), u〉 < 0
}
.

Before concluding this section, we will study some properties of the sets N+
f , N 0

f , and N−
f . We will

begin by characterizing each one of them.

Theorem 2.1 Assume that (HΩ), (Hexp), and max{1, p− 1} < r < p are satisfied. Then, we have

N+
f =

{
u ∈ Nf :

∫
Ω
|x|−βf ur+dx > (p

∗−p
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}

=
{
u ∈ Nf : ||u||p > (p

∗−r
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}

;
(14)

N 0
f =

{
u ∈ Nf :

∫
Ω
|x|−βf ur+dx = (p

∗−p
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}

=
{
u ∈ Nf : ||u||p = (p

∗−r
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}

;
(15)

N−
f =

{
u ∈ Nf :

∫
Ω
|x|−βf ur+dx < (p

∗−p
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}

=
{
u ∈ Nf : ||u||p < (p

∗−r
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}
.

(16)

Proof. We have for all u ∈ Nf that

||u||p −
∫

Ω

|x|−ep
∗
up

∗

+ dx−
∫

Ω

|x|−βf ur+dx = Ψf (u) = 0.

Then, we obtain

〈Ψ′
f (u), u〉 = (p− p∗)

∫
Ω

|x|−ep∗up
∗

+ dx+ (p− r)
∫

Ω

|x|−βf ur+dx (17)
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and
〈Ψ′

f (u), u〉 = (p− r)||u||p − (p∗ − r)
∫

Ω

|x|−ep∗up
∗

+ dx. (18)

We have by (17) that u ∈ N+
f if, and only if, u ∈ Nf and∫
Ω

|x|−βf ur+dx >
(
p∗−p
p−r

) ∫
Ω

|x|−ep
∗
up

∗

+ dx,

therefore
N+
f =

{
u ∈ Nf :

∫
Ω
|x|−βf ur+dx > (p

∗−p
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}
·

Similarly, we get from (18) that

N+
f =

{
u ∈ Nf : ||u||p > (p

∗−r
p−r )

∫
Ω
|x|−ep∗up

∗

+ dx
}
·

Analogously, we prove (15) and (16).

We immediately deduce by Theorem 2.1 the following result:

Corollary 2.1 Assume that (HΩ), (Hexp), and max{1, p− 1} < r < p are satisfied.
i) If u ∈ N+

f ∪N 0
f then

∫
Ω
|x|−βf ur+dx > 0.

ii) If u ∈ Nf and
∫
Ω
|x|−βf ur+dx ≤ 0 then u ∈ N−

f .

Now, we will define a functional that will help us in some proofs. Let max{1, p− 1} < r < p,

W+ = {u ∈W 1,p
0 (Ω, |x|−ap) : u+ 6≡ 0},

and Ff : W+ −→ R given by

Ff (u) = K

[
||u||p(p∗−p)+p∫
Ω
|x|−ep∗up∗+ dx

] 1
p∗−p

−
∫

Ω

|x|−βf ur+dx, (19)

where

K =
(
p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

.

Lemma 2.2 Assume (HΩ), (Hexp), and max{1, p − 1} < r < p. Then, there exists Λ0 > 0 such that
N 0
f = ∅ for all f ∈ Lp0(Ω, |x|−β) with 0 < ||f ||Lp0 (Ω,|x|−β) < Λ0.

Proof. Let

Λ0 =
{(

p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

C−
p∗

p(p∗−p)

[(
p∗−r
p∗−p

)
C

r
p

]1− 1
p−r

C−
r
p

}p−r

,

where C is from Caffarelli, Kohn, and Nirenberg’s inequality (10).
Suppose, by contradiction, that for some f ∈ Lp0(Ω, |x|−β) with 0 < ||f ||Lp0 (Ω,|x|−β) < Λ0 we have

N 0
f 6= ∅. From Corollary 2.1, we have N 0

f ⊂W+. Moreover, if u ∈ N 0
f then

||u||p −
∫

Ω

|x|−ep
∗
up

∗

+ dx−
∫

Ω

|x|−βf ur+dx = 0.

Therefore, we have by (15) of Theorem 2.1 that∫
Ω

|x|−βf ur+dx = ||u||p −
∫

Ω

|x|−ep
∗
up

∗

+ dx

= ||u||p −
(
p−r
p∗−r

)
||u||p

=
(
p∗−p
p∗−r

)
||u||p.

(20)

Then, using Hölder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality, and equality (20) we get

||u|| ≤
[(

p∗−r
p∗−p

)
||f ||Lp0 (Ω,|x|−β)C

r
p

] 1
p−r

. (21)
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Using the functional Ff defined in (19) and (15) of Theorem 2.1 we obtain

Ff (u) = K

{ [(
p∗−r
p−r

)∫
Ω |x|

−ep∗up∗
+ dx

]p∗−p+1∫
Ω |x|−ep∗up∗

+ dx

} 1
p∗−p

−
(
p∗−p
p−r

) ∫
Ω

|x|−ep
∗
up

∗

+ dx

= K
(
p∗−r
p−r

)1+ 1
p∗−p

∫
Ω

|x|−ep
∗
up

∗

+ dx−
(
p∗−p
p−r

) ∫
Ω

|x|−ep
∗
up

∗

+ dx

= 0.

(22)

On the other hand, by using Hölder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality, and by
(21) we get

Ff (u) ≥ K

[
||u||p(p∗−p)+p

C
p∗
p ||u||p∗

] 1
p∗−p

− ||f ||Lp0 (Ω,|x|−β)C
r
p ||u||r

= ||u||r
[
KC−

p∗
p(p∗−p) ||u||p−1−r − ||f ||Lp0 (Ω,|x|−β)C

r
p

]
≥ ||u||r

{
KC−

p∗
p(p∗−p)

[(
p∗−r
p∗−p

)
C

r
p

]1− 1
p−r ||f ||1−

1
p−r

Lp0 (Ω,|x|−β)
− ||f ||Lp0 (Ω,|x|−β)C

r
p

}
> 0,

(23)

since 0 < ||f ||Lp0 (Ω,|x|−β) < Λ0. Therefore, by (22) and (23), we have a contradiction.
Hence, we conclude that N 0

f = ∅ if f ∈ Lp0(Ω, |x|−β) and 0 < ||f ||Lp0 (Ω,|x|−β) < Λ0.

3 On the Palais Smale sequences

In this section, we will study the existence of Palais Smale sequences for functional I and some of
their properties.

Definition 3.1 Let us consider {un} in W 1,p
0 (Ω, |x|−ap). We say that the sequence {un} is a Palais

Smale sequence for functional I at the level c (or simply, (PS)c-sequence) if

I(un) −→ c and I ′(un) −→ 0 in (W 1,p
0 (Ω, |x|−ap))∗, as n −→∞.

Lemma 3.1 Consider (HΩ) and (Hexp) satisfied and assume that {un} ⊂ W 1,p
0 (Ω, |x|−ap) is a Palais

Smale sequence for functional I at the level cf with f ∈ Lp0(Ω, |x|−β).
i) Suppose max{1, p − 1} < r < p. Then, {un+} ⊂ W 1,p

0 (Ω, |x|−ap) is a bounded Palais Smale sequence
for functional I at the level cf .

ii) Suppose r = p. Then, there exists λ0 > 0 such that {un+} ⊂ W 1,p
0 (Ω, |x|−ap) is a bounded Palais

Smale sequence for functional I at the level cf provided that 0 < ||f ||Lp0 (Ω,|x|−β) < λ0.

iii) Suppose p < r < p∗. Then, {un+} ⊂W 1,p
0 (Ω, |x|−ap) is a bounded Palais Smale sequence for functional

I at the level cf .

Proof. First, we are going to prove that for each one of cases (i), (ii), and (iii), that {un} is a bounded
sequence in W 1,p

0 (Ω, |x|−ap). Let θ ∈ (1, p∗]. By definition of (PS)cf
−sequence we obtain

cf + o(1)||un||+ o(1) ≥ I(un)− 1
θ 〈I

′(un), un〉

=
(

1
p −

1
θ

)
||un||p −

(
1
p∗ −

1
θ

) ∫
Ω

|x|−ep∗up∗n+
dx

−
(

1
r −

1
θ

) ∫
Ω

|x|−βf urn+
dx,

(24)

where o(1) → 0 as n→∞.
Suppose max{1, p− 1} < r < p and fix θ = p∗. Then, we have

cf + o(1)||un||+ o(1) ≥
(

1
p −

1
p∗

)
||un||p −

(
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p ||un||r,

it follows that {un} is bounded in W 1,p
0 (Ω, |x|−ap).
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Assume that r = p and fix in (24) the constant θ = p∗. Then, by using Hölder’s inequality, Caffarelli,
Kohn, and Nirenberg’s inequality, we get

cf + o(1)||un||+ o(1) ≥
(

1
p −

1
p∗

) (
1− C||f ||Lp0 (Ω,|x|−β)

)
||un||p.

Therefore, we obtain that {un} is bounded in W 1,p
0 (Ω, |x|−ap) if 0 < ||f ||Lp0 (Ω,|x|−β) < λ0 := C−1.

If p < r < p∗, we fix θ = r in (24). Then, we have

cf + o(1)||un||+ o(1) ≥
(

1
p −

1
r

)
||un||p,

so, it follows that {un} is bounded in W 1,p
0 (Ω, |x|−ap).

Consequently, for each one of the cases (i), (ii), and (iii), since that {un} is bounded inW 1,p
0 (Ω, |x|−ap),

the sequences {un−} and {un+} are bounded in W 1,p
0 (Ω, |x|−ap). Then, we achieve

−||un− ||p = 〈I ′(un), un−〉 −→ 0 as n −→∞.

Moreover, we get
I(un+) = I(un) + 1

p ||un− ||
p

and, for all w ∈W 1,p
0 (Ω, |x|−ap),

〈I ′(un+), w〉 = 〈I ′(un), w〉+
∫

Ω

|x|−ap|∇un|p−2∇un−∇w dx,

then, we conclude

I(un+) −→ cf and I ′(un+) −→ 0 in
(
W 1,p

0 (Ω, |x|−ap)
)∗
, as n −→∞.

In the next result we will see that the weak limit of a Palais Smale sequence is a weak solution of
problem (1). However, in principle, we can not assert that the weak solution is nontrivial.

Theorem 3.1 Suppose (HΩ) and (Hexp). Let {un} ⊂ W 1,p
0 (Ω, |x|−ap) be a Palais Smale sequence for

functional I at the level c, with un ≥ 0 a.e. in Ω for all n ∈ N, and un ⇀ u weakly in W 1,p
0 (Ω, |x|−ap) as

n→∞, for some u ∈W 1,p
0 (Ω, |x|−ap). Then, u is a nonnegative weak solution of problem (1). Moreover,

un → u strongly in W 1,p
0 (Ω, |x|−ap), as n→∞, provided that

c <
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p −

(
1
r −

1
p

)
lim
n→∞

∫
Ω

|x|−βf urndx. (25)

Proof. Combining the compact embedding theorem (see [18, Theorem 2.1]) and Lebesgue’s dominated
convergence theorem, we obtain un(x) → u(x) ≥ 0 as n→∞ for a.e. x ∈ Ω,

lim
n→∞

∫
Ω

|x|−βfurndx =
∫

Ω

|x|−βfurdx (26)

and, for each w ∈W 1,p
0 (Ω, |x|−ap),

lim
n→∞

∫
Ω

|x|−βfur−1
n w dx =

∫
Ω

|x|−βfur−1 w dx. (27)

By arguing as in [8] we can prove that ∇un(x) → ∇u(x) as n → ∞ for a.e. x ∈ Ω. Also, by the
continuous embedding W 1,p(Ω, |x|−ap) ↪→ Lp

∗
(Ω, |x|−ep∗), we infer that {up∗−1

n } is a bounded sequence
in Lp

∗/(p∗−1)(Ω, |x|−ep∗) and {|∇un|p−2∇un} is a bounded sequence in
(
Lp/(p−1)(Ω, |x|−ap)

)N
, therefore,

we obtain up
∗−1
n ⇀ up

∗−1 weakly in Lp
∗/(p∗−1)(Ω, |x|−ep∗) and |∇un|p−2∇un ⇀ |∇u|p−2∇u weakly in(

Lp/(p−1)(Ω, |x|−ap)
)N

, as n→∞. Thus, by using (27), for each w ∈W 1,p
0 (Ω, |x|−ap), we obtain

〈I ′(u), w〉 = lim
n→∞

〈I ′(un), w〉 = 0,

that is, u is a nonnegative weak solution of problem (1).
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Define ũn = un − u. From Brezis-Lieb Lemma and by (26), we have

||ũn||p −
∫

Ω

|x|−ep∗ |ũn|p
∗
dx = ||un||p − ||u||p −

[∫
Ω

|x|−ep∗ |un|p
∗
dx−

∫
Ω

|x|−ep∗ |u|p∗dx
]

+ o(1)

= 〈I ′(un), un〉 − 〈I ′(u), u〉+ o(1)
= o(1),

where o(1) → 0 as n→∞. Hence, there exists l ≥ 0 satisfying

l = lim
n→∞

||ũn||p = lim
n→∞

∫
Ω

|x|−ep∗ |ũn|p
∗
dx. (28)

If l = 0 the proof is finished. Otherwise, let us suppose by contradiction that l > 0. By using the
definition of (PS)c-sequence and the Brezis-Lieb Lemma, we get

c+ o(1)||un||+ o(1) ≥ I(un)− 1
r 〈I

′(un), un〉
=

(
1
p −

1
r

)
(||ũn||p + ||u||p)

−
(

1
p∗ −

1
r

) (∫
Ω

|x|−ep
∗
|ũn|p

∗
dx+

∫
Ω

|x|−ep
∗
up

∗
dx

)
+ o(1).

But, as u is a weak solution of problem (1), we obtain using (28) that

c+ o(1)||un||+ o(1) ≥
(

1
p −

1
r

)
||ũn||p +

(
1
p −

1
r

) (∫
Ω

|x|−βf urdx+
∫

Ω

|x|−ep
∗
up

∗
dx

)
−

(
1
p∗ −

1
r

) (∫
Ω

|x|−ep∗ |ũn|p
∗
dx+

∫
Ω

|x|−ep∗up∗dx
)

+ o(1)

≥
(

1
p −

1
p∗

)
l −

(
1
r −

1
p

) ∫
Ω

|x|−βf urdx.

(29)

Since l > 0, by the definition of C∗a,p we obtain(∫
Ω

|x|−ep
∗
|ũn|p

∗
dx

) p
p∗

C∗a,p ≤ ||ũn||p, ∀n ∈ N.

Therefore, by taking the limit as n→∞,

(l)
p

p∗ C∗a,p ≤ l,

then
l ≥

(
C∗a,p

) p∗
p∗−p . (30)

Hence, from (26), (29), and (30), we find

c ≥
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p −

(
1
r −

1
p

)
lim
n→∞

∫
Ω

|x|−βf urndx,

which contradicts (25). Consequently, limn→∞ ||un − u|| = l = 0.

Theorem 3.2 Suppose that (HΩ), (Hexp), and max{1, p − 1} < r < p are satisfied. Then, there exists
λ̄0 > 0 such that, for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for
some Ω′ ⊂ Ω with |Ω′| > 0, and 0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0, there exists {un} ⊂ N+

f a bounded Palais
Smale sequence for functional I at the level c+f where

c+f := inf{I(u) : u ∈ N+
f } < 0.

Proof. We will proof this theorem in three steps. First, we will prove that N+
f is not empty and

−∞ < c+f < −η < 0. In second step we will obtain a bounded sequence {un} in N+
f such that I(un) → c+f

as n→∞. In third step we will prove that I ′(un) → 0 in (W 1,p
0 (Ω, |x|−ap))∗ as n→∞.

Step 1. We will prove that N+
f is not empty and −∞ < c+f < −η < 0, for each f ∈ Lp0(Ω, |x|−β)

satisfying f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω with |Ω′| > 0, and
0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0 where

λ̄0 := min
{

Λ0,
(
p∗−p
p∗−r

) (
p−r
p∗−r

) p−r
p∗−p

C
r−p∗
p∗−p

}
,
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Λ0 is originating from Lemma 2.2.
Fixed f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω with

|Ω′| > 0, we can choose w0 ∈W+ with w0 ≥ 0 for a.e. in Ω and
∫
Ω
|x|−βf wr0dx > 0.

We define g : (0,+∞) −→ R given by

g(t) = tp−r||w0||p − tp
∗−r∫

Ω
|x|−ep∗wp∗0 dx.

It is easy to verify that

tmax :=
[(

p−r
p∗−r

)
||w0||p∫

Ω |x|−ep∗wp∗
0 dx

] 1
p∗−p

> 0,

is the unique maximum point of g. Moreover, we have g′(t) > 0 for all t ∈ (0, tmax), g′(t) < 0 for all
t ∈ (tmax,+∞), and

g(tmax) =
(
p∗−p
p∗−r

) (
p−r
p∗−r

) p−r
p∗−p

(∫
Ω

|x|−ep
∗
wp

∗

0 dx

) r−p
p∗−p

||w0||
p(p∗−r)

p∗−p

≥
(
p∗−p
p∗−r

) (
p−r
p∗−r

) p−r
p∗−p

C
p∗(r−p)
p(p∗−p) ||w0||r

> 0.

(31)

Since that 0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0, we obtain by using the Hölder’s inequality, Caffarelli, Kohn, and
Nirenberg’s inequality, and (31) that

g(0) = 0 <

∫
Ω

|x|−βf wr0dx

≤ ||f ||Lp0 (Ω,|x|−β)C
r
p ||w0||r

<
(
p∗−p
p∗−r

) (
p−r
p∗−p

) p−r
p∗−p

C
r−p∗
p∗−pC

r
p ||w0||r

≤ g(tmax).

Consequently, there exists 0 < t+ < tmax such that g′(t+) > 0 and

g(t+) =
∫

Ω

|x|−βf wr0dx.

Then, we get

〈I ′(t+w0), t+w0〉 = (t+)r
[
g(t+)−

∫
Ω

|x|−βf wr0dx
]

= 0,

so, t+w0 ∈ Nf . Moreover, by equation

〈Ψ′
f (t

+w0), t+w0〉 = (p− r)||t+w0||p − (p∗ − r)
∫

Ω

|x|−ep
∗
(t+w0)p

∗
dx

= (t+)r+1g′(t+)
> 0,

we obtain t+w0 ∈ N+
f . Hence, we conclude that N+

f 6= ∅ for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0
for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω with |Ω′| > 0, and 0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0.

Next we are going to proof that −∞ < c+f < −η < 0. We claim that I is bounded below in N+
f , where

N+
f is the closure of N+

f with respect to the norm || · ||. Indeed, for u ∈ N+
f ⊂ Nf , we have

||u||p −
∫

Ω

|x|−ep
∗
up

∗

+ dx−
∫

Ω

|x|−βf ur+dx = 0. (32)

Then, by Hölder’s inequality, Caffarelli, Kohn, and Nirenberg’s inequality, and (32), we obtain

I(u) = 1
p ||u||

p − 1
p∗

(
||u||p −

∫
Ω

|x|−βf ur+dx
)
− 1

r

∫
Ω

|x|−βf ur+dx

≥
(

1
p −

1
p∗

)
||u||p −

(
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p ||u||r,
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so, as r < p, I is bounded below in N+
f . Evidently, we have

−∞ < c+ := inf{I(u) : u ∈ N+
f } ≤ c+f := inf{I(u) : u ∈ N+

f }.

Now, we will prove that c+f < −η < 0 for some η > 0. We know that t+w0 ∈ N+
f ⊂ Nf , then

I(t+w0) = 1
p ||t

+w0||p − 1
p∗

∫
Ω

|x|−ep
∗
(t+w0)p

∗
dx− 1

r

[
||t+w0||p −

∫
Ω

|x|−ep
∗
(t+w0)p

∗
dx

]
=

(
1
p −

1
r

)
||t+w0||p +

(
1
r −

1
p∗

) ∫
Ω

|x|−ep
∗
(t+w0)p

∗
dx

Thus, by using (14) of Theorem 2.1, it follows

I(t+w0) ≤
(

1
p −

1
r

)
||t+w0||p +

(
1
r −

1
p∗

) (
p−r
p∗−r

)
||t+w0||p

= −
(
p−r
r

) (
1
p −

1
p∗

)
||t+w0||p

:= −η
< 0,

therefore
−∞ < c+ ≤ c+f < −η < 0. (33)

Step 2. We will prove that there exists a bounded sequence {un} in N+
f such that I(un) → c+f as

n→∞, for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω
with |Ω′| > 0, and 0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0. We choose n0 ∈ N satisfying

0 < 1
n+n0

< −(c+ + η),∀n ∈ N.

By definition of c+, for each n ∈ N, there exists w0,n ∈ N+
f such that

c+ ≤ I(w0,n) ≤ c+ + 1
n+n0

·

Applying Ekeland’s variational principle, we obtain un ∈ N+
f satisfying

c+ ≤ I(un) ≤ I(w0,n) ≤ c+ + 1
n+n0

(34)

and
I(un) < I(w) +

1
n
||w − un||, ∀ w ∈ N+

f \ {un}. (35)

We will prove that {un} is bounded in W 1,p
0 (Ω, |x|−ap) and un 6= 0 for all n ∈ N. Since that N+

f ⊂ Nf ,
we find

I(un) = 1
p ||un||

p − 1
p∗

[
||un||p −

∫
Ω

|x|−βf urn+
dx

]
− 1

r

∫
Ω

|x|−βf urn+
dx

=
(

1
p −

1
p∗

)
||un||p +

(
1
p∗ −

1
r

) ∫
Ω

|x|−βf urn+
dx.

(36)

Then, follow by (33), (34), and (36) that(
1
p −

1
p∗

)
||un||p +

(
1
p∗ −

1
r

) ∫
Ω

|x|−βf urn+
dx ≤ c+f +

1
n+ n0

< −η < 0, (37)

so, we get

||un||p <
(

1
p −

1
p∗

)−1 (
1
r −

1
p∗

) ∫
Ω

|x|−βf urn+
dx

≤
(

1
p −

1
p∗

)−1 (
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p ||un||r,

hence, we have

||un|| <

[(
1
p −

1
p∗

)−1 (
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p

] 1
p−r

, (38)

therefore, {un} is bounded in W 1,p
0 (Ω, |x|−ap).
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Follows from (37) that

η <
(

1
r −

1
p∗

) ∫
Ω

|x|−βf urn+
dx

≤
(

1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p ||un||r,

then, we find

||un|| >

{
η

[(
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p

]−1
} 1

r

, (39)

consequently, un 6≡ 0 for all n ∈ N.
We observe that N+

f ⊂ N+
f ∪N 0

f ∪{0}. Moreover, follows from (39) that {un} ⊂ N+
f ∪N 0

f . However,
we obtain by Lemma 2.2 that N 0

f = ∅, because 0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0 ≤ Λ0. Then, we have {un} ⊂ N+
f

and
c+f ≤ I(un) ≤ c+f + 1

n+n0
·

Step 3. The next step is to prove that I ′(un) → 0 in (W 1,p
0 (Ω, |x|−ap))∗ as n → ∞. The following

lemma will be proven below.

Lemma 3.2 For each u ∈ N+
f , there exist ε > 0 and a differentiable function ξ+ : B(0, ε) ⊂

W 1,p
0 (Ω, |x|−ap) −→ R+ satisfying ξ+(0) = 1, ξ+(w)(u− w) ∈ N+

f for all w ∈ B(0, ε), and

〈
(ξ+)′(0), v

〉
=
p

∫
Ω

|x|−ap|∇u|p−2∇u∇vdx− p∗
∫

Ω

|x|−ep
∗
up

∗−1
+ vdx− r

∫
Ω

|x|−βf ur−1
+ vdx

(p− r)||u||p − (p∗ − r)
∫

Ω

|x|−ep
∗
up

∗

+ dx

(40)

for all v ∈W 1,p
0 (Ω, |x|−ap).

By Lemma 3.2, for each un ∈ N+
f , there exist εn > 0 and a differentiable function ξ+n : B(0, εn) ⊂

W 1,p
0 (Ω, |x|−ap) → R+ satisfying ξ+n (0) = 1, ξ+n (w)(un − w) ∈ N+

f for all w ∈ B(0, εn), and (ξ+n )′(0) is
given by (40). Fixed n ∈ N, we choose for each u ∈ W 1,p

0 (Ω, |x|−ap) \ {0} a positive constant 0 < ρ < εn
satisfying

wρ :=
ρ u

||u||
∈ B(0, εn) and ηρ := ξ+n (wρ)(un − wρ) ∈ N+

f .

We obtain by using (35) and the definition of Fréchet derivative that

− 1
n ||ηρ − un|| ≤ I(ηρ)− I(un)

= 〈I ′(un), ηρ − un〉+ o(||ηρ − un||)
= −ρ〈I ′(un), u

||u|| 〉+ (ξ+n (wρ)− 1) 〈I ′(un), un − wρ〉+ o(||ηρ − un||).
(41)

Follows from ηρ ∈ N+
f ⊂ Nf that

ξ+n (wρ) 〈I ′(ηρ), un − wρ〉 = Ψf (u) = 0

and, observing that ξ+n (wρ) > 0, we get

〈I ′(ηρ), un − wρ〉 = 0. (42)

Combining (41) and (42), we obtain

〈I ′(un), u
||u|| 〉 ≤

1
ρ

[
1
n ||ηρ − un||+ (ξ+n (wρ)− 1)〈I ′(un)− I ′(ηρ), un − wρ〉+ o(||ηρ − un||)

]
. (43)

We observe that
||ηρ − un|| ≤ ρξ+n (wρ) + |ξ+n (wρ)− 1| ||un|| (44)

and

lim
ρ→0+

|ξ+n (wρ)− 1|
ρ

= |〈(ξ+n )′(0), u
||u|| 〉|

≤ ||(ξ+n )′(0)||∗,
(45)
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where || · ||∗ is the norm of space (W 1,p
0 (Ω, |x|−ap))∗.

Hence, by passing the limit in (43) as ρ→ 0+, using (44), and (45), we find

〈I ′(un), u
||u|| 〉 ≤

M̃
n [ ||(ξ+n )′(0)||∗ + 1 ] · (46)

We will prove that ||(ξ+n )′(0)||∗ is uniformly bounded in n ∈ N. By using the expression of (ξ+n )′(0)
given by (40) and boundedness of {un}, we obtain for all v ∈W 1,p

0 (Ω, |x|−ap) that

|〈(ξ+n )′(0), v〉| ≤ M ||v||
|(p−r)||un||p−(p∗−r)

∫
Ω |x|−epup∗

n+dx|
, ∀n ∈ N, (47)

where M > 0 not depends of n ∈ N.
We claim that there exists c > 0 such that∣∣∣∣(p− r)||un||p − (p∗ − r)

∫
Ω

|x|−epup
∗

n+
dx

∣∣∣∣ ≥ c > 0, ∀n ∈ N. (48)

Suppose, by contradiction, that there exists a subsequence of {un}, which will be denoted by {un}, such
that ∣∣∣∣(p− r)||un||p − (p∗ − r)

∫
Ω

|x|−epup
∗

n+
dx

∣∣∣∣ = o(1)

where o(1) → 0 as n→∞. Then, follows from (39) that∫
Ω

|x|−ep
∗
up

∗

n+
dx =

(
p−r
p∗−r

)
||un||p + o(1)

≥
(
p−r
p∗−r

) {
η

[(
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p

]−1
} p

r

+ o(1)

> 0

(49)

for n large enough, and, as {un} ⊂ N+
f ⊂ Nf ,∫

Ω

|x|−βf urn+
dx = ||un||p −

∫
Ω

|x|−ep
∗
up

∗

n+
dx

= ||un||p −
(
p−r
p∗−r

)
||un||p + o(1)

=
(
p∗−p
p∗−r

)
||un||p + o(1)

≥
(
p∗−p
p∗−r

) {
η

[(
1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p

]−1
} p

r

+ o(1)

> 0,

(50)

for n large enough.
Due to (14) of Theorem 2.1 we have N+

f ⊂ W+. Consider the functional Ff defined in (19). Hence,
from (49) and (50), we get

Ff (un) =
(
p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

[
||un||p(p∗−p)+p

( p−r
p∗−r )||un||p+o(1)

] 1
p∗−p

−
(
p∗−p
p∗−r

)
||un||p + o(1)

=
(
p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

(
p−r
p∗−r

) −1
p∗−p ||un||p −

(
p∗−p
p∗−r

)
||un||p + o(1)

= o(1).

(51)

On the other hand, we have

Ff (un) ≥
(
p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

[
||un||p(p∗−p)+p

C
p∗
p ||un||p∗

] 1
p∗−p

− ||f ||Lp0 (Ω,|x|−β)C
r
p ||un||r

= ||un||r
[(

p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

C−
p∗

p(p∗−p) ||un||p−1−r − ||f ||Lp0 (Ω,|x|−β)C
r
p

]
.

(52)

Follows from (50) that

||un|| ≤
[(

p∗−r
p∗−p

)
||f ||Lp0 (Ω,|x|−β)C

r
p

] 1
p−r

+ o(1). (53)
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Then, substituting (39) and (53) in (52), we obtain

Ff (un) ≥ η
[(

1
r −

1
p∗

)
||f ||Lp0 (Ω,|x|−β)C

r
p

]−1

×{(
p∗−p
p−r

) (
p−r
p∗−r

)1+ 1
p∗−p

C−
p∗

p(p∗−p)

[(
p∗−r
p∗−p

)
||f ||Lp0 (Ω,|x|−β)C

r
p

] p−1−r
p−r

−||f ||Lp0 (Ω,|x|−β)C
r
p

}
+ o(1)

> 0,

(54)

because 0 < ||f ||Lp0 (Ω,|x|−β) < λ̄0 and n is large enough.
Since that (54) contradicts (51), we conclude that (48) is held. Then, by (47) and (48) follow that

||(ξ+n )′(0)||∗ ≤
M

c
·

Hence, follows from (46) that
〈I ′(un), u

||u|| 〉 ≤
M̃
n [Mc + 1],

so, we have
I ′(un) −→ 0 in (W 1,p

0 (Ω, |x|−ap))∗ as n −→∞.

Then, we conclude that {un} ⊂ N+
f is a bounded (PS)c+f −sequence with c+f < 0.

Proof of Lemma 3.2. Let us consider u ∈ N+
f . In particular, we have

||u||p −
∫

Ω

|x|−ep
∗
up

∗

+ dx−
∫

Ω

|x|−βf ur+dx = Ψf (u) = 0. (55)

We define the functional Hu : R+ ×W 1,p
0 (Ω, |x|−ap) → R given by

Hu(t, w) := 〈I ′(t(u− w)), t(u− w)〉

= tp||u− w||p − tp
∗
∫

Ω

|x|−ep
∗
(u− w)p

∗

+ dx− tr
∫

Ω

|x|−βf (u− w)r+dx.

We observe that

∂Hu

∂t
(t, w) = p tp−1||u− w||p − p∗tp

∗−1

∫
Ω

|x|−ep
∗
(u− w)p

∗

+ dx− r tr−1

∫
Ω

|x|−βf (u− w)r+dx (56)

and 〈
∂Hu

∂w
(t, w), v

〉
= −p tp

∫
Ω

|x|−ap|∇(u− w)|p−2∇(u− w)∇vdx

+p∗tp
∗
∫

Ω

|x|−ep
∗
(u− w)p

∗−1
+ vdx+ r tr

∫
Ω

|x|−βf (u− w)r−1
+ vdx.

(57)

In particular, we have Hu(1, 0) = Ψf (u) = 0 and

∂Hu

∂t
(1, 0) = p ||u||p − p∗

∫
Ω

|x|−ep
∗
up

∗

+ dx− r

∫
Ω

|x|−βf ur+dx

= 〈Ψ′
f (u), u〉

> 0,

because u ∈ N+
f .

Hence, by implicit function theorem, there exists ε > 0 and a differentiable function ξ+ : B(0, ε) ⊂
W 1,p

0 (Ω, |x|−ap) → R+ satisfying ξ+(0) = 1,

Hu(ξ+(w), w) = 0 for all w ∈ B(0, ε), (58)

and 〈
(ξ+)′(w), v

〉
= −

〈
∂Hu

∂w (ξ+(w), w), v
〉

∂Hu

∂t (ξ+(w), w)
, (59)
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for all w ∈ B(0, ε) and v ∈W 1,p
0 (Ω, |x|−ap).

By definition of Hu and (58), we get

〈I ′(ξ+(w)(u− w)), ξ+(w)(u− w)〉 = 0,

that is, ξ+(w)(u− w) ∈ Nf for all w ∈ B(0, ε).
Since that ∂Hu

∂t (1, 0) > 0 and the functions Ψ′
f and ξ+ are continuous, replacing ε > 0 by other smaller

one, if necessary, we have〈
Ψ′
f (ξ

+(w)(u− w)), ξ+(w)(u− w)
〉

= ξ+(w)
∂Hu

∂t
(ξ+(w), w) > 0,

so, we conclude that ξ+(w)(u−w) ∈ N+
f for all w ∈ B(0, ε). Moreover, substituting (56) and (57) in (59)

and by using (55), we obtain (40).

Theorem 3.3 Consider (HΩ), (Hexp), and a ≥ 0 satisfied.
i) Suppose R0 and c0 positive constants with B(0, 3R0) ⊂ Ω as in Theorem 1.2 and max{1, p−1} < r < p.
Then, there exists Λ1 > 0 such that, for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R0),
(Hf ), and 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1, there exists {un} ⊂W 1,p

0 (Ω, |x|−ap) a bounded Palais Smale sequence
for functional I at the level cf with

0 < cf <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p ,

uniformly in f and un ≥ 0 a.e. in Ω for all n ∈ N.
ii) Suppose that r = p and (7) are satisfied. Then, there exists λ0 > 0 such that, for each f ∈ Lp0(Ω, |x|−β)
satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R), infB(0,2R) f > 0 for some R > 0, with B(0, 3R) ⊂ Ω, and
0 < ||f ||Lp0 (Ω,|x|−β) < λ0, there exists {un} ⊂ W 1,p

0 (Ω, |x|−ap) a bounded Palais Smale sequence for
functional I at the level cf with

0 < cf <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p

and un ≥ 0 a.e. in Ω for all n ∈ N.
iii) Suppose that r > p and (8) are satisfied. Then, for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e.
x ∈ B(0, 3R), infB(0,2R) f > 0 for some R > 0, with B(0, 3R) ⊂ Ω, there exists {un} ⊂ W 1,p

0 (Ω, |x|−ap)
a bounded Palais Smale sequence for functional I at the level cf with

0 < cf <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p

and un ≥ 0 a.e. in Ω for all n ∈ N.

Proof. We will make the proof in two steps. In the first step, we will verify the geometric conditions
of the mountain pass theorem without the Palais Smale condition. In the second step, we will apply the
mountain pass theorem without the Palais Smale condition for obtain the Palais Smale sequence.

Step 1. Firstly, we will verify the geometric conditions of the mountain pass theorem without the
Palais Smale condition for (i), (ii), and (iii), that is, there exist σ, δ > 0 such that

I(u) ≥ σ > 0 for all u ∈W 1,p
0 (Ω, |x|−ap) with ||u|| = δ, (60)

and
I(tu) −→ −∞ as t −→ +∞ for all u ∈W+. (61)

We notice I(0) = 0. We obtain by Hölder’s inequality and Caffarelli, Kohn, and Nirenberg’s inequality
that

I(tu) ≤ tp

p ||u||
p − tp

∗

p∗

∫
Ω

|x|−ep∗up
∗

+ dx+ tr

r ||f ||Lp0 (Ω,|x|−β)C
r
p ||u||r −→ −∞ as t −→∞, (62)

for all u ∈W+, and

I(u) ≥ 1
p ||u||

p − 1
p∗C

p∗
p ||u||p∗ − 1

r ||f ||Lp0 (Ω,|x|−β)C
r
p ||u||r, (63)
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for all u ∈W 1,p
0 (Ω, |x|−ap).

Supposing max{1, p− 1} < r < p, we define H : (0,+∞) −→ R given by

H(s) =
(

1
p∗C

p∗
p

)
sp

∗−p +
(

1
rC

r
p ||f ||Lp0 (Ω,|x|−β)

)
sr−p,

which the unique minimum point is

s0 =
[(

p−r
p∗−p

) (
1
p∗C

p∗
p

)−1 (
1
rC

r
p ||f ||Lp0 (Ω,|x|−β)

)] 1
p∗−r

.

Thus, if Λ1 is given by

Λ1 =

{
1
p

(
p−r
p∗−p

) p−r
p∗−r

(
p∗−r
p∗−p

)−1 (
1
p∗C

p∗
p

)− p−r
p∗−r

(
1
rC

r
p

)− p∗−p
p∗−r

} p∗−r
p∗−p

,

we find that

1
p −H(s0) = 1

p −
(
p−r
p∗−p

) r−p
p∗−r

(
p∗−r
p∗−p

) (
1
p∗C

p∗
p

) p−r
p∗−r

(
1
rC

r
p ||f ||Lp0 (Ω,|x|−β)

) p∗−p
p∗−r

> 0, (64)

for each f ∈ Lp0(Ω, |x|−β) with 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1. Hence, from (63) and (64), we get

I(u) ≥ sp0

(
1
p −H(s0)

)
> 0 if ||u|| = s0.

Also, we infer by (62) that

I(tu) ≤ tp

p ||u||
p − tp

∗

p∗

∫
Ω

|x|−ep∗up
∗

+ dx+ tr

r Λ1C
r
p ||u||r −→ −∞ as t −→∞, (65)

uniformly in f ∈ Lp0(Ω, |x|−β) with 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1.
Now, considering r = p we get of (63) that

I(u) ≥
(

1
p −

1
p ||f ||Lp0 (Ω,|x|−β)C

)
||u||p − 1

p∗C
p∗
p ||u||p∗ .

Then, for each f ∈ Lp0(Ω, |x|−β) with 0 < ||f ||Lp0 (Ω,|x|−β) < λ0 := C−1, there exist σ, δ ∈ (0, 1) satisfying

I(u) ≥ σ if ||u|| = δ.

Assume that p < r < p∗. Then, from (63) we see that there exist σ, δ ∈ (0, 1) satisfying

I(u) ≥ σ if ||u|| = δ,

for each f ∈ Lp0(Ω, |x|−β).
Step 2. We will apply the mountain pass theorem without the Palais Smale condition to obtain the

Palais Smale sequence.
Before applying the mountain pass theorem we will need the following lemma that will be proven

below.

Lemma 3.3 For each one of the cases (i), (ii), and (iii), there exist a function uε from Lemma 2.1 and
ε > 0 satisfying

sup
t≥0

I(tuε) <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p . (66)

Moreover, in the case (i), the inequality (66) is uniform in f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e.
x ∈ B(0, 3R0) and (Hf ).

For each one of the cases (i), (ii), and (iii), we take uε and ε > 0 as in Lemma 3.3. Also, by (62) there
exists a real t̃ > 0 such that I(t̃uε) < 0. Moreover, in the case (i), due to (65) we see that t̃ not depends
of f ∈ Lp0(Ω, |x|−β) with 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1.
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Applying the mountain pass theorem without the Palais Smale condition we get a (PS)cf
-sequence

{un} in W 1,p
0 (Ω, |x|−ap), where

0 < cf = inf
γ∈Γ

max
0≤t≤1

I(γ(t)) (67)

and
Γ =

{
γ ∈ C([0, 1],W 1,p

0 (Ω, |x|−ap)) : γ(0) = 0 and γ(1) = t̃uε

}
·

It is apparent that the previous lemma implicates

0 < cf <
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p . (68)

Moreover, in the case (i), we have that the inequality (68) is uniform in f ∈ Lp0(Ω, |x|−β) satisfying
f(x) ≥ 0 for a.e. x ∈ B(0, 3R0), (Hf ), and 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1.

From Lemma 3.1, we can suppose that {un} is bounded in W 1,p
0 (Ω, |x|−ap) and un ≥ 0 a.e. in Ω for

all n ∈ N.

Proof of Lemma 3.3. Case (i). We fix in Lemma 2.1 the constants R1 = R0 and c1 = c0. Due to
(60) and (61) , we have for each ε > 0 a real tε > 0 such that

0 < σ ≤ sup
t≥0

I(tuε) = I(tεuε). (69)

Moreover, if we suppose by contradiction that there exists a subsequence {tεn} such that tεn → 0 as
εn → 0, we obtain by using Lemma 2.1 that

0 < σ
≤ I(tεnuεn)
≤ tpεn

p ||uεn ||
p

≤ tpεn

p [S̃a,p,R +O(ε
N−dp

dp
n )] −→ 0,

as εn → 0, which is an absurd. Then, we have l > 0 with tε ≥ l for all ε > 0. Consequently, by using
Lemma 2.1 and (69), we get

sup
t≥0

I(tuε) = tpε
p ||uε||

p − tp
∗

ε

p∗

∫
Ω

|x|−ep∗up∗ε dx−
trε
r

∫
Ω

|x|−βfurεdx

≤ tpε
p ||uε||

p − tp
∗

ε

p∗ − lr

r

∫
Ω

|x|−βfurεdx.
(70)

Notice that
t1ε

= ||uε||
p

p∗−p

is the unique maximum point of hε : (0,+∞) → R given by

hε(t) = tp

p ||uε||
p − tp

∗

p∗ ·

Moreover,

hε(t1ε
) =

(
1
p −

1
p∗

)
(||uε||p)

p∗
p∗−p . (71)

The following inequality is well known

(A+B)k ≤ Ak + k(A+B)k−1B, (72)

for all A,B ≥ 0 and k ≥ 1.
Substituting (71) in (70), from Lemma 2.1 and (72), we obtain

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

)
(||uε||p)

p∗
p∗−p − lr

r

∫
Ω

|x|−βf urεdx

≤
(

1
p −

1
p∗

) [
S̃a,p,R +O

(
ε

N−dp
dp

)] p∗
p∗−p − lr

r

∫
Ω

|x|−βf urεdx

≤
(

1
p −

1
p∗

) (
S̃a,p,R

) p∗
p∗−p

+O
(
ε

N−dp
dp

)
− lr

r

∫
Ω

|x|−βf urεdx.

(73)

17



Hence, by combining (11), (12), and (73), we find

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
S̃a,p

) p∗
p∗−p

+O
(
ε

N−dp
dp

)
− lr

r

∫
Ω

|x|−βf urεdx

≤
(

1
p −

1
p∗

) (
C∗ap

) p∗
p∗−p +O

(
ε

N−dp
dp

)
− lr

r

∫
Ω

|x|−βf urεdx.
(74)

We observe that
(N−dp)r
dp2 < N−dp

dp · (75)

Suppose r < (N−β)(p−1)
N−p−ap · The inequalities (74) and (75), and Lemma 2.1 implicate

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p +O

(
ε

N−dp
dp

)
−O

(
ε

(N−dp)r

dp2

)
≤ η

<
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p ,

uniformly in f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R0) and (Hf ), for some η > 0 and
ε > 0 small enough.

Let r = (N−β)(p−1)
N−p−ap , by inequalities (74) and (75), and Lemma 2.1 follow that

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p +O

(
ε

N−dp
dp

)
−O

(
ε

(N−dp)r

dp2 | ln(ε)|
)

≤ η

<
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p ,

uniformly in f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R0) and (Hf ), for some η > 0 and
ε > 0 small enough.

If r > (N−β)(p−1)
N−p−ap , then

(N−β)(p−1)(N−dp)
dp(N−p−ap) < (N−dp)r

dp · (76)

Hence, by inequalities (74), (75), and (76), and Lemma 2.1, we have

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p +O

(
ε

N−dp
dp

)
−O

(
ε

(N−dp)(N−β)(p−1)
dp(N−p−ap) − (N−dp)r

dp +
(N−dp)r

dp2

)
≤ η

<
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p ,

uniformly in f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R0) and (Hf ), for some η > 0 and
ε > 0 small enough.

Case (ii). Consider f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R), infB(0,2R) f > 0
for some R > 0, with B(0, 3R) ⊂ Ω, and 0 < ||f ||Lp0 (Ω,|x|−β) < λ0. We fix in Lemma 2.1 the constant
R1 = R. Arguing as in the previous case we obtain

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗ap

) p∗
p∗−p +O

(
ε

N−dp
dp

)
− lr

r

∫
Ω

|x|−βf urεdx. (77)

By inequality in (7) and r = p we obtain

r = p ≥ (N−β)(p−1)
N−p−ap ·

Supposing
r = p = (N−β)(p−1)

N−p−ap ,

we get from (77) and Lemma 2.1 that there exists ε > 0 small enough such that

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p +O

(
ε

N−dp
dp

)
−O

(
ε

N−dp
dp | ln(ε)|

)
<

(
1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p ·
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If we have
r = p > (N−β)(p−1)

N−p−ap , (78)

then
(N−β)(p−1)(N−dp)

dp(N−p−ap) < N−dp
d · (79)

Hence, by using (78), (79), and Lemma 2.1, we achieve ε > 0 small enough such that

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p +O

(
ε

N−dp
dp

)
−O

(
ε

(N−dp)(N−β)(p−1)
dp(N−p−ap) −N−dp

d + N−dp
dp

)
<

(
1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p .

Case (iii). In this case, we consider f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R) and
infB(0,2R) f > 0 for some R > 0, with B(0, 3R) ⊂ Ω. We fix in Lemma 2.1 the constant R1 = R. Also,
similar to the case (i), we obtain

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗ap

) p∗
p∗−p +O

(
ε

N−dp
dp

)
− lr

r

∫
Ω

|x|−βf urεdx. (80)

Moreover, we have by r > p and inequality (8) that

r > (N−β)(p−1)
N−p−ap and (N−dp)(p−1)[(N−β)p−(N−p−ap)r]

dp2(N−p−ap) < N−dp
dp . (81)

Hence, by using (80), (81), and Lemma 2.1, we find ε > 0 small enough such that

sup
t≥0

I(tuε) ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p +O

(
ε

N−dp
dp

)
−O

(
ε

(N−dp)(p−1)[(N−β)p−(N−p−ap)r]
dp2(N−p−ap)

)
<

(
1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p ·

4 Proof of Theorem 1.1

Let λ0 be

λ0 = min
{
λ̄0,

(
1
p −

1
p∗

) (
1
r −

1
p

) r−p
p

(
1
r −

1
p∗

)−r
p

C
−r
p

(
C∗a,p

) p∗(p−r)
p(p∗−p)

}
,

where λ̄0 is originating from Theorem 3.2. We have by Theorem 3.2 that if f ∈ Lp0(Ω, |x|−β) satisfies
f(x) ≥ 0 for a.e. x ∈ Ω′ and f 6≡ 0 in Ω′, for some Ω′ ⊂ Ω with |Ω′| > 0, and 0 < ||f ||Lp0 (Ω,|x|−β) < λ0,

then, there exists {un} ⊂ N+
f a bounded Palais Smale sequence for functional I at the level c+f < 0. In

particular, there exists u ∈W 1,p
0 (Ω, |x|−ap) such that un ⇀ u weakly in W 1,p

0 (Ω, |x|−ap) as n→∞. Thus,
from compact embedding theorem (see [18, Theorem 2.1]), Lebesgue’s dominated convergence theorem,
and (38), we get

lim
n→∞

∫
Ω

|x|−βf urn+
dx =

∫
Ω

|x|−βf ur+dx

≤ ||f ||Lp0 (Ω,|x|−β)C
r
p ||u||r

≤
[(

1
p −

1
p∗

)−1 (
1
r −

1
p∗

)] r
p−r

C
r

p−r ||f ||
p

p−r

Lp0 (Ω,|x|−β)
.

(82)

Then, as 0 < ||f ||Lp0 (Ω,|x|−β) < λ0, we obtain of (82) that

c+f < 0 ≤
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p −

(
1
r −

1
p

)
lim
n→∞

∫
Ω

|x|−βf urn+
dx.

Due to Lemma 3.1 we can suppose un ≥ 0 a.e. in Ω for all n ∈ N. Hence, by applying Theorem 3.1, we
get

un −→ u strongly in W 1,p
0 (Ω, |x|−ap) as n −→∞.

In particular, un(x) → u(x) ≥ 0 as n→∞ for a.e. x ∈ Ω.
Consequently, we have

I(u) = lim
n→∞

I(un) = c+f < 0 and I ′(u) = lim
n→∞

I ′(un) = 0 in (W 1,p
0 (Ω, |x|−ap))∗,

that is, u is a nonnegative nontrivial weak solutions of problem (1).
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5 Proof of Theorem 1.2

We have by Theorem 3.3 (i) that there exists Λ1 > 0 such that, for each f ∈ Lp0(Ω, |x|−β) satisfying
f(x) ≥ 0 for a.e. x ∈ B(0, 3R0), (Hf ), and 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1, there exists {wn} ⊂W 1,p

0 (Ω, |x|−ap)
a bounded Palais Smale sequence for functional I at the level cf with

0 < cf <
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p , (83)

uniformly in f and wn ≥ 0 a.e. in Ω for all n ∈ N.
Hence, from boundedness of {wn} in W 1,p

0 (Ω, |x|−ap), there exists w ∈ W 1,p
0 (Ω, |x|−ap) such that

wn ⇀ w weakly in W 1,p
0 (Ω, |x|−ap) as n → ∞. Thus, from compact embedding theorem ([18, Theorem

2.1]) and Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∫
Ω

|x|−βf wrndx =
∫

Ω

|x|−βf wrdx ≤ ||f ||Lp0 (Ω,|x|−β)C
r
p ||w||r. (84)

Since that the inequality (83) is uniform in f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈
B(0, 3R0), (Hf ), and 0 < ||f ||Lp0 (Ω,|x|−β) < Λ1, and by using (84), there exists λ0 ∈ (0,Λ1) such that

0 < cf <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p −

(
1
r −

1
p

)
lim
n→∞

∫
Ω

|x|−βf wrndx,

for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R0), (Hf ), and 0 < ||f ||Lp0 (Ω,|x|−β) < λ0.

Then, by Theorem 3.1, we obtain that wn → w strongly in W 1,p
0 (Ω, |x|−ap) as n → ∞. In particular,

wn(x) → w(x) ≥ 0 as n→∞ for a.e. x ∈ Ω. Moreover, we have

I(w) = lim
n→∞

I(wn) = cf > 0 and I ′(w) = lim
n→∞

I ′(wn) = 0 in (W 1,p
0 (Ω, |x|−ap))∗,

that is, w is a nonnegative nontrivial weak solution of problem (1).
Next, by applying Theorem 1.1 and replacing λ0 by other smaller, if necessary, we obtain u ∈

W 1,p
0 (Ω, |x|−ap) a nonnegative nontrivial weak solution of problem (1) with I(u) = c+f < 0.
Hence, since that

I(u) < 0 < I(w),

we conclude that u and w are distincts.

6 Proof of Theorem 1.3

Applying Theorem 3.3 (ii) there exists λ0 > 0 such that, for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0
for a.e. x ∈ B(0, 3R), infB(0,2R) f > 0 for some R > 0, with B(0, 3R) ⊂ Ω, and 0 < ||f ||Lp0 (Ω,|x|−β) < λ0,

there exists {un} ⊂W 1,p
0 (Ω, |x|−ap) a bounded Palais Smale sequence for functional I at the level cf with

0 < cf <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p , (85)

and un ≥ 0 a.e. in Ω for all n ∈ N. From boundedness of {un}, we have u ∈W 1,p
0 (Ω, |x|−ap) with un ⇀ u

weakly in W 1,p
0 (Ω, |x|−ap) as n → ∞. Then, as r = p, by Theorem 3.1 follows that un → u strongly in

W 1,p
0 (Ω, |x|−ap) as n→∞. Hence, we obtain

I(u) = lim
n→∞

I(un) = cf > 0 and I ′(u) = lim
n→∞

I ′(un) = 0 in (W 1,p
0 (Ω, |x|−ap))∗,

that is, u is a nonnegative nontrivial weak solution of problem (1).

7 Proof of Theorem 1.4

Follows of Theorem 3.3 (iii) that, for each f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ 0 for a.e. x ∈ B(0, 3R)
and infB(0,2R) f > 0 for some R > 0, with B(0, 3R) ⊂ Ω, there exists {un} ⊂W 1,p

0 (Ω, |x|−ap) a bounded
Palais Smale sequence for functional I at the level cf with

0 < cf <
(

1
p −

1
p∗

)
(C∗a,p)

p∗
p∗−p ,
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and un ≥ 0 a.e. in Ω for all n ∈ N. Since that {un} is bounded in W 1,p
0 (Ω, |x|−ap) we have

u ∈ W 1,p
0 (Ω, |x|−ap) with un ⇀ u weakly in W 1,p

0 (Ω, |x|−ap) as n → ∞. Then, from Theorem 3.1 we
get that u is a nonnegative weak solution of problem (1).

We will conclude the proof of this theorem proving that the weak solution u is nontrivial. Suppose,
by contradiction, that u(x) = 0 for a.e. x ∈ Ω. We have by compact embedding theorem ([18, Theorem
2.1]) and Lebesgue’s dominated convergence theorem that

lim
n→∞

∫
Ω

|x|−βf upndx = 0.

Then, we obtain

0 = lim
n→∞

〈I ′(un), un〉 = lim
n→∞

(
||un||p −

∫
Ω

|x|−ep
∗
up

∗

n dx

)
.

Thus, we can take l ≥ 0 such that

l = lim
n→∞

||un||p = lim
n→∞

∫
Ω

|x|−ep
∗
up

∗

n dx.

Therefore, we obtain
cf = lim

n→∞
I(un) = ( 1

p −
1
p∗ )l ≥ 0. (86)

If l = 0, then cf = 0, which is an absurd. Thus, we can suppose that l > 0, and by definition of C∗a,p
we have (∫

Ω

|x|−ep
∗
up

∗

n dx

) p
p∗

C∗a,p ≤ ||un||p, ∀n.

Hence, taking the limit in the above inequality we get

(l)
p

p∗ C∗a,p ≤ l,

then
l ≥

(
C∗a,p

) p∗
p∗−p . (87)

We obtain substituting the equation (87) in (86) that

cf ≥
(

1
p −

1
p∗

) (
C∗a,p

) p∗
p∗−p ,

that contradicts the equation (85), therefore, we conclude that u 6≡ 0.

8 Proof of Theorem 1.5

Due to (9) we can consider β = (a+ 1)p− c with

c > (a+ 1)p−min
{

(a+ 1)p, ep∗, (a+ 1)p1 +N(1− p1
p )

}
> 0 ·

Applying Theorem 2.3 of [12], we have λ1 = λ1(Ω) > 0 and φ1 = φ1Ω the eigenvalue and eigenfunction,
respectively, of problem{

−div
(
|x|−ap|∇w|p−2∇w

)
= τ |x|−β |w|p−2w in Ω,

w = 0 on ∂Ω, (88)

where φ1 ∈W 1,p
0 (Ω, |x|−ap)∩C0(Ω)∩C1(Ω\{0}) and φ1 > 0 in Ω. Moreover, by Theorem 4.4 of [17], we

have that λ1 is isolated, that is, there exists ε > 0 such that problem (1) does not possess any nonnegative
nontrivial weak solution for each τ ∈ (λ1, λ1 + ε).

Suppose, by contradiction, that u ∈W 1,p
0 (Ω, |x|−ap)∩C0(Ω)∩C1(Ω\{0}) is a nonnegative nontrivial

weak solution of problem (1) for some f ∈ Lp0(Ω, |x|−β) satisfying f(x) ≥ λ0 for a.e. x ∈ Ω with λ0

given by

λ0 := max

(λ1 + 1),
[
(λ1 + 1)−1

(
p∗−r
p∗−p

) (
p−r
p∗−p

)− p−r
p∗−r

R
(p−r)(β−ep∗)

p∗−r

0

]− p∗−r
p∗−p

 ,
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where R0 > 0 is such that |x| ≤ R0 for all x ∈ Ω.
From strong maximum principle theorem (see [12, Theorem 2.1]) we get that u > 0 in Ω. Moreover,

arguing as in Theorem 2.2 of [12], we obtain ∂u
∂ν < 0 on ∂Ω, where ν : ∂Ω → RN is the outer unity normal

vector to ∂Ω. Thus, there exists δ > 0 such that

δφ1 ≤ u in Ω.

Consider Ψ = δφ1 and µ ∈ (λ1, λ1 + ε). Then, for all ϕ ∈W 1,p
0 (Ω, |x|−ap) with ϕ ≥ 0, we achieve∫

Ω

|x|−ap|∇Ψ|p−2∇Ψ∇ϕdx = λ1

∫
Ω

|x|−βΨp−1ϕdx

≤ µ

∫
Ω

|x|−βΨp−1ϕdx,

that is, Ψ is a lower-solution of problem (88) with τ = µ.
Supposing the case r = p, for all ϕ ∈W 1,p

0 (Ω, |x|−ap) with ϕ ≥ 0, we can see easily that∫
Ω

|x|−ap|∇u|p−2∇u∇ϕdx =
∫

Ω

|x|−ep∗up∗−1ϕdx+
∫

Ω

|x|−βf(x)up−1ϕdx

≥ λ0

∫
Ω

|x|−βup−1ϕdx

≥ µ

∫
Ω

|x|−βup−1ϕdx,

that is, u is a upper-solution of problem (88) with τ = µ.
In the case max{1, p−1} < r < p, we define for each x ∈ Ωf := {x ∈ Ω\{0} : f(x) ≥ λ0} the function

gx : (0,+∞) → R given by
gx(t) = f(x) tr−p + |x|β−ep

∗
tp

∗−p,

whose the unique minimum point is

t0x =
[

(p−r)f(x)
(p∗−p)|x|β−ep∗

] 1
p∗−r

.

Moreover, we have

gx(t0x) ≥
(
p∗−r
p∗−p

) (
p−r
p∗−p

)( r−p
p∗−r )

(f(x))
(

p∗−p
p∗−r

)
|x|

(p−r)(β−ep∗)
p∗−r .

Then, as f(x) ≥ λ0 for all x ∈ Ωf , we find that

f(x) tr−p + |x|β−ep
∗
tp

∗−p ≥ gx(t0x
) ≥ (λ1 + 1), ∀t > 0, ∀x ∈ Ωf .

Thus, as Ω \ Ωf has Lebesgue’s measure null and u > 0 in Ω, follow that∫
Ω

|x|−ap|∇u|p−2∇u∇ϕdx =
∫

Ω

|x|−β
(
f(x)ur−p + |x|β−ep∗up∗−p

)
up−1ϕdx

≥ (λ1 + 1)
∫

Ω

|x|−βup−1ϕdx

≥ µ

∫
Ω

|x|−βup−1ϕdx,

that is, u is a upper-solution of problem (88) with τ = µ.
Hence, for max{1, p− 1} < r ≤ p, we have that Ψ and u are lower and upper-solution of problem (88)

with τ = µ, respectively. Then, the lower and upper-solution theorem (see [4, Theorem 1.1]) implicates
that problem (88) possesses a positive solution with τ = µ ∈ (λ1, λ1 + ε), which is an absurd.
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