Orthogonal Developments on Compact Symmetric Homogeneous Manifolds of Rank 1

A. Kushpel ${ }^{\text {a* }}$

${ }^{\text {a }}$ Department of Mathematics, Institute of Mathematics, Statistics and Scientific Computations, State University of Campinas,
DM-IMECC-UNICAMP, CXP 6065, 13081-970, Campinas, SP, Brazil

Abstract

Sharp asymptotics of the norms of Fourier projections on compact homogeneous manifolds \mathbb{M}^{d} of rank 1, i.e., on $\mathbb{S}^{d}, \mathrm{P}^{d}(\mathbb{R}), \mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H}), \mathrm{P}^{16}(\mathrm{Cay})$ are established. These results extend sharp asymptotic estimates found by Fejer [5] in the case of \mathbb{S} in 1910 and then by Gronwall [7] in 1914 in the case of \mathbb{S}^{2}. MSC: 41A60, 41A10, 41A35

Keywords: Fourier-Laplace projection, uniform convergence, polynomial, sphere

1. INTRODUCTION

Let \mathbb{M}^{d} be a compact globally symmetric space of rank 1 (two-point homogeneous space), ν its normalized volume element, Δ its Laplace-Beltrami operator. It is wellknown that the eigenvalues $\theta_{k}, k \geq 0$ of Δ are discrete, nonnegative and form an increasing sequence $0 \leq \theta_{0} \leq \theta_{1} \leq \cdots \leq \theta_{k} \leq \cdots$ with $+\infty$ the only accumulation point. Corresponding eigenspaces $\mathrm{H}_{k}, k \geq 0$ are finite dimensional, $d_{k}=\operatorname{dimH}_{k}<\infty, k \geq 0$, orthogonal and $L_{2}\left(\mathbb{M}^{d}, \nu\right)=\oplus_{k=0}^{\infty} \mathrm{H}_{k}$. Let $\left\{Y_{j}^{k}\right\}_{j=1}^{d_{k}}$ be an orthonormal basis of H_{k}. Assume that $\phi \in L_{\infty}\left(\mathbb{M}^{d}\right)$ with the formal Fourier expansion
$\phi \sim c_{0,0}+\sum_{k=1}^{\infty} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}, \quad c_{k, j}(\phi)=\int_{\mathbb{M}^{d}} \phi \overline{Y_{j}^{k}} d \nu$.
Consider the sequence of Fourier sums
$S_{n}(\phi, x)=c_{0,0}+\sum_{k=1}^{n} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}(x)$.
The main aim of this article is to answer a fundamental question: "What is the sharp asymptotic behavior of the norms $\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}$ as $n \rightarrow \infty$?". Observe that this question is closely connected with the problem of uniform convergence of Fourier series on \mathbb{M}^{d}. Indeed, let
$E_{n}(\phi)=\inf \left\{\left\|\phi-t_{n}\right\|_{L_{\infty}\left(M^{d}\right)} \mid t_{n} \in \mathcal{T}_{n}\right\}$
*Supported in part by FAPESP/Brazil, Grant 2007/56162-8.
be the best approximation of a function $\phi \in L_{\infty}\left(\mathbb{M}^{d}\right)$ by the subspace \mathcal{T}_{n} of polynomials of order $\leq n, \mathcal{T}_{n}=\oplus_{k=0}^{n} \mathrm{H}_{k}$. Then, by the Lebesgue inequality [11] we get
$\left\|\phi-S_{n}(\phi, x)\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right)} \leq\left(1+\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}\right) E_{n}(\phi)$,
where $\left\|S_{n}\right\|_{L_{\infty}\left(M^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}=\sup \left\{\left\|S_{n}(\phi)\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right)} \mid \phi \in L_{\infty}\left(\mathbb{M}^{d}\right)\right.$. It means that $S_{n}(\phi, x)$ converges uniformly to ϕ if
$\lim _{n \rightarrow \infty} \frac{E_{n}(\phi)}{\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}}=0$.
In the case of the circle, \mathbb{S}^{1}, the following result has been found by Fejer in 1910 [5],
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{S}^{1}\right) \rightarrow L_{\infty}\left(\mathbb{S}^{1}\right)}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left|D_{n}(t)\right| t=\frac{4}{\pi^{2}} \ln n+O(1), n \rightarrow \infty$.
where D_{n} is the Dirichlet kernel,
$D_{n}(t)=\frac{1}{2}+\sum_{k=1}^{n} \cos k t$.
In the case of \mathbb{S}^{2}, the two-dimensional unit sphere in \mathbb{R}^{3}, the estimates of $\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right) \rightarrow L_{\infty}\left(\mathbb{S}^{2}\right)}$ as $n \rightarrow \infty$, have been established by Gronwall [7]. Namely, it was shown that
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right) \rightarrow L_{\infty}\left(\mathbb{S}^{2}\right)}=n^{1 / 2} \frac{2}{\pi^{3 / 2}} \int_{0}^{\pi} \sqrt{\cot \left(\frac{\theta}{2}\right)} d \theta+O(1)$,
$=n^{1 / 2} 2^{3 / 2} \pi^{-1 / 2}+O(1), n \rightarrow \infty$.
Using a similar method, Ragozin [13] found a sharp order estimates in the cases of \mathbb{S}^{d}, $d \geq 3$, the real, complex and quaternionic projective spaces, i.e., $\mathrm{P}^{d}(\mathbb{R}), \mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H})$ respectively. Namely, it was shown that for any $n \in \mathbb{N}$ there exist such positive constants C_{1} and C_{2} that
$C_{1} n^{(d-1) / 2} \leq\left\|S_{n}\right\|_{\infty\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)} \leq C_{2} n^{(d-1) / 2}$,
where \mathbb{M}^{d} is one of the mention above manifolds.

2. Harmonic Analysis on Compact Symmetric Manifolds of Rank 1

We shall be interested here in compact globally symmetric spaces of rank 1 (two-point homogeneous spaces). Such manifolds of dimension d will be denoted by \mathbb{M}^{d}. Each \mathbb{M}^{d} can be considered as the orbit space of some compact subgroup \mathcal{H} of the orthogonal group \mathcal{G}, that is $\mathbb{M}^{d}=\mathcal{G} / \mathcal{H}$. Let $\pi: \mathcal{G} \rightarrow \mathcal{G} / \mathcal{H}$ be the natural mapping and \mathbf{e} be the identity of \mathcal{G}. The point $\mathbf{o}=\pi(\mathbf{e})$ which is invariant under all motions of \mathcal{H} is called the pole (or the north pole) of \mathbb{M}^{d}. On any such manifold there is an invariant Riemannian metric $d(\cdot, \cdot)$, and an invariant Haar measure $d \nu$. Two-point homogeneous spaces admit essentially only one invariant second order differential operator, the Laplace-Beltrami
operator Δ. A function $Z(\cdot): \mathbb{M}^{d} \rightarrow \mathbb{R}$ is called zonal if $Z\left(h^{-1} \cdot\right)=Z(\cdot)$ for any $h \in \mathcal{H}$. A complete classification of the two-point homogeneous spaces was given by Wang [16]. For information on this classification see, e.g., Cartan [3], Gangolli [6], and Helgason [8, 9]. The geometry of these spaces is in many respects similar. For example, all geodesics in a given one of these spaces are closed and have the same length $2 L$. Here L is the diameter of $\mathcal{G} / \mathcal{H}$, i.e., the maximum distance between any two points. A function on $\mathcal{G} / \mathcal{H}$ is invariant under the left action of \mathcal{H} on $\mathcal{G} / \mathcal{H}$ if and only if it depends only the distance of its argument from $\mathbf{o}=\mathbf{e} \mathcal{H}$. Since the distance of any point of $\mathcal{G} / \mathcal{H}$ from $\mathbf{e} \mathcal{H}$ is at most L, it follows that a \mathcal{H}-spherical function Z on \mathcal{G} can be identified with a function \tilde{Z} on $[0, L]$. Let θ be the distance of a point from $\mathbf{e} \mathcal{H}$. We may choose a geodesic polar coordinate system (θ, \mathbf{u}) where \mathbf{u} is an angular parameter. In this coordinate system the radial part Δ_{θ} of the Laplace-Beltrami operator Δ has the expression

$$
\Delta_{\theta}=(A(\theta))^{-1} \frac{d}{d \theta}\left(A(\theta) \frac{d}{d \theta}\right),
$$

where $A(\theta)$ is the area of the sphere of radius θ in $\mathcal{G} / \mathcal{H}$. It is interesting to remark that the function $A(\theta)$ can be computed in terms of the structure of the Lie algebras of \mathcal{G} and \mathcal{H} (see Helgason [9, p.251], [8, p.168] for the details). It can be shown that
$A(\theta)=\omega_{\sigma+\rho+1} \lambda^{-\sigma}(2 \lambda)^{-\rho}(\sin \lambda \theta)^{\sigma}(\sin 2 \lambda \theta)^{\rho}$,
where ω_{d} is the area of the unit sphere in \mathbb{R}^{d} and

$$
\begin{array}{r}
\mathbb{S}^{d}: \sigma=0, \rho=d-1, \lambda=\pi / 2 L, d=1,2,3, \ldots ; \\
\mathrm{P}^{d}(\mathbb{R}): \sigma=0, \rho=d-1, \lambda=\pi / 4 L, d=2,3,4, \ldots ; \\
\mathrm{P}^{d}(\mathbb{C}): \sigma=d-2, \rho=1, \lambda=\pi / 2 L, d=4,6,8, \ldots ; \tag{1}\\
\mathrm{P}^{d}(\mathbb{H}): \sigma=d-4, \rho=3, \lambda=\pi / 2 L, d=8,12, \ldots ; \\
\mathrm{P}^{16}(\mathrm{Cay}): \sigma=8, \rho=7, \lambda=\pi / 2 L .
\end{array}
$$

Now we can write the operator Δ_{θ} (up to some numerical constant) in the form

$$
\Delta_{\theta}=\frac{1}{(\sin \lambda \theta)^{\sigma}(\sin 2 \lambda \theta)^{\rho}} \frac{d}{d \theta}(\sin \lambda \theta)^{\sigma}(\sin 2 \lambda \theta)^{\rho} \frac{d}{d \theta} .
$$

Using a simple change of variables $t=\cos 2 \lambda \theta$, this operator takes the form (up to a positive multiple),
$\Delta_{t}=(1-t)^{-\alpha}(1+t)^{-\beta} \frac{d}{d t}(1-t)^{1+\alpha}(1+t)^{1+\beta} \frac{d}{d t}$,
where
$\alpha=\frac{\sigma+\rho-1}{2}, \quad \beta=\frac{\rho-1}{2}$.
We note that for all manifolds considered here
$\alpha=\frac{d-2}{2}$.

We will need the following statement Szegö [14, p.60]:
Proposition 2.1. The Jacobi polynomials $y=P_{k}^{(\alpha, \beta)}$ satisfy the following linear homogeneous differential equation of the second order:
$\left(1-t^{2}\right) y^{\prime \prime}+(\beta-\alpha-(\alpha+\beta+2) t) y^{\prime}+k(k+\alpha+\beta+1) y=0$,
or
$\frac{d}{d t}\left((1-t)^{\alpha+1}(1-t)^{\beta+1} y^{\prime}\right)+k(k+\alpha+\beta+1)(1-t)^{\alpha}(1+t)^{\beta} y=0$.
It follows from the above proposition that the eigenfunctions of the operator Δ_{t} which has been defined in (2) are well-known Jacobi polynomials $P_{k}^{(\alpha, \beta)}(t)$ and the corresponding eigenvalues are $\theta_{k}=-k(k+\alpha+\beta+1)$. In this way zonal \mathcal{H}-invariant functions on $\mathbb{M}^{d}=\mathcal{G} / \mathcal{H}$ can be easily identified in each of the five cases above since the elementary zonal functions are eigenfunctions of the Laplace-Beltrami operator. We shall call them $Z_{k}, k \in \mathbb{N}$, with $Z_{0} \equiv 1$. Let \tilde{Z}_{k} be the corresponding functions induced on $[0, L]$ by Z_{k}. Then
$\tilde{Z}_{k}(\theta)=C_{k}\left(\mathbb{M}^{d}\right) \mathrm{P}_{k}^{(\alpha, \beta)}(\cos 2 \lambda \theta)$,
where α and β has been specified above for all \mathbb{M}^{d} and $k=0,1,2, \cdots$, if $\mathbb{M}^{d}=\mathbb{S}^{d}$, $\mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H}), \mathrm{P}^{16}($ Cay $)$. If $\mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{R})$, then only the polynomials of even degree appear because, due to the identification of antipodal points on \mathbb{S}^{d}, only the even order polynomials $P_{k}^{(\alpha, \alpha)}, k=2 m$ can be lifted to be functions on $\mathrm{P}^{d}(\mathbb{R})$.

For example, in the case of \mathbb{S}^{d} we have $\sigma=0, \rho=d-1$ so $\alpha=\beta=(d-2) / 2$ and the polynomials $P_{k}^{(\alpha, \beta)}$ reduce to $P_{k}^{((d-2) / 2,(d-2) / 2)}$ which is a multiple of the Gegenbauer polynomial $P_{k}^{(d-1) / 2}$. A detailed treatment of the Jacobi polynomials can be found in Szegö [14]. We remark that the Jacobi polynomials $P_{k}^{(\alpha, \beta)}(t), \alpha>-1, \beta>-1$ are orthogonal with respect to $\omega^{\alpha, \beta}(t)=c^{-1}(1-t)^{\alpha}(1+t)^{\beta}$ on $(-1,1)$. The above constant c can be found using the normalization condition $\int_{\mathbb{M}^{d}} d \nu=1$ for the invariant measure $d \nu$ on \mathbb{M}^{d} and a well-known formula for the Euler integral of the first kind
$\mathrm{B}(p, q)=\int_{0}^{1} \xi^{p-1}(1-\xi)^{q-1} d \xi=\frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}, p>0, q>0$.
Applying (5) and a simple change of variables we get
$1=\int_{\mathbb{M}^{d}} d \nu=\int_{-1}^{1} \omega^{\alpha, \beta}(t) d t=c^{-1} \int_{-1}^{1}(1-t)^{\alpha}(1+t)^{\beta} d t$,
so that,
$c=\int_{-1}^{1}(1-t)^{\alpha}(1+t)^{\beta} d t=2^{\alpha+\beta+1} \frac{\Gamma(\alpha+1) \Gamma(\beta+1)}{\Gamma(\alpha+\beta+2)}$.
We normalize the Jacobi polynomials as follows:
$P_{k}^{(\alpha, \beta)}(1)=\frac{\Gamma(k+\alpha+1)}{\Gamma(\alpha+1) \Gamma(k+1)}$.

This way of normalization is coming from the definition of Jacoby polynomials using the generating function Szegö [14, p.69].

Let $L_{p}\left(\mathbb{M}^{d}\right)$ be the set of functions of finite norm given by $\|\varphi\|_{p}=\|\varphi\|_{L_{p}\left(\mathbb{M}^{d}\right)}= \begin{cases}\left(\int_{\mathbb{M}^{d}}|\varphi(x)|^{p} d \nu(x)\right)^{1 / p}, & 1 \leq p<\infty, \\ \operatorname{ess} \sup \left\{|\varphi(x)| \mid x \in \mathbb{M}^{d}\right\}, & p=\infty .\end{cases}$
Further, let $U_{p}=\left\{\varphi \mid \varphi \in L_{p}\left(\mathbb{M}^{d}\right),\|\varphi\|_{p} \leq 1\right\}$ be the unit ball of the space $L_{p}\left(\mathbb{M}^{d}\right)$. The Hilbert space $L_{2}\left(\mathbb{M}^{d}\right)$ with usual scalar product
$\langle f, g\rangle=\int_{\mathbb{M}^{d}} f(x) \overline{g(x)} d \nu(x)$
has the decomposition
$L_{2}\left(\mathbb{M}^{d}\right)=\bigoplus_{k=0}^{\infty} \mathrm{H}_{k}$,
where H_{k} is the eigenspace of the Laplace-Beltrami operator corresponding to the eigenvalue $\theta_{k}=-k(k+\alpha+\beta+1)$. Let $\left\{Y_{j}^{k}\right\}_{j=1}^{d_{k}}$ be an orthonormal basis of H_{k}. The following addition formula is known Koornwinder [10]
$\sum_{j=1}^{d_{k}} Y_{j}^{k}(x) \overline{Y_{j}^{k}(y)}=\tilde{Z}_{k}(\cos 2 \lambda \theta)$,
where $\theta=d(x, y)$ or comparing (7) with (4) we get

$$
\begin{equation*}
\sum_{j=1}^{d_{k}} Y_{j}^{k}(x) \overline{Y_{j}^{k}(y)}=\tilde{Z}_{k}(\cos \theta)=C_{k}\left(\mathbb{M}^{d}\right) P_{k}^{(\alpha, \beta)}(\cos 2 \lambda \theta) \tag{8}
\end{equation*}
$$

3. Sets of smooth functions and multiplier operators on \mathbb{M}^{d}

Using multiplier operators we can introduce a wide range of smooth functions on \mathbb{M}^{d}. Let $\varphi \in L_{p}\left(\mathbb{M}^{d}\right), 1 \leq p \leq \infty$, with the formal Fourier expansion

$$
\varphi \sim \sum_{k=0}^{\infty} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}, \quad c_{k, j}(\phi)=\int_{M^{d}} \phi \overline{Y_{j}^{k}} d \nu
$$

Let $\Lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a sequence of real (complex) numbers. If for any $\phi \in L_{p}\left(\mathbb{M}^{d}\right)$ there is a function $f(x):=\Lambda \phi(x) \in L_{q}\left(\mathbb{M}^{d}\right)$ such that
$f \sim \sum_{k=0}^{\infty} \lambda_{k} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}$,
then we shall say that the multiplier operator Λ is of (p, q)-type with norm $\|\Lambda\|_{p, q}:=$ $\sup _{\varphi \in U_{p}}\|\Lambda \varphi\|_{q}$. We shall say that the function f is in $\Lambda U_{p} \oplus \mathbb{R}$ if

$$
\Lambda \phi=f \sim c+\sum_{k=1}^{\infty} \lambda_{k} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}
$$

where $c \in \mathbb{R}$ and $\varphi \in U_{p}$. In particular, the γ-th fractional integral $(\gamma>0)$ of a function $\varphi \in L_{1}\left(\mathbb{M}^{d}\right)$ is defined by the sequence $\lambda_{k}=(k(k+\alpha+\beta+1))^{-\gamma / 2}$. Sobolev's classes $W_{p}^{\gamma}\left(\mathbb{M}^{d}\right)$ on \mathbb{M}^{d} are defined as sets of functions with formal Fourier expansions
$c+\sum_{k=1}^{\infty}(k(k+\alpha+\beta+1))^{-\gamma / 2} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}$,
where $c \in \mathbb{R}$ and $\|\phi\|_{p} \leq 1$. Let Z be a zonal integrable function on \mathbb{M}^{d}. For any integrable function g we can define convolution h on \mathbb{M}^{d} as the following
$h(\cdot)=(Z * g)(\cdot)=\int_{\mathbb{M}^{d}} Z(\cos (2 \lambda d(\cdot, x)) g(x) d \nu(x)$.
For the convolution on \mathbb{M}^{d} we have Young's inequality
$\|(z * g)\|_{q} \leq\|z\|_{p}\|g\|_{r}$,
where $1 / q=1 / p+1 / r-1$ and $1 \leq p, q, r \leq \infty$. It is possible to show that for any $\gamma>0$ the function
$G_{\gamma}=G_{\gamma, \eta} \sim \sum_{k=1}^{\infty}(k(k+\alpha+\beta+1))^{-\gamma / 2} Z_{k}^{\eta}$
with pole η is integrable on \mathbb{M}^{d} and for any function $g \in W_{p}^{\gamma}\left(\mathbb{M}^{d}\right)$ we have an integral representation
$g=C+G_{\gamma} * \phi$,
where $C \in \mathbb{R}$ and $\phi \in U_{p}$.

4. The Orthogonal Projection

The main result of this article is the following statement.
Theorem 1. Let $\mathbb{M}^{d}=\mathbb{S}^{d}, \mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H}), \mathrm{P}^{16}($ Cay $)$, then for the norms of orthogonal projections the following is true
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}=\mathcal{K} n^{(d-1) / 2}+O\left(n^{(d-3) / 2}\right), n \rightarrow \infty$,
where $d \geq 2$ and
$\mathcal{K}\left(\mathbb{M}^{d}\right)=\frac{4}{\pi^{3 / 2} \Gamma(d / 2)} \int_{0}^{\pi / 2}(\sin \eta)^{(d-3) / 2}(\cos \eta)^{\chi\left(\mathbb{M}^{d}\right)} d \eta$,
where
$\chi\left(\mathbb{M}^{d}\right)=\left\{\begin{array}{cc}(d-1) / 2, & \mathbb{M}^{d}=S \mathbb{S}^{d}, d=2,3,4, \cdots, \\ 1 / 2, & \mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{C}), d=4,6,8, \cdots, \\ 2, & \mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{H}), d=8,12,16, \cdots, \\ 7 / 2, & \mathbb{M}^{d}=\mathrm{P}^{16}(\text { Cay }) .\end{array}\right.$

If $\mathbb{M}^{d}=\mathrm{P}^{d}(\mathbb{R}), d=2,3, \cdots$, then
$\mathcal{K}\left(\mathrm{P}^{d}(\mathbb{R})\right)=\frac{2^{-d / 2+3}}{\pi^{3 / 2} \Gamma(d / 2)} \int_{0}^{\pi / 2}(\sin \eta)^{-1 / 2} \sin (\eta / 2+\pi / 4) d \eta$.
Proof. Consider the case $\mathbb{M}^{d}=\mathbb{S}^{d}, \mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(H), \mathrm{P}^{16}($ Cay) first. We will need an explicit representation for the constant $C_{k}\left(\mathbb{M}^{d}\right)$ defined in (8) for our applications. Putting $y=x$ in (8) and then integrating both sides with respect to $d \nu(x)$ we get
$d_{k}=\operatorname{dim} H_{k}=\sum_{j=1}^{d_{k}} \int_{\mathbb{M}^{d}}\left|Y_{j}^{k}(x)\right|^{2} d \nu(x)=C_{k}\left(\mathbb{M}^{d}\right) P_{k}^{(\alpha, \beta)}(1)$.
Taking the square of both sides of (8) and then integrating with respect to $d \nu(x)$ we find
$\sum_{j=1}^{d_{k}}\left|Y_{j}^{k}(y)\right|^{2}=C_{k}^{2}\left(\mathbb{M}^{d}\right) \int_{\mathbb{M}^{d}}\left(P_{k}^{(\alpha, \beta)}(\cos (2 \lambda d(x, y)))^{2} d \nu(x)\right.$.
Since $d \nu$ is shift invariant then
$\int_{\mathbb{M}^{d}}\left(P_{k}^{\alpha, \beta}(\cos (2 \lambda d(x, y)))\right)^{2} d \nu(x)=c^{-1}\left\|P_{k}^{(\alpha, \beta)}\right\|_{2}^{2}$,
where the constant c is defined by (6) and (see [14, p.68])
$\left\|P_{k}^{(\alpha, \beta)}\right\|_{2}^{2}=\int_{-1}^{1}\left(P_{k}^{(\alpha, \beta)}(t)\right)^{2}(1-t)^{\alpha}(1+t)^{\beta} d t$
$=\frac{2^{\alpha+\beta+1}}{2 k+\alpha+\beta+1} \frac{\Gamma(k+\alpha+1) \Gamma(k+\beta+1)}{\Gamma(k+1) \Gamma(k+\alpha+\beta+1)}$.
So that, (12) can be written in the form
$\sum_{j=1}^{d_{k}}\left|Y_{j}^{k}(y)\right|^{2}=c^{-1} C_{k}^{2}\left(\mathbb{M}^{d}\right)\left\|P_{k}^{(\alpha, \beta)}\right\|_{2}^{2}$.
Integrating the last line with respect to $d \nu(y)$ we obtain
$d_{k}=c^{-1} C_{k}^{2}\left(M^{d}\right)\left\|P_{k}^{(\alpha, \beta)}\right\|_{2}^{2}$.
It is sufficient to compare this with (11) to obtain
$C_{k}\left(\mathbb{M}^{d}\right)=\frac{c P_{k}^{(\alpha, \beta)}(1)}{\left\|P_{k}^{(\alpha, \beta)}\right\|_{2}^{2}}$.
We get now an integral representation for the Fourier sums $S_{n}(\phi, x)$ of a function $\phi \in$ $L_{\infty}\left(\mathbb{M}^{d}\right)$,
$S_{n}(\phi, x)=c_{0}(\phi)+\sum_{k=1}^{n} \sum_{j=1}^{d_{k}} c_{k, j}(\phi) Y_{j}^{k}(x)$
$=\int_{\mathbb{M}^{d}} \phi(y) \overline{Y_{1}^{0}(y)} d \mu(y)+\sum_{k=1}^{n} \sum_{j=1}^{d_{k}}\left(\int_{M^{d}} \phi(y) \overline{Y_{j}^{k}(y)} d \mu(y)\right) Y_{j}^{k}(x)$
$=\int_{\mathbb{M}^{d}} \sum_{k=0}^{n}\left(\sum_{j=1}^{d_{k}} \overline{Y_{j}^{k}(y)} Y_{j}^{k}(x)\right) \phi(y) d \mu(y)$
$=\int_{\mathbb{M}^{d}} \sum_{k=0}^{n} Z_{k}^{x}(y) \phi(y) d \mu(y)$
$=\int_{\mathbb{M}^{d}} K_{n}(x, y) \phi(y) d \mu(y)$,
where
$K_{n}(x, y)=\sum_{k=0}^{n} Z_{k}^{x}(y)$.
By (4) and (13) we have
$K_{n}(x, y)=c \sum_{k=0}^{n} \frac{P_{k}^{(\alpha, \beta)}(1)}{\left\|P_{k}^{(\alpha, \beta)}\right\|_{2}^{2}} P_{k}^{(\alpha, \beta)}(\cos 2 \lambda d(x, y))$.
Let us denote
$G_{n}(\gamma, \delta)=\sum_{k=0}^{n} \frac{P_{k}^{(\alpha, \beta)}(\gamma) P_{k}^{(\alpha, \beta)}(\delta)}{\left\|P_{k}^{\alpha, \beta)}\right\|_{2}^{2}}$,
then Szegö [14, p.71],
$G_{n}(\gamma, 1)=\sum_{k=0}^{n} \frac{P_{k}^{(\alpha, \beta)}(\gamma) P_{k}^{(\alpha, \beta)}(1)}{\left\|P_{k}^{\alpha, \beta)}\right\|_{2}^{2}}$
$=2^{-\alpha-\beta-1} \frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} P_{n}^{(\alpha+1, \beta)}(\gamma)$.
It means that the kernel function (15) in the integral representation (14) can be written in the form
$K_{n}(x, y)=c 2^{-\alpha-\beta-1} \frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} P_{n}^{(\alpha+1, \beta)}(\cos 2 \lambda d(x, y))$.
Let o be the north pole of \mathbb{M}^{d}, then since K_{n} is a zonal function and $d \nu$ is shift invariant,
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}=\sup _{\|\phi\|_{L_{\infty}\left(\mathbb{M}^{d}\right)} \leq 1}\left\|S_{n}(\phi, x)\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right)}$

$$
\begin{align*}
& =\sup \left\{\int_{\mathbb{M}^{d}}\left|K_{n}(x, y)\right| d \nu(y): x \in \mathbb{M}^{d}\right\} \\
& =\int_{\mathbb{M}^{d}}\left|K_{n}(\mathbf{o}, y)\right| d \nu(y) \\
& =c 2^{-\alpha-\beta-1} \frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} \int_{\mathbb{M}^{d}}\left|P_{n}^{(\alpha+1, \beta)}(\cos 2 \lambda d(\mathbf{o}, y))\right| d \nu(y) \\
& =c c^{-1} 2^{-\alpha-\beta-1} \frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} \int_{-1}^{1}\left|P_{n}^{(\alpha+1, \beta)}(t)\right|(1-t)^{\alpha}(1+t)^{\beta} d t \\
& =\frac{2^{-\alpha-\beta-1} \Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} \int_{0}^{\pi}\left|P_{n}^{(\alpha+1, \beta)}(\cos \eta)\right|\left(2 \sin ^{2} \frac{\eta}{2}\right)^{\alpha}\left(2 \cos ^{2} \frac{\eta}{2}\right)^{\beta} \sin \eta d \eta \\
& =\frac{\Gamma(n+\alpha+\beta+2)}{\Gamma(\alpha+1) \Gamma(n+\beta+1)} \int_{0}^{\pi}\left|P_{n}^{(\alpha+1, \beta)}(\cos \eta)\right|\left(\sin \frac{\eta}{2}\right)^{2 \alpha+1}\left(\cos \frac{\eta}{2}\right)^{2 \beta+1} d \eta \\
& =\left(\frac{I_{n}}{\Gamma(\alpha+1)}\right)\left(n^{\alpha+1}+O\left(n^{\alpha}\right)\right), n \rightarrow \infty . \tag{17}
\end{align*}
$$

where
$I_{n}:=\int_{0}^{\pi}\left|P_{n}^{(\alpha+1, \beta)}(\cos \eta)\right|\left(\sin \frac{\eta}{2}\right)^{2 \alpha+1}\left(\cos \frac{\eta}{2}\right)^{2 \beta+1} d \eta$.
It is known Szegö [14, p.196] that for $0<\theta<\pi$,

$$
\begin{equation*}
P_{n}^{(\alpha+1, \beta)}(\cos \eta)=n^{-1 / 2} \kappa(\eta) \cos (N \eta+\gamma)+O\left(n^{-3 / 2}\right), \quad n \rightarrow \infty, \tag{19}
\end{equation*}
$$

where
$\kappa(\eta)=\pi^{-1 / 2}\left(\sin \frac{\eta}{2}\right)^{-\alpha-3 / 2}\left(\cos \frac{\eta}{2}\right)^{-\beta-1 / 2}$
and
$N=n+1+\frac{\alpha+\beta}{2}, \gamma=-\frac{\alpha+3 / 2}{2} \pi=-\frac{d+1}{4} \pi$.
Comparing (17) - (19) we get
$I_{n}=\pi^{-1 / 2} n^{-1 / 2} \int_{0}^{\pi}\left(\sin \frac{\eta}{2}\right)^{\alpha-1 / 2}\left(\cos \frac{\eta}{2}\right)^{\beta+1 / 2}$
$\times\left|\cos \left(\left(n+\frac{\alpha+\beta+2}{2}\right) \eta-\frac{d-1}{4} \pi\right)\right| d \eta+O\left(n^{-3 / 2}\right)$
$=2 \pi^{-3 / 2} n^{-1 / 2} \int_{0}^{\pi}\left(\sin \frac{\eta}{2}\right)^{\alpha-1 / 2}\left(\cos \frac{\eta}{2}\right)^{\beta+1 / 2} d \eta+O\left(n^{-3 / 2}\right), n \rightarrow \infty$.

Put $\chi\left(\mathbb{M}^{d}\right)=\beta+1 / 2$, then from (17) and (20) it follows that
$\left\|S_{n}\right\|_{L_{\infty}\left(M \mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}=\mathcal{K} n^{\alpha+1 / 2}+O\left(n^{\alpha-1 / 2}\right), n \rightarrow \infty$,
where
$\mathcal{K}\left(\mathbb{M}^{d}\right)=\frac{2}{\pi^{3 / 2} \Gamma(\alpha+1)} \int_{0}^{\pi}\left(\sin \frac{\eta}{2}\right)^{\alpha-1 / 2}\left(\cos \frac{\eta}{2}\right)^{\beta+1 / 2} d \eta$
$=\frac{4}{\pi^{3 / 2} \Gamma(\alpha+1)} \int_{0}^{\pi / 2}(\sin \eta)^{\alpha-1 / 2}(\cos \eta)^{\beta+1 / 2} d \eta$
$=\frac{4}{\pi^{3 / 2} \Gamma(d / 2)} \int_{0}^{\pi / 2}(\sin \eta)^{(d-3) / 2}(\cos \eta)^{\chi\left(\mathbb{M}^{d}\right)} d \eta$,
since $\alpha=(d-2) / 2$ for all the manifolds under the consideration. Therefore,
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)}=\mathcal{K}\left(\mathbb{M}^{d}\right) n^{(d-1) / 2}+O\left(n^{(d-3) / 2}\right), n \rightarrow \infty$,
Finally, the value of $\chi\left(\mathbb{M}^{d}\right)$, where $\mathbb{M}^{d}=\mathbb{S}^{d}, \mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H}), \mathrm{P}^{16}(\mathrm{Cay})$, can be easily calculated using (1) and (3).

The case of $\mathrm{P}^{d}(\mathbb{R})$ needs a special treatment. In this case $\alpha=\beta=(d-2) / 2, \lambda=\pi /(4 L)$ and the kernel function $K_{2 n}^{*}(x, y)$ in the integral representation for the Fourier sums,
$S_{2 n}(\phi, x)=\int_{\mathrm{P}^{d}(\mathbb{R})} K_{2 n}^{*}(x, y) \phi(y) d \nu(y)$
has the form
$K_{2 n}^{*}(x, y)=\sum_{k=0}^{n} Z_{2 k}^{x}(y)$
$=\sum_{k=0}^{n} C_{2 k}\left(\mathrm{P}^{d}(\mathbb{R})\right) P_{2 k}^{(\alpha, \alpha)} \cos (2 \lambda d(x, y))$
$=\sum_{k=0}^{n} C_{2 k}\left(\mathrm{P}^{d}(\mathbb{R})\right) P_{2 k}^{((d-2) / 2,(d-2) / 2)}\left(\cos \left(\frac{\pi}{2 L} d(x, y)\right)\right)$.
Let o be the north pole of $P^{d}(\mathbb{R})$, then since $K_{2 n}^{*}$ is a zonal function and $d \nu$ is shift invariant,
$\left\|S_{2 n}\right\|_{L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right)}=\sup _{\|\phi\|_{L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right)} \leq 1}\left\|S_{2 n}(\phi, x)\right\|_{L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right)}$
$=\sup \left\{\int_{\mathrm{P}^{d}(\mathbb{R})}\left|K_{2 n}^{*}(x, y)\right| d \nu(y): x \in \mathrm{P}^{d}(\mathbb{R})\right\}$
$=\int_{\mathrm{P}^{d}(\mathbb{R})}\left|K_{2 n}^{*}(\mathbf{o}, y)\right| d \nu(y)$.

Consider the function
$G_{2 n}^{*}(\gamma, 1)=\sum_{k=0}^{n} \frac{P_{2 k}^{(\alpha, \alpha)}(\gamma) P_{2 k}^{(\alpha, \alpha)}(1)}{\left\|P^{(\alpha, \alpha)}\right\|_{2}^{2}}$.
Since $P_{k}^{(\alpha, \beta)}(\gamma)=(-1)^{k} P_{k}^{(\beta, \alpha)}(-\gamma)$, Szegö [14, p.59], then

$$
\begin{aligned}
& G_{2 n}^{*}(\gamma, 1)=\frac{G_{2 n}(\gamma, 1)+G_{2 n}(-\gamma, 1)}{2} \\
& =\frac{2^{-(d-2)} \Gamma(n+d)}{\Gamma(d / 2) \Gamma(n+d / 2)}\left(P_{2 n}^{(d / 2,(d-2) / 2)}(\gamma)+P_{2 n}^{(d / 2,(d-2) / 2)}(-\gamma)\right) \\
& =\frac{2^{-(d-2)} \Gamma(n+d)}{\Gamma(d / 2) \Gamma(n+d / 2)}\left(P_{2 n}^{(d / 2,(d-2) / 2)}(\gamma)+P_{2 n}^{((d-2) / 2, d / 2)}(\gamma)\right)
\end{aligned}
$$

where $G_{2 n}(\gamma, 1)$ is defined in (16). Consequently, (21) takes the form

$$
\begin{align*}
& \left\|S_{2 n}\right\|_{L_{\infty}\left(P^{d}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right)} \\
& =\frac{2^{-(d-2)} \Gamma(n+d)}{\Gamma(d / 2) \Gamma(n+d / 2)} \\
& \times \int_{\mathrm{P}^{d}(\mathbb{R})}\left|P_{2 n}^{(d / 2,(d-2) / 2)}(\cos (\pi d(\mathbf{o}, y) /(4 L)))+P_{2 n}^{((d-2) / 2, d / 2)}(\cos (\pi d(\mathbf{o}, y) /(4 L)))\right| d \nu(y) \\
& =\frac{2^{-(d-2)} \Gamma(n+d)}{\Gamma(d / 2) \Gamma(n+d / 2)} \int_{0}^{1}\left|P_{2 n}^{(d / 2,(d-2) / 2}(t)+P_{2 n}^{((d-2) / 2, d / 2}(t)\right|\left(1-t^{2}\right)^{(d-2) / 2} d t \\
& =\frac{2^{-(d-2)} \Gamma(n+d)}{\Gamma(d / 2) \Gamma(n+d / 2)} I_{n}^{\prime}, \tag{22}
\end{align*}
$$

where
$I_{n}^{\prime}:=\int_{0}^{\pi / 2}\left|P_{2 n}^{(d / 2,(d-2) / 2)}(\cos \eta)+P_{2 n}^{((d-2) / 2, d / 2)}(\cos \eta)\right|(\sin \eta)^{d / 2} d \eta$
Applying (19) we get
$I_{n}^{\prime}=\frac{1}{2 \pi n^{1 / 2}} \int_{0}^{\pi / 2}(\sin \eta)^{d / 2}(\cos (\eta / 2)+\sin (\eta / 2))$
$\times(\sin (\eta / 2) \cos (\eta / 2))^{-d / 2-1 / 2} \cos ((2 n+(d-1) / 2) \eta-(d-1) \pi / 4) d \eta+O\left(n^{-3 / 2}\right)$
$=2^{d / 2} \pi^{-1 / 2} n^{-1 / 2} \int_{0}^{\pi / 2}(\sin \eta)^{-1 / 2} \sin (\eta / 2+\pi / 4) \cos ((2 n+(d-1) / 2) \eta-(d-1) \pi / 4) d \eta$
$+O\left(n^{-3 / 2}\right)$
$=2^{d / 2+1} \pi^{-3 / 2} n^{-1 / 2} \int_{0}^{\pi / 2}(\sin \eta)^{-1 / 2} \sin (\eta / 2+\pi / 4) d \eta+O\left(n^{-3 / 2}\right), n \rightarrow \infty$.

Comparing (22) with the last line we get
$\left\|S_{2 n}\right\|_{L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right) \rightarrow L_{\infty}\left(\mathrm{P}^{d}(\mathbb{R})\right)}=\mathcal{K}\left(\mathrm{P}^{d}(\mathbb{R})\right) n^{(d-1) / 2}+O\left(n^{(d-3) / 2}\right), n \rightarrow \infty$,
where
$\mathcal{K}\left(\mathrm{P}^{d}(\mathbb{R})\right)=\frac{2^{-d / 2+3}}{\pi^{3 / 2} \Gamma(d / 2)} \int_{0}^{\pi / 2}(\sin \eta)^{-1 / 2} \sin (\eta / 2+\pi / 4) d \eta$.
Remark 1. Let $\mathbb{M}^{d}=\mathbb{S}^{d}, \mathrm{P}^{d}(\mathbb{R}), \mathrm{P}^{d}(\mathbb{C}), \mathrm{P}^{d}(\mathbb{H}), \mathrm{P}^{16}($ Cay $)$. It is known [1], [[2] that for any $\gamma>0$,
$E_{n}\left(W_{\infty}^{\gamma}\left(\mathbb{M}^{d}\right)\right):=\sup \left\{E_{n}(f) \mid f \in W_{\infty}^{\gamma}\left(\mathbb{M}^{d}\right)\right\} \asymp n^{-\gamma}, n \rightarrow \infty$.
From the Theorem 1 and the Lebesgue inequality it follows that the Fourier series of a function $f \in W_{\infty}^{\gamma}\left(\mathbb{M}^{d}\right)$ converges uniformly if $\gamma>(d-1) / 2$. In general, let $\Delta^{0} \lambda_{k}=\lambda_{k}$, $\Delta^{1} \lambda_{k}=\lambda_{k}-\lambda_{k+1}, \Delta^{s+1} \lambda_{k}=\Delta^{s} \lambda_{k}-\Delta^{s} \lambda_{k+1}, \quad k, s \in \mathbb{N}$ and
$N:= \begin{cases}(d+1) / 2, & d=3,5, \cdots, \\ (d+2) / 2, & d=2,4, \cdots\end{cases}$
Let $\Lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}$ be a multiplier operator, $\Lambda: L_{\infty}\left(\mathbb{M}^{d}\right) \rightarrow L_{\infty}\left(\mathbb{M}^{d}\right)$ and $\Lambda U_{\infty}\left(\mathbb{M}^{d}\right)$ be the respective set of smooth functions, then from the Theorem 2, [2, p.317] it follows that the Fourier series of a function $f \in \Lambda U_{\infty}\left(\mathbb{M}^{d}\right)$ converges uniformly if
$\lim _{n \rightarrow \infty} n^{(d-1) / 2} \sum_{k=n+1}^{\infty}\left|\Delta^{N+1} \lambda_{k}\right| k^{N}=0$,
since $E_{n}\left(\Lambda U_{\infty}\left(\mathbb{M}^{d}\right)\right) \ll \sum_{k=n+1}^{\infty}\left|\Delta^{N+1} \lambda_{k}\right| k^{N}$ as $n \rightarrow \infty$.
In particular, let
$\Lambda=\left\{\lambda_{k}\right\}_{k \in \mathbb{N}}, \quad \lambda_{k}=k^{-(d-1) / 2}(\ln n)^{-\alpha}$,
where $\alpha>0$, then the Fourier series of any function $f \in \Lambda U_{\infty}\left(\mathbb{M}^{d}\right)$ converges uniformly.
Remark 2. Let, in particular, $\mathbb{M}^{2}=\mathbb{S}^{2}$, the two-dimensional sphere, then
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{S}^{2}\right) \rightarrow L_{\infty}\left(\mathbb{S}^{2}\right)}=n^{1 / 2} \frac{4}{\pi^{3 / 2}} \int_{0}^{\pi}(\cot \eta)^{1 / 2} d \eta+O(1)$
$=n^{1 / 2} 2^{3 / 2} \pi^{-1 / 2}, n \rightarrow \infty$,
since (see, e.g., Gronwall [7]),
$\int_{0}^{\pi}(\cot \eta)^{1 / 2} d \eta=2^{-1 / 2} \pi$.
If $\mathbb{M}^{3}=S^{3}$, then
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathbb{S}^{3}\right) \rightarrow L_{\infty}\left(S^{3}\right)}=n \frac{8}{\pi^{2}}+O(1), n \rightarrow \infty$.
If $\mathbb{M}^{4}=\mathrm{P}^{4}(\mathbb{C})$, the complex projective space, then
$\left\|S_{n}\right\|_{L_{\infty}\left(\mathrm{P}^{4}(\mathbb{C})\right) \rightarrow L_{\infty}\left(\mathrm{P}^{4}(\mathbb{C})\right)}=n^{3 / 2} \frac{2^{1 / 2}}{\pi^{3 / 2}} \int_{0}^{\pi}(\sin \eta)^{1 / 2} d \eta+O\left(n^{1 / 2}\right), \quad n \rightarrow \infty$.

REFERENCES

1. B. Bordin, A. Kushpel, J. Levesley, S. Tozoni, n-Widths of Multiplier Operators on Two-Point Homogeneous Spaces, In: Approx. Th. IX, v.1, Theoretical Aspects, C. Chui and L. L. Schumaker (eds.), Vanderbilt Univ. Press, Nashville, TN, (1998) 2330.
2. B. Bordin, A. Kushpel, J. Levesley, S. Tozoni, Estimates of n-Widths of Sobolev's Classes on Compact Globally Symmetric Spaces of Rank 1, J. Funct. Anal. 202 (2003) 307-326.
3. E. Cartan, Sur la determination d'un systeme orthogonal complet dans un espace de Riemann symetrique clos, Rendiconti Circ. mat. di Palermo, 53 (1929) 217-252.
4. A. Erdélyi, (eds.), Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.
5. L. Fejer, Lebesguesche Konstanten und divergente Fourierreihen, J. für reine und angew. Math. 138 (1910) 22-53.
6. R. Gangolli, Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Browian motion of several parameters, Ann. Inst. H. Poincaré 3 (1967)(2) 121-225.
7. T.H. Gronwall, On the degree of convergence of Laplace series, Trans. Amer. Math. Soc. 15 (1914)(1) 1-30.
8. S. Helgason, The Radon Transform on Euclidean spaces, compact two-point homogeneous spaces and Grassmann manifolds, Acta mat. 113 (1965) 153-180.
9. S. Helgason, (eds.), Differential geometry and symmetric spaces", Academic Press, New York, 1962.
10. T. Koornwinder, The addition formula for Jacobi Polynomials and spherical harmonics, SIAM J. Appl. Math. 25 (1973)(2) 236-246.
11. H. Lebesgue, Sur les intégrales singulières, Ann. de Toulouse 1 (1909) 25-117.
12. F.D. Murnaghan (eds.), The Unitary and Rotation Groups, Spartan Books, Washington, D. C., 1962.
13. D.L. Ragozin, Uniform convergence of spherical harmonic expansions, Math. Ann. 195 (1972) 87-94.
14. G. Szegö(eds.), Orthogonal Polynomials, AMS, New York, 1939.
15. N.J. Vilenkin (eds.), Special functions and theory of representation of groups, Nauka, Moscow, 1965.
16. H.C. Wang, Two-point homogeneous spaces, Annals of Math. 55 (1952) 177-191.
