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Abstract
Sharp asymptotics of the norms of Fourier projections on compact homogeneous manifolds
M of rank 1, i.e., on S¢, P4(R), P¥(C), PY(H), P'®(Cay) are established. These results
extend sharp asymptotic estimates found by Fejer [ 5] in the case of S in 1910 and then
by Gronwall [[7] in 1914 in the case of S
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1. INTRODUCTION

Let M¢ be a compact globally symmetric space of rank 1 (two-point homogeneous
space), v its normalized volume element, A its Laplace-Beltrami operator. It is well-
known that the eigenvalues 6, & > 0 of A are discrete, nonnegative and form an in-
creasing sequence 0 < 0y < 0y < --- < 6, < --- with +o00 the only accumulation point.
Corresponding eigenspaces Hy, k& > 0 are finite dimensional, d;, = dimH; < co, £ > 0, or-
thogonal and Ly(M?, v) = @3° Hy. Let {ij}?il be an orthonormal basis of Hi. Assume
that ¢ € Lo (M?) with the formal Fourier expansion

(0.) dk

¢~ copo+ Z Z Clc,j(ﬁb)yjka () = ¢Y_jkd’/'

k=1 j=1 Md
Consider the sequence of Fourier sums

n dk

Suld,7) = coo+ > Y cri(9)Y(x).

k=1 j=1
The main aim of this article is to answer a fundamental question: ”What is the sharp
asymptotic behavior of the norms [|Sy||._wd)—r. ey as n — 00?”. Observe that this

question is closely connected with the problem of uniform convergence of Fourier series
on M<. Indeed, let

E,(¢) = inf {||¢ - tn”Loo(Md) | tn € 7;1}
*Supported in part by FAPESP /Brazil, Grant 2007/56162-8.

1



2 A. Kushpel

be the best approximation of a function ¢ € L. (M%) by the subspace 7, of polynomials
of order < n, 7,, = ®}_,Hg. Then, by the Lebesgue inequality [[11] we get

||¢ - Sn(¢7 )HLOO (Md) > (1 + HS ||L<>o M‘i)HLoo(Md)) E (¢)7

where ||SnHLOO(Md)_>LOQ(Md) = sup{HSn(gzﬁ)HLoo(Md)W € Loo(M?). It means that S,(¢,x)
converges uniformly to ¢ if

lim En(9)

= 0.
n—0o0 ||S ||Loo(Md)—>Loo(Md)

In the case of the circle, S, the following result has been found by Fejer in 1910 [ 5],

1 [7 4
ISullio-tae =5 [ IDalblt = 25 lan+ OQ), 0 — oo,

™ -7

where D,, is the Dirichlet kernel,

1 n
t) = §+;COS kt.

In the case of S?, the two-dimensional unit sphere in R?, the estimates of [|Sy || ... (s2)— 1. (52)
as n — 00, have been established by Gronwall [[7]. Namely, it was shown that

||Sn||Loo(Sz)—>Loo(Sz) =n!/ W3/2 A /cot de +O(1

n'/22327=12% 4+ O(1), n — oo.

Using a similar method, Ragozin [ [13] found a sharp order estimates in the cases of S%,
d > 3, the real, complex and quaternionic projective spaces, i.e., P4(R), P4(C), P¢(H)
respectively. Namely, it was shown that for any n € N there exist such positive constants
C4 and (5 that

Cyntd-V/2 < HSnHOO(Md)HLOO(Md) < Czn(dfl)/{
where M is one of the mention above manifolds.

2. Harmonic Analysis on Compact Symmetric Manifolds of Rank 1

We shall be interested here in compact globally symmetric spaces of rank 1 (two-point
homogeneous spaces). Such manifolds of dimension d will be denoted by M?. Each M¢
can be considered as the orbit space of some compact subgroup H of the orthogonal
group G, that is M? = G/H. Let 7 : G — G/H be the natural mapping and e be the
identity of G. The point o = m(e) which is invariant under all motions of H is called the
pole (or the north pole) of M. On any such manifold there is an invariant Riemannian
metric d(-, ), and an invariant Haar measure dv. Two-point homogeneous spaces admit
essentially only one invariant second order differential operator, the Laplace-Beltrami
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operator A. A function Z(-) : M? — R is called zonal if Z(h~!.) = Z(-) forany h € H. A
complete classification of the two-point homogeneous spaces was given by Wang [[16]. For
information on this classification see, e.g., Cartan [ 3], Gangolli [ 6], and Helgason [ 8, 9.
The geometry of these spaces is in many respects similar. For example, all geodesics
in a given one of these spaces are closed and have the same length 2L. Here L is the
diameter of G/H, i.e., the maximum distance between any two points. A function on
G/H is invariant under the left action of H on G/H if and only if it depends only the
distance of its argument from o = eH. Since the distance of any point of G/H from eH is
at most L, it follows that a H-spherical function Z on G can be identified with a function
Z on [0, L]. Let @ be the distance of a point from eH. We may choose a geodesic polar
coordinate system (6,u) where u is an angular parameter. In this coordinate system the
radial part Ay of the Laplace-Beltrami operator A has the expression

2= (40) 5 (40035,

where A(6) is the area of the sphere of radius 6 in G/H. It is interesting to remark that
the function A(¢) can be computed in terms of the structure of the Lie algebras of G and
H (see Helgason [ 19, p.251], [ 8, p.168] for the details). It can be shown that

A(0) = Woqpr1 A7 (2X) 7P (sin A0)7 (sin 200)7,

where w, is the area of the unit sphere in R? and

St o=0,p=d—1,A\=7/2L,d=1,2,3,...;
PYR): 0=0,p=d—1,\=n/4L,d=2,3,4,...;
PYC): 0 =d—2,p=1,A=7m/2L,d =4,6,8,...; (1)
P4(H) J:d—4,p 3 AN=m/2L,d=28,12,...;
P(Cay): 0 =8,p="7\=m/2L.

Now we can write the operator Ay (up to some numerical constant) in the form

1 d
(5in 70)7 (s 22y dg M) (s 2A0)7

Bo = a0

Using a simple change of variables ¢ = cos 2\, this operator takes the form (up to a
positive multiple),

At:(1—w%1+t)§%u—¢yﬂ%1+w“ﬂ%, (2)
where

o+p—1 -1
a:__g;_, ﬁzﬁgf (3)
We note that for all manifolds considered here

d—2
oa=—,
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We will need the following statement Szegé [ 14, p.60]:

Proposition 2.1. The Jacobi polynomials y = P,Ea’ﬁ) satisfy the following linear
homogeneous differential equation of the second order:

A=)y +(B—a—(a+B8+2)t)y +k(k+a+B+1)y=0,

or

%((1 SO — 1) 4 k(h 4 a+ B+ 1)1 — (14 1)y = 0.

It follows from the above proposition that the eigenfunctions of the operator A; which has
been defined in (2) are well-known Jacobi polynomials P,Ea’ﬂ )(t) and the corresponding
eigenvalues are 0, = —k(k + a + 4+ 1). In this way zonal H-invariant functions on
M? = G/H can be easily identified in each of the five cases above since the elementary
zonal functions are eigenfunctions of the Laplace-Beltrami operator. We shall call them
Z, k € N, with Z, = 1. Let Z, be the corresponding functions induced on [0, L] by Zj.
Then

Z(0) = Co(MD)P?) (cos 2)0), (4)

where o and 3 has been specified above for allM?¢ andk = 0,1,2,---, if M¢ = S¢,
P4(C), P4(H), P¢(Cay). If M? = P4(R), then only the polynomials of even degree
appear because, due to the identification of antipodal points on S¢, only the even order
polynomials P,Ea’a), k = 2m can be lifted to be functions on P4(R).

For example, in the case of S* we have 0 =0, p =d —1s0 a = 3 = (d — 2)/2 and
the polynomials P(a 7 reduce to Pk((d_Q)/ 27272 which is a multiple of the Gegenbauer
polynomial P(d 1)/ . A detailed treatment of the Jacobi polynomials can be found in
Szegd | 14]. We remark that the Jacobi polynomials P,ia’ﬁ)(t), a > —1, > —1 are
orthogonal with respect to w*?(¢) = ¢ (1 —1)*(1+t)” on (—1,1). The above constant ¢
can be found using the normalization condition fMd dv =1 for the invariant measure dv
on M? and a well-known formula for the Euler integral of the first kind

p— 1 )a- 1 L(p)L'(q)
/{ d{——(p+q),p>0,q>0. (5)

Applying (5) and a simple change of variables we get

1 1
1—/ dz/—/ waﬁ(t)dt—cl/ (1 —1)*(1 +t)°dt,
Md -1 -1

so that,
c_/ia—w(1+o%h_zwmﬂx(aﬁgf;>. (6)

We normalize the Jacobi polynomials as follows:

Flk+a+1)
Fla+1)I(k+1)

PP (1) =
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This way of normalization is coming from the definition of Jacoby polynomials using the
generating function Szego [ 14, p.69].
Let L,(M?) be the set of functions of finite norm given by

_ _ (g lo(@) Pdu(a)) /P, 1 <p< oo,
H 2 ”P - ” ¥ HLZ,(M'i) - { ess sup{|g0(m)| | = Md}, p = 0.

Further, let U, = {¢ | ¢ € L,(M%), || ¢ ||,< 1} be the unit ball of the space L,(M¢?).
The Hilbert space Lo(M?) with usual scalar product

(fg) = | F@)g@)dv(a)

has the decomposition
Ly(M*) = P Hy,
k=0

where Hj, is the eigenspace of the Laplace-Beltrami operator corresponding to the eigen-
value 0, = —k(k+a+5+1). Let {Y}k}?kzl be an orthonormal basis of H. The following
addition formula is known Koornwinder [ [10]

d

D Y (@)YF(y) = Zi(cos 2)0), (7)
j=1

where 6 = d(z,y) or comparing (7) with (4) we get

dy,
Z YE(@)YF(y) = Zi(cos0) = Cr(M?) P (cos 200). (8)

3. Sets of smooth functions and multiplier operators on M¢

Using multiplier operators we can introduce a wide range of smooth functions on M.
Let ¢ € L,(M?), 1 < p < oo, with the formal Fourier expansion

oo dg

P~ Z Z cri(Q)Y], cry(d) = ¢Y_jkdy.

k=0 j—=1 M

Let A = {\x}ren be a sequence of real (complex) numbers. If for any ¢ € L,(M?) there
is a function f(z) := A¢(x) € L,(M?) such that

00 dp
F YD (9],
k=0 =1

then we shall say that the multiplier operator A is of (p,q)-type with norm ||A|,, =
SUPyep, [Aplly- We shall say that the function f is in AU, ©® R if

oo dy,
Ap=fr~c + Z Ak Z ek (9)Y},
k=1 =1
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where ¢ € R and ¢ € U,. In particular, the y-th fractional integral (7 > 0) of a function
¢ € Li(M?) is defined by the sequence \, = (k(k + a + 3+ 1))77/2. Sobolev’s classes
wy (M%) on M are defined as sets of functions with formal Fourier expansions

d

e Y (k(k+a+B8+1)77> o ()Y,
k=1

J=1

where ¢ € R and ||¢||, < 1. Let Z be a zonal integrable function on M. For any integrable
function ¢ we can define convolution h on M as the following

h() = (Z*g)() = /Md Z(cos(2Ad(-, x))g(x)dv ().

For the convolution on M? we have Young’s inequality

Iz * 9l < llzllnllgll (9)

where 1/¢g=1/p+1/r—1and 1 < p,q,r < oo. It is possible to show that for any v > 0
the function

v =Gy~ Y (k(k+a+p+1)77Z] (10)
k=1

with pole 7 is integrable on M? and for any function g € W;)(M?) we have an integral
representation

g:C+Gv*¢a

where C' € R and ¢ € U,.

4. The Orthogonal Projection

The main result of this article is the following statement.
Theorem 1. Let M? = S P4(C), P4(H), PS(Cay), then for the norms of orthogonal
projections the following is true

1Sl Lo (i) Lo (1) = Kn' D2 + 0n9/2) n — oo,

where d > 2 and

4 /2 J
dy _ : (d-3)/2 x (M%)
IC(M ) - 7T3/2F(d/2> /0 (Sln 77) (COS T/) d777
where
(d_l)/27 SSd :273747”'7
d 1/2, Md Pd(C) d=4,6,8---,
X (M) = 2, M¢ = P4(H), d =8,12,16,---

7/2, M? = PlG(Cay)
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I[fM? =P4R), d=2,3,-- , then

9—d/2+3

/2
K(P4R)) = ST /0 (sinn) ™2 sin(n/2 + «/4)dn.

Proof. Consider the case M? = S P4(C),P4(H), P(Cay) first. We will need an

explicit representation for the constant Cy(M¢) defined in (8) for our applications. Putting
y = x in (8) and then integrating both sides with respect to dv(z) we get

dp, = dim Hy, = zk:/Md |ij(x)|2dy(x) = Ok<Md)P]§avﬂ)<1)' (11)

Taking the square of both sides of (8) and then integrating with respect to dv(z) we find

dp, 2
Sl =i [ (P costnd(w, ) dv(o) (12)
j=1 M
Since dv is shift invariant then
2
[ (proteostado, ) dvta) = 1P
M

where the constant ¢ is defined by (6) and (see [ 14, p.68])

1 2
IR = [ (R20) (- 0+ o

1
B 20+A+1 L(k+a+ 1)0(k+5+1)
S 2%k+a+B+1Tk+DI(k+a+B+1)
So that, (12)) can be written in the form

d

ST )P = ot P 2.

j=1
Integrating the last line with respect to dv(y) we obtain
di = R P)

It is sufficient to compare this with (11) to obtain

(a?ﬂ)
Ck(Md) _ Cpk (1>

IB712

We get now an integral representation for the Fourier sums S, (¢, x) of a function ¢ €
Loo(M9),

n dg

Sn(d, ) = co(¢) + Z Z ij(ﬁb)yjk(ﬁ)

k=1 j=1



where

Ko(z,y) = > Zi(y).

By (4) and (13) we have

¢!

) (e,
=0

Ky(xz,y)=c

Let us denote

B n Pk(aﬂ)(’)/)PkEa’ﬁ)((S)
Gn(1:9) = 2 = e

k=0

then Szegd [[14] p.71],

" PP ()P (1)
G = 2 T e

k=0

T(n+a+p+2) Plat18)

_ Qfafﬁfl
MNa+1)I'(n+p5+1) "

(7)-

A. Kushpel

(14)

(16)

It means that the kernel function (15) in the integral representation (14) can be written

in the form

Lnta+f+2) Lawp
Fa+1)I'(n+p5+1) "

Ku(z,y) = QA1

(cos2Xd(x,y)).

Let o be the north pole of M?, then since K, is a zonal function and dv is shift invariant,

||Sn||Loo(Md)—>Loo(Md) = sup ||Sn(¢a x)”Loo(Md)
H¢||LOO<ME[)S1
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—sup{ [ 1 lavty) o et
- [ 1Kalo.mlavty

o —a—fB-1 F(n—i—oz-f-ﬁ—i—?) (a+1,8)
- Pla+1l(n+5+1) /Md B2 (cos 2Md(0, ) [dv (y)
Fn+a+ 5+ 2)

—12—a—ﬁ—1
Fla+DI'(n+8+1

= CC

%/IM§WWWUK1—Q“O+¢Wﬁ

2

yamfioip 5y fm o 8
_ (n+a+5+2) / | POH18) (cos )| <2 sin2 Q) <2 cos? g) sin ndn
0

Fla+1)'(n+ 5 +1)

r 9 - 20041 26+1
_ (n+a+8+2) ) / | P10 (cos )| (sin ﬂ) (COS Q) dn
0

Ma+DI'(n+8+1 2 2

_ (F(af_il)) (n* 4 O(n%)), n — oo,

where

m 20+1 23+1
I, = / | P+18) (cos )| (sin g) <cos ﬂ) dn.
0

It is known Szego [ 14], p.196] that for 0 < 6 < 7,

P (cosn) = n~'? k(n) cos(Nn+ ) + O(n~?), n — oo,

where
—a-3/2 —B-1/2
= (mg) (o)
k(n)=m sin o cos 5
and
2 d+1
N:n+1+a;ﬁ, 72—%%2—%%

Comparing (17) - (19) we get

™ a—1/2 B+1/2
I, = 7T_1/2n_1/2/ (sin Q) <COS Q)
0 2 2

cos <(n—|— %M) n— d; 171')‘d77+ O(n=3/?)

X

7T a—1/2 B+1/2
= 27r_3/2n_1/2/ (sin g) (cos g) dn+ O(n™>?), n — .
0

(17)

(18)

(19)

(20)
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Put x(M?) = 3+ 1/2, then from (17) and (20) it follows that

“S ||Loo(MMd)—>Loo (Md) — Icna+1/2 + O( “ 1/2)7 n — oo,

where
2 T\ el/2 N\ A+1/2
KO = Sy ), (ng) (o) d
(M) = ATt D /0 ) €9 "
ey [ osny
P (a+1) J,

4 7T/2 . B 4
= BRT(d)2) /0 (sin ) =72 (cos )X,

since a« = (d — 2)/2 for all the manifolds under the consideration. Therefore,

10| e 08— Lo 00y = KD + O 972), 0 — o0,

A. Kushpel

Finally, the value of x(M?), where M¢ = S¢, P4(C), PY(H), P'°(Cay), can be easily calcu-

lated using (1) and (3).
The case of PY(R) needs a special treatment. In this case @ = 3 = (d—2)/2,

A =7/(4L)

and the kernel function K3 (x,y) in the integral representation for the Fourier sums,

Sulo.0)= [ Kinlrn)ovis)

has the form

= Z Cor(PU(R)) Py cos(2Ad(x, y))

- kz:% Cgk(Pd(R))Pélgd_z)/l(d_mm <cos <ﬁd(:p y)>>

Let o be the north pole of P4(R), then since K3 is a zonal function and dv is shift

invariant,

1S2n || Lo (PA(R)) = Low (PA(R)) = sup [S2n (0, @) || Lo (Pe(m))
H(rb”Loo(pd(R))Sl

o { [ IKanli) o e PR}

- / K5 (0, 9)|dv(y).
Pd(R)

(21)
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Consider the function

i P (7) P (1)
[Pl 2

G5, (7, 1) =
k=0

Since Péa’ﬁ) (v) = (—1)’“P,§ﬁ’a)(—fy), Szegd [ 14, p.59], then

. Gon(7,1) + Gop(—7, 1
G (1) = 2n(7,1) ' 2n(—7,1)

2-(@=2P(p + d) (d/2,(d—2)/2) (d/2,(d—2)/2)
_ P s P I —_—
F(d/Q)F(n+d/2)< " R =)

270 (n +d) [ jaia-2)2) ((d-2)/2.4/2)
— P b P )

where Go,(7,1) is defined in (16). Consequently, (21) takes the form
1520 || Loo (Pe(R)) = Loo (Pe(R))

27U (n + d)
" T(d/2)T(n+d/2)

S
PA(R)

_ 27WIP(n+d) [
- T(d/2)T(n+d/2) /0

Py (cos(md(o, y) /(A1) + PATPAYP (cos(md(o,y)/(4L)))| dv(y)

PURE/2p) L pUD/24/2p| (1 _ 2272

27 AP+ d)
~ I(d/2)T(n+d/2) I, (22)

where

) w/2
I, = /
0

Applying (19) we get

pld/2,(d-2)/2)

d—2)/2,d/2
e (cosn) + P24

cosn)| (sinn)¥2dn

;1
" 9anl/2

/2
| s eos(n/2) + sinn2)
s (sin(1/2) cos(n/2)) 212 cos((2n + (d — 1)/2)n — (d — V) /4)dn + O(n"?)
/2
= Qd/27r_1/2n_1/2/0 (Sinn)_l/2 sin(n/2 + m/4)cos((2n + (d — 1)/2)n — (d — 1) /4)dn
+O(n’3/2)

/2
_ 2d/2+17r—3/2n—1/2/ (sinn)~?sin(n/2 + 7/4)dn + O(n~?), n — oo.
0
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Comparing (22) with the last line we get
1520 Lo (P (@) Lo Pty = K(PU(R)) n"V/2 1 O(n@972), 1 — o0,

where

J 2—d/2+3 /2 12

PYR)) = ———— i B i 2 4)dn.
R(PU(R)) = —rprrss [ (sinn) ™ sinn/2-+ /)iy
0

Remark 1. Let M? = S¢ PYR), P4(C), P4(H), P1%(Cay). It is known [[1], ['2] that
for any v > 0,
B (WL(MY) = sup{E,(f)] f € WLMY) = n7, 1 — oo,

From the Theorem 1 and the Lebesque inequality it follows that the Fourier series of a
function f € W2 (M®) converges uniformly if v > (d —1)/2. In general, let A°\, = I,
A = Ay — Mg1, AT = AN, — AAy1, ks €N and

N = (d+1)/27 d:3a5>"'a
T d+2)/2, d=2.4,-

Let A = {\¢}ren be a multiplier operator, A : Loo(M?) — Loo(M?) and AU, (M?) be the
respective set of smooth functions, then from the Theorem 2, [12, p.317] it follows that the
Fourier series of a function f € AU (M?) converges uniformly if

lim n@"D/2 3" JANTI | EY =0,

n—00
k=n+1

since En(AUx(M%)) < 307 JANTIN] BN as n — oo.
In particular, let

A = {Ditrens M = B4 D2 (Inn)~,

where a > 0, then the Fourier series of any function f € AUy (M?) converges uniformly.
Remark 2. Let, in particular, M? = S?, the two-dimensional sphere, then

T

4
[ PSR | (cot " dn+0(1)

= nl/223/2 7T_1/2, n — 00,

since (see, e.g., Gronwall [[7]),

/ (cotn)2dn =271 7.

0

If M3 = S3, then

Sl Lo (83) = Loo (53) = n—3 +0(1), n— .

If M* = P4(C), the complex projective space, then

21/2 T
190 || Lo (P2(C)) = Lo (PA(C)) = ng/Qm/ (sin n)l/an + O(nl/Q), n — o0.
0
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