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Abstract

In this paper, we consider an algorithm for a chain complex C and its di�erential given by a connection

matrix ∆ over Z2 which determines an associated spectral sequence (Er, dr). More speci�cally, a system

spanning Er in terms of the original basis of C is obtained as well as the identi�cation of all di�erentials

dr.1

1 Introduction

Algebraic-topological tools have been extensively used in dynamical systems. These homological and homo-

topical methods have been applied in the theory developed by Conley [Co].

An important concept in Conley's theory is the notion of Morse decomposition: A Morse decomposition

of M is a collection D(M) = {Mp}m
p=1 of mutually disjoint compact invariant subsets of M such that that if

γ ∈ M \ ∪m
p=1Mp, then there exists p < p′ with γ ∈ C(Mp,Mp′). In other words, D(M) contains the recurrent

behavior of the �ow. A subset of M which belongs to some Morse decomposition is called a Morse set.

In this article, we consider M an n-dimensional compact Riemannian manifold, D(M) = {Mp}m
p=1 a Morse

decomposition of M and a �ltered Conley chain complex with �nest �ltration {Fp}. In this case, each Morse

set, Mp, is a non-degenerate singularity of the gradient �ow ϕ of a Morse function f : M → R.

As in [CdRS] we consider a Morse chain complex with connection matrix ∆. We now consider this chain

complex over Z2 and its associated spectral sequence. By using the Z2 connection matrix it is possible to obtain

a sweeping algorithm which characterizes the stabilization process of the spectral sequence. To achieve this we

will sweep the connection matrix.

Note that the r-th auxiliary diagonal of ∆ which intersects ∆k has entries ∆p+1−r,p+1 that represents the

number of intersections mod 2 between the unstable and stable spheres determined by the connections between
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unstable and stable manifolds of Mp+1 and Mp+1−r for p ∈ {r, . . . ,m − 1}. Clearly, if the (p + 1)-st column

intersects the submatrix ∆k, then Mp+1 and Mp+1−r are respectively singularities of Morse index k and k − 1

which we denote by hk and hk−1. These singularities are in �ltration Fp \Fp−1 and Fp−r \Fp−r−1 respectively.

Hence we say that the pair (hk, hk−1) has gap r. In summary, the r-th auxiliary diagonal when intersected

with ∆k is registering information of numerically consecutive singularities of Morse indices k and k − 1 with

gap r. We will use the same notation to indicate an elementary chain of C.

It will be helpful to associate to the (p+1)-st column of ∆ the elementary chain hk such that hk ∈ Fp\Fp−1
2.

We want to explore the algebraic-topological tool called spectral sequence in the context that we described

above. Our goal is to explain how the connection matrix ∆ determines the spectral sequence, i.e, how it

determines the spaces Er and how it induces the di�erentials dr.

Let C = {Ck} the Z2-module generated by the singularities and graded by their indices, i.e.,

Ck =
⊕

x∈critkf

Z2〈x〉

where critk(f) is the set of index k critical points of f .

The connection matrix ∆ : C → C associated to D(M) is de�ned as the di�erential of the graded Morse

chain complex C = Z2〈critf〉, i.e., determined by the maps ∆k : Ck → Ck−1 via

∆k(x) =
∑

y∈critk−1f

a(x, y)〈y〉.

where a(x, y) is the number of connecting orbits counted mod 2 for non degenerate singularities x and y of

indices k and k − 1 respectively. Moreover ∆ is an upper triangular matrix with ∆ ◦∆ = 0.

We use the same notation for the map ∆k as for the associated submatrices of ∆. See Figure 1.


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
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∂k+2

0

0

Figure 1: Connection Matrix.

It need not be the case that the columns of the matrix ∆ be ordered with respect to k. We only require

that the map ∆k be �ltration preserving.

2Note that the numbering on the columns are shifted by one with respect to the subindex p of the �ltration Fp.
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We denote this �ltered graded Morse chain complex by

(C,∆) = (Z2〈critf〉,∆).

We will use the notation of the boundary operator ∂ and its matrix ∆ interchangeably.

Given a chain complex (C, ∂) endowed with an increasing �ltration F pC so that ∂(F pC) ⊂ F pC (and we

assume here F−1C = 0). The associated spectral sequence is (a generally in�nite) sequence of chain complexes

(Er, dr) so that, roughly, each stage contains information about longer and longer parts of the di�erential: the

di�erential d0 in the complex at the �rst stage is the part of ∂ which does not decrease �ltration, d1 concerns

the part of ∂ which reduces �ltration by no more than 1 and so on. Moreover, H(Er, dr) = Er+1.

A bigraded module Er over a principal ideal domain R is an indexed collection of R-modules Er
p,q for

every pair of integers p and q. In this article we work with R = Z2 and hence the bigraded modules Er are

actually vectorial spaces over Z2. A di�erential dr of bidegree (−r, r − 1) is a collection of homomorphisms

dr : Ep,q → Ep−r,q+r−1 for all p and q, such that dr ◦ dr = 0. The homology module H(Er) is the bigraded

module

Hp,q(Er) =
Kerdr : Er

p,q → Er
p−r,q+r−1

Imdr : Er
p+r,q−r+1 → Er

p,q

.

A spectral sequence {Er, dr}, r ≥ 0, is a sequence of chain complexes where each chain complex Er is the

homology module of the previous one, i.e.,

• Er is bigraded module, dr is a di�erential with bidegree (−r, r − 1) in Er;

• For r ≥ 0 there exists an isomorphism H(Er) ≈ Er+1.

In general we will omit reference to q in this section since its role will be important when considering more

general Morse sets of a Morse decomposition. In our case, when the Morse set is a singularity of index k, the

only q such that Er
p,q is nonzero is q = k − p. Hence, it is understood that Er

p is in fact Er
p,k−p.

For a �ltered graded chain (C, ∂) complex we can de�ne a spectral sequence

Er
p = Zr

p/(Zr−1
p−1 + ∂Zr−1

p+r−1)

where,

Zr
p = {c ∈ FpC | ∂c ∈ Fp−rC}.

Hence, the module Zr
p consists of chains in FpC with boundary in Fp−rC. This makes it natural to look at

chains associated to the columns of the connection matrix to the left of and including the (p + 1)-st column.

This guarantees that any linear combination of chains respects the �ltration. Furthermore, since the boundary

of the chains must be in Fp−rC we must consider columns or linear combinations that respect the �ltration

and that have the property that the entries in rows i > (p− r + 1) are all zeroes. Hence, the signi�cant entry

in the connection matrix is determined by the element on the r-th auxiliary diagonal on the (p− r + 1)-st row

and (p + 1)-st column.

However, as r increases, the Z2-modules Er
p change generators. In practice, the generators of the complex C

mentioned above are very speci�c: singularities in the Morse case. The domain of dr, Er, is a certain quotient
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of a subgroup of C. Elements in this domain are represented by elements of C whose appropriate classes are in

the kernels of all previous di�erentials ds, s < r. Finding a system that span Er in terms of the original basis of

C is, in practice, a non-trivial matter but it is a necessity in applications, for example, in investigations related

to spectral numbers in symplectic topology, see [L]. An algorithm, which we refer to as the sweeping method,

which produces such a system is provided in the paper. More speci�cally, we make use of a recursive sweeping

method in Section 2 and our main result connects this algebraic change of the generators of the Z2-modules

of the spectral sequence to a particular family of changes of basis over Z2 of the connection matrix ∆. This

method singles out important nonzero entries, which we will refer to as primary pivots and change of basis

pivots, of the r-th auxiliary diagonal of ∆r in order to de�ne a matrix ∆r+1. At each step, ∆r+1 is a change of

basis of ∆r. Hence, all ∆r "represent" in some sense the initial connection matrix (that is, they all represent the

same linear transformation). We will also show how the r-th auxiliary diagonal of ∆r induces dr. In Theorem

1.1 the Er are determined as well as the identi�cation of long di�erentials.

Theorem 1.1. The matrices ∆r obtained from the sweeping method applied to ∆ determine the spectral se-

quence (Er
p , dr). Moreover if Er

p and Er
p−r are both nonzero, then the map dr

p : Er
p → Er

p−r is induced by ∆r,

i.e, it is multiplication by the entry ∆r
p−r+1,p+1 whenever it is either a primary pivot, a change of basis pivot

or a zero with a column of zero entries below it.

For clarity we subdivide Theorem 1.1 in Sections 3 and 4 into Theorem 3.3 and Theorem 4.2.

The key point here is that these spectral sequences are no more only tools of computations but they

are interesting objects in themselves: their higher di�erentials encode algebraically signi�cant information on

�long� trajectories of the system. Therefore, it is important to understand as well as possible the dictionary

algebra-geometry in this setting. The purpose of this paper is precisely to start to explore systematically this

issue.

2 Sweeping Method

In this section we present the sweeping method, which constructs recursively a family of matrices ∆r for r ≥ 0,

where ∆0 = ∆, by considering at each stage the r-th auxiliary diagonal. This family of matrices will be used

to determine the spectral sequence (Er, dr).

We remark that the sweeping method as well as all other theorems in this article do not require that the

columns of the matrix ∆ be ordered with respect to k, or equivalently, that the singularities hk be ordered with

respect to the �ltration. Without loss of generality we will assume the singularities to be ordered with respect

to the �ltration so as to simplify the notation and permit the indices which refer to the columns to increase

incrementally by one. Otherwise, in a more general setting we must introduce a subsequence notation for the

columns in order to consider the intersection of the auxiliary diagonals only with the index k columns. For

clarity, in our examples we also maintain the singularities ordered with respect to the �ltration.

For a �xed auxiliary diagonal r the method described below must be applied for all k simultaneously.
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A - Initial step

1. Consider all columns hk together with all rows hk−1 in ∆. Let ∆ki,j
be the entries in ∆ where the

i-th row is hk−1 and the j-th column is hk.

Let ξ1 be the �rst auxiliary diagonal of ∆ which contains nonzero entries ∆ki,j
, which will be denoted

as index k primary pivots. It follows that for each nonzero ∆ki,j on ξ1 the entries ∆ks,j for s > i are

all zero. These entries must be zero otherwise they would have been detected as primary pivots on

a ξ auxiliary diagonal for ξ < ξ1.

We end this �rst step by de�ning ∆ξ1 as ∆ with the index k primary pivots on the ξ1-st auxiliary

diagonal marked.

2. Consider the matrix ∆ξ1 and let ∆ξ1
ki,j

be the entries in ∆ξ1 where the i-th row is hk−1 and the j-th

column hk. Let ξ2 be the �rst auxiliary diagonal greater than ξ1 which contains nonzero entries

∆ξ1
ki,j

. We now construct a matrix ∆ξ2 following the procedure:

Given a nonzero entry ∆ξ1
ki,j

on the ξ2-th auxiliary diagonal of ∆ξ1

(a) if there are no primary pivots on the i-th row and the j-th column, mark it as an index k primary

pivot and the numerical value of the entry remains the same, i.e., ∆ξ2
ki,j

= ∆ξ1
ki,j

.

(b) if this is not the case, consider the entries in the j-th column and in the s-th row with s > i in

∆ξ1 .

(b1) If there is an index k primary pivot in an entry in the j-th column and in a row s, with s > i,

then the numerical value remains the same and the entry is left unmarked, i.e., ∆ξ2
ki,j

= ∆ξ1
ki,j

.

(b2) If there are no primary pivots in the j-th column below ∆ξ1
ki,j

then there is an index k

primary pivot on the i-th row, say in the t-th column of ∆ξ1 , with t < j. In this case the

entry remains the same, however the entry ∆ξ1
ki,j

is marked as a change of basis pivot, i.e.,

∆ξ2
ki,j

= ∆ξ1
ki,j

.

Note that we have de�ned a matrix ∆ξ2 which is actually equal to ∆ξ1 except that the ξ2-th

diagonal is marked with primary and change of basis pivots. See Figure 2.

B - Intermediate step

In this step we consider a matrix ∆r with the primary and change of basis pivots marked on the ξ-th

auxiliary diagonal for all ξ ≤ r. We will now describe how ∆r+1 is de�ned. If there is not exist a change

of basis pivot on the r-th auxiliary diagonal we go directly to step B.2, that is, ∆r+1 = ∆r with the

(r + 1)-st auxiliary diagonal marked with primary and change of basis pivots as in B.2.

B.1 - Change of basis

Suppose ∆r
ki,j

is a change of basis pivot on the r-th auxiliary diagonal. Since we have a change of bases

pivot in the i-th row, then there is a column, namely t-th column, associated to a k-chain such that ∆r
ki,t

is a primary pivot. Then perform a change of basis on ∆r by adding the t-th column of ∆r to the j-th

5





h
(`)
k h

(`+1)
k h

(`+2)
k h

(`+3)
k h

(`+4)
k

h
(s)
k−1 1 1

h
(s+1)
k−1 0 0 1

h
(s+2)
k−1 0 0 1 1

h
(s+3)
k−1 0 0 0 0 1

h
(s+4)
k−1 0 0 0 0 0


ξ2

ξ1

Figure 2: Auxiliary diagonals ξ1 and ξ2.

column of ∆r, in order to zero out the entry ∆r
ki,j

without introducing nonzero entries in ∆r
ks,j

for s > i.

The notation h
(`)
k indicates the elementary k-chain associated to the `-th column of ∆.

Once this is done, we obtain a k-chain associated to the j-th column of ∆r+1. It is a linear combination

over Z2 of the t-th hk columns of ∆r and the j-th column of ∆r such that ∆r+1
ki,j

= 0. It is also a linear

combination of hk columns of ∆ on and to the left of the j-th column.

Observe that if the `-th column of ∆r is an hk column, it corresponds to a linear combination over Z2

σ
(`),r
k =

∑̀
`=κ

c`,r
` h

(`)
k of hk columns of ∆ where the κ-th hk column is the �rst column in ∆ associated to a

k-chain. The notation of σ
(`),r
k indicates the Morse index k and the `-th column of ∆r. Hence if the j-th

column of ∆r+1 is an hk column, it will be

σ
(j),r+1
k =

j∑
`=κ

cj,r
` h

(`)
k︸ ︷︷ ︸

σ
(j),r
k

+qt

t∑
`=κ

ct,r
` h

(`)
k︸ ︷︷ ︸

σ
(t),r
k

= cj,r+1
κ h

(κ)
k + cj,r+1

κ+1 h
(κ+1)
k + · · ·+ cj,r+1

j−1 h
(j−1)
k + cj,r+1

j h
(j)
k (1)

It is clear that the �rst column of any ∆k can not undergo any change of basis since there is no column

to its left.

Once the above procedure is done for all change of basis pivots of the r-th diagonal of ∆r we can de�ne

a change of basis matrix.

Therefore the matrix ∆r+1 has numerical values determined by the change of basis over Z2 of ∆r. In
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particular, all the changes of basis pivots on the r-th auxiliary diagonal ∆r are zero in ∆r+1. See Figure

3 and 4.



σ
(`),r
k σ

(`+1),r
k σ

(`+2),r
k σ

(`+3),r
k σ

(`+4),r
k σ

(`+5),r
k

σ
(s),r
k−1 1 1 1

σ
(s+1),r
k−1 0 0 1 1

σ
(s+2),r
k−1 0 0 1 1 1

σ
(s+3),r
k−1 0 0 0 0 1 1

σ
(s+4),r
k−1 0 0 0 0 0 0


r

r + 1

Figure 3: Sweeping method: ∆r.

B.2 - Marking the (r + 1)-th auxiliary diagonal of ∆r+1

Consider the matrix ∆r+1 de�ned in the previous step and we will mark the (r + 1)-st auxiliary diagonal

with primary and change of basis pivots as follows:

Given a nonzero entry ∆r+1
ki,j

1. if there are no primary pivots on the i-th row and the j-th column, mark it as an index k primary

pivot.

2. if this is not the case, consider the entries in the j-th column and in the s-th row with s > i in ∆r+1.

(b1) If there is an index k primary pivot in the entries in the j-th column below ∆r+1
ki,j

then leave the

entry unmarked.

(b2) If there are no primary pivots in the j-th column below ∆r+1
ki,j

then there is an index k primary

pivot on the i-th row, say in the t-th column of ∆r+1, with t < j. In this case mark it as a

change of basis pivot. See Figure 4.

C - Final step

We repeat the above procedure until all auxiliary diagonals have been considered.
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σ
(`),r+1
k σ

(`+1),r+1
k σ

(`+2),r+1
k σ

(`+3),r+1
k σ

(`+4),r+1
k σ

(`+5),r+1
k

σ
(s),r+1
k−1 1 0 1

σ
(s+1),r+1
k−1 0 0 1 0

σ
(s+2),r+1
k−1 0 0 1 0 1

σ
(s+3),r+1
k−1 0 0 0 0 1 1

σ
(s+4),r+1
k−1 0 0 0 0 0 0


r

r + 1

Figure 4: Sweeping method: ∆r+1.

Example 2.1. Let ∆ be as in Figure 5. Applying the sweeping method to ∆ we obtain the matrices ∆1, ∆2,

∆3, ∆4, ∆5, ∆6, ∆7, ∆8 and ∆9 given by Figures 6, 7, 8, 9, 10, 11, 12, 13 and 14 respectively.

We now describe basic properties of the ∆r's produced by the sweeping method and will be used in the

proof of the main theorems. More speci�cally our attention will be directed towards characterizing properties

associated with the primary and change of basis pivots which are essential in determining the spectral sequence.

Many of the proofs are analogous to the ones in [CdRS].

It is easy to see that all ∆r's are upper triangular and ∆r ◦∆r = 0 since they are recursively obtained from

the initial connection matrix ∆ by change of basis over Z2.

Note that, as in [CdRS], if the entry ∆r
kp−r+1,p+1

has been identi�ed by the sweeping method as a primary

pivot or a change of basis pivot then ∆r
ks,p+1

= 0 for all s > p− r + 1.

Moreover, Proposition 2.2 asserts that we can not have more than one primary pivot in a �xed row or

column. Moreover, if there is a primary pivot in a row i then there is no primary pivot in column i.

Proposition 2.2. Let {∆r} be the resulting family of matrices produced by the sweeping method applied to a

connection matrix ∆. Given any two primary pivots ∆r
ki,j

and ∆r
km,`

we have that {i, j} ∩ {m, `} = ∅.

Proof: The only non trivial case which needs to be considered is when k = k + 1 and we have to prove

that in this case j 6= m. Suppose there exists a primary pivot on the j-th column and another on the j-th row

of ∆r, i.e., ∆r
ki,j

and ∆r
k+1j,`

are primary pivots. Hence, ∆r
ks,j

= 0 for all s > i and ∆r
k+1s,`

= 0 for all s > j.

Let σ
(j),r
k , σ

(i),r
k−1 and σ

(`),r
k+1 be chains associated to the j-th, the i-th and the `-th columns of ∆r respectively.
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F0
h0

F1

h
(2)
k−1

F2

h
(3)
k−1

F3

h
(4)
k

F4

h
(5)
k

F5

h
(6)
k

F6

h
(7)
k

F7

h
(8)
k

F8

h
(9)
k

F9

h
(10)
k+1

F10

h
(11)
k+1

F11

h
(12)
k+1

F12

h
(13)
k+1

F13
hn

F0 h0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F1 h
(2)
k−1 0 0 0 0 1 0 1 0 0 0 0 0 0 0

F2 h
(3)
k−1 0 0 0 0 1 1 0 0 1 0 0 0 0 0

F3 h
(4)
k 0 0 0 0 0 0 0 0 0 0 1 1 1 0

F4 h
(5)
k 0 0 0 0 0 0 0 0 0 1 0 0 0 0

F5 h
(6)
k 0 0 0 0 0 0 0 0 0 1 0 1 1 0

F6 h
(7)
k 0 0 0 0 0 0 0 0 0 1 0 0 0 0

F7 h
(8)
k 0 0 0 0 0 0 0 0 0 1 1 0 1 0

F8 h
(9)
k 0 0 0 0 0 0 0 0 0 0 0 1 1 0

F9 h
(10)
k+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F10 h
(11)
k+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F11 h
(12)
k+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F12 h
(13)
k+1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

F13 hn 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 5: ∆.
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Figure 6: ∆1. Marking primary pivots.
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Figure 7: ∆2. Marking primary and change of basis pivots.
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Figure 8: ∆3. Change of basis and marking pivots.
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Figure 9: ∆4.
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Figure 10: ∆5.
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Figure 11: ∆6.
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Figure 12: ∆7.
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Figure 13: ∆8.
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Figure 14: ∆9.
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Since ∆r ◦∆r = 0, V1 = {σ(i),r
k−1 , σ

(j),r
k , σ

(`),r
k+1 } cannot be an interval because ∆r(V1)2 6= 0. Therefore, there

must exist σ
(j2),r
k associated to the j2-th column of ∆r, such that σ

(j2),r
k 6= σ

(j),r
k , ∆r

ki,j2
6= 0 and ∆r

k+1j2,`
6= 0.

Note that j2 < j, since σ
(j2),r
k 6= σ

(j),r
k and all entries below a primary pivot are zero.

The entry ∆r
ki,j2

cannot be a primary pivot, since the i-th row already has a primary pivot. Thus, the

primary pivot of the j2-th column must be below the entry ∆r
ki,j2

, i.e, there exists σ
(i2),r
k−1 associated to the i2-th

row of ∆r, i2 > i, such that ∆r
ki2,j2

is a primary pivot. Therefore, ∆r
ks,j2

= 0 for all s > i2. See �gure 15.
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Figure 15: Impossibility of primary pivots in the j-th row and in the j-th column simultaneously.

Once again, since ∆r ◦ ∆r = 0 and ∆r(V2)2 6= 0 for V2 = {σ(i2),r
k−1 , σ

(j2),r
k , σ

(`),r
k+1 }, then V2 cannot be an

interval, i.e., there exists σ
(j3),r
k on the j3-th column of ∆r such that σ

(j3),r
k 6= σ

(j2),r
k , j3 ≤ j, ∆r

ki2,j3
6= 0 and

∆r
k+1j3,`

6= 0.

We must show that σ
(j3),r
k 6= σ

(j),r
k . By the construction of σ

(j3),r
k we have that ∆r

ki2,j3
6= 0 where i2 > i.

Thus, if j3 were equal to j we would have the entry ∆r
ki2,j

6= 0 below the primary pivot ∆r
ki,j

. This contradicts

the fact that ∆r
ks,j

= 0 for all s > i.

Repeating the above steps and always using the fact that ∆r ◦ ∆r = 0 we eventually run out of rows or

columns to continue the above arguments. See �gure 16. If there are no more hk columns we will have an

interval V with ∆(V )2 6= 0 which contradicts the fact that ∆r ◦ ∆r = 0. On the other hand, if there are no

more hk−1 columns we will have a nonzero entry in ∆r below the r-th auxiliary diagonal which is neither a

primary pivot nor an entry above a primary pivot. It contradicts the fact that the only nonzero entries in ∆r

below the r-th auxiliary diagonal are primary pivots and entries above primary pivots.
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σ
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Figure 16: Construction of a �nite sequence of singularities to insure no intervals ∆r(V ) in ∆r with ∆r(V )2 = 0.

3 The Modules Er
p of the Spectral Sequence

In this section, we show how the Z2-modules Er
p are determined when we apply the sweeping method to the

matrix ∆. The primary and change of basis pivots of ∆r produced by the sweeping method play an important

role in determining the generators of Zr
p . In order to simplify notation, reference to the index k in the matrix

∆r
k will be omitted whenever it is not necessary.

Recall that

Er
p = Zr

p/(Zr−1
p−1 + ∂Zr−1

p+r−1)

where,

Zr
p = {c ∈ FpC | ∂c ∈ Fp−rC}.

Each hk column of the connection matrix ∆ represents connections of an elementary chain hk of Ck to an

elementary chain hk−1 of Ck−1.

The Z-module Zr
p,k−p = {c ∈ FpCk; ∂c ∈ Fp−rCk−1} is generated by k-chains contained in Fp with bound-

aries in Fp−r. This corresponds in the matrix ∆ to all the hk columns to the left of the (p + 1)-st column or

linear combinations of these hk columns, such that their boundaries (nonzero entries) are above the (p−r+1)-st

row3.

Similarly Zr−1
p−1,k−(p−1) = {c ∈ Fp−1Ck; ∂c ∈ Fp−rCk−1} corresponds in the matrix ∆ to all the hk columns

to the left of the p-th column or linear combinations of these hk columns such that their boundaries are above

the (p− r + 1)-st row.

Finally,

∂Zr−1
p+r−1,(k+1)−(p+r−1) = ∂{c ∈ Fp+r−1Ck+1; ∂c ∈ FpCk}

is the set of all the boundaries of elements in Zr−1
p+r−1,(k+1)−(p+r−1), which corresponds in the matrix ∆ to all

the hk columns to the left of the (p + 1)-st column (or equivalently all hk rows above the (p + 1)-st row) which

3The expressions "above the row" and "to the left of the column" shall include the row or column in question, whereas the

expressions "below the row" and "to the right of the column" shall not include the row or column in question.
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are boundary of hk+1 columns that are to the left of the (p + r)-th column.

The index k singularity in Fp \ Fp−1 corresponds to the k chain associated to the (p + 1)-st column of ∆.

Hence we denote this singularity by h
(p+1)
k .

The Proposition 3.1 establishes a formula for Zr
p,k−p.

Proposition 3.1. Zr
p,k−p = Z2[µ(p+1),rσ

(p+1),r
k , µ(p),r−1σ

(p),r−1
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ] where κ is the

�rst column in ∆ associated to a k-chain and µ(j),ζ = 0 whenever the primary pivot of the j-th column is below

the (p− r + 1)-st row and µ(j),ζ = 1 otherwise.

Proof: Note that the σ
(p+1−ξ),r−ξ
k is associated to the (p + 1 − ξ)-th column of the matrix ∆ξ. By

de�nition, µ(p+1−ξ),r−ξ = 1 if and only if the primary pivot on the (p + 1 − ξ)-th column is above the row

(p + 1 − ξ) − (r − ξ) = p − r + 1. It is easy to verify that chains associated to columns with primary pivots

below the (p− r + 1)-st row do not correspond to generators of Zr
p,k−p. Consider a k-chain σ

(p+1−ξ),r−ξ
k , with

ξ ∈ {0, . . . , p + 1 − κ}, associated to the (p + 1 − ξ)-th column of ∆r−ξ such that the primary pivot of the

(p+1−ξ)-th column of ∆r−ξ is above (p−r+1)-st row. For the latter primary pivots we show that σ
(p+1−ξ),r−ξ
k

is a k-chain which corresponds to a generator of Zr
p . It is easy to see that σ

(p+1−ξ),r−ξ
k is in FpCk for ξ ≥ 0.

Furthermore, (r − ξ)-th step in the sweeping method applied has zeroed out all change of basis pivots below

the (r − ξ)-th auxiliary diagonal. In other words, all nonzero entries of the (p + 1− ξ)-th column of ∆r−ξ are

above the (p + 1− ξ)− (r − ξ) = (p− r + 1)-st row. Hence the boundary of σ
(p+1−ξ),r−ξ
k is in Fp−rCk−1.

We now show that any element in Zr
p is a linear integer combination of µ(p+1−ξ),r−ξσ

(p+1−ξ),r−ξ
k for ξ =

0, . . . , p + 1− κ. This is done by multiple induction in p and r.

• Consider Fκ−1, where κ is the �rst column of ∆ associated to a k-chain. Let ξ be such that the boundary

of h
(κ)
k is in Fκ−1−ξCk \ Fκ−1−ξ−1Ck.

1. Zr
κ−1 is generated by k-chain in Fκ−1Ck with boundaries in Fκ−1−rCk−1. Note that there exists

only one chain h
(κ)
k in Fκ−1Ck. Hence

(a) If ξ < r then ∂h
(κ)
k /∈ Fκ−1−rCk−1. Thus, Zr

κ−1 = 0

(b) If ξ > r than ∂h
(κ)
k ∈ Fκ−1−rCk−1. Thus, Zr

κ−1 = Z2[h
(κ)
k ]

2. On the other hand, σ
(κ),r
k is a k-chain associated to the κ-th column of ∆r. Since there is no change of

basis caused by the sweeping method that a�ects the �rst column of ∆k, σ
(κ),r
k = h

(κ)
k . Furthermore,

µ(κ),r = 1 if and only if the boundary of h
(κ)
k = σ

(κ),r
k is above the r-th auxiliary diagonal. Hence

(a) If ξ < r then µ(κ),r = 0. Thus Z2[µ(κ),rσ
(κ),r
k ] = 0

(b) If ξ > r then µ(κ),r = 1. Thus Z2[µ(κ),rσ
(κ),r
k ] = Z2[σ

(κ),r
k ] = Z2[h

(κ)
k ].

Hence Zr
κ−1 = Z2[µ(κ),rσ

(κ),r
k ].

• Let the ξ1-th auxiliary diagonal be the �rst in ∆ that intersects ∆k. All the columns of ∆ corresponding

to the chains h
(p+1)
k , . . . , h

(κ)
k have nonzero entries above the ξ1-th auxiliary diagonal, thus, above the

(p− ξ1 + 1)-st row of ∆.
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1. By de�nition Zξ1
p is generated by k-chains contained in FpCk with boundary in Fp−ξ1Ck−1. Since the

columns of ∆ associated to the chains h
(p+1)
k , . . . , h

(κ)
k have nonzero entries above the (p− ξ1 + 1)-st

row, this implies that the boundaries are in Fp−ξ1Ck−1, i.e.,

Zξ1
p = Z2[h

(p+1)
k , . . . , h

(κ)
k ].

2. Since nonzero entries in the columns of ∆ associated to the chains h
(p+1)
k , . . . , h

(κ)
k are all above the

ξ1-th auxiliary diagonal then σ
(j),ξ1
k = h

(j)
k , j = κ, . . . p + 1 and µ(j),ξ1 = 1, j = κ, . . . p + 1. Hence,

Z2[µ(p+1),ξ1σ
(p+1),r
k , . . . , µ(κ),κ−p+1+ξ1σ

(κ),κ−p+1+ξ1
k ] = Z2[h

(p+1)
k , . . . , h

(κ)
k ].

Therefore, Zξ1
p = Z2[µ(p+1),ξ1σ

(p+1),r
k , . . . , µ(κ),κ−p+1+ξ1σ

(κ),κ−p+1+ξ1
k ].

• We assume that the generators of Zr−1
p−1 correspond to k-chains associated to σ

(p+1−ξ),r−ξ
k , ξ = 1, . . . , p +

1 − κ whenever the primary pivot of the (p + 1 − ξ)-th column is above the (p − r + 1)-st row. If the

primary pivot of the (p + 1)-st column is below the (p− r + 1)-st row then Zr
p = Zr−1

p−1 and it is the case

when µ(p+1),r = 0. Suppose now that the primary pivot of the (p+1)-st column is above the (p−r+1)-st

row. Let bκ, . . . , bp+1 ∈ Z2 and hk = bp+1h
(p+1)
k + · · ·+ bκh

(κ)
k be a k-chain corresponding to an element

of Zr
p,k−p. We know that hk is in Fp and its boundary is above the (p − r + 1)-st row. If bp+1 = 0 then

hk ∈ Zr−1
p−1 and the result follows by the induction hypothesis. Suppose bp+1 = 1.

Thus we can rewrite hk as

hk = σ
(p+1),r
k + (bp − cp+1,r

p )h(p)
k + · · ·+ (bκ − cp+1,r

κ )h(κ)
k .

Note that hk − σ
(p+1),r
k = (bp − cp+1,r

p )h(p)
k + · · · + (bκ − cp+1,r

κ )h(κ)
k ∈ Fp−1. Moreover, since hk and

σ
(p+1),r
k have their boundaries above the (p−r+1)-st row then the boundary of hk−σ

(p+1),r
k is above the

(p− r +1)-st row. Hence hk −σ
(p+1),r
k ∈ Zr−1

p−1 . By the induction hypotheses we have that hk −σ
(p+1),r
k =

apµ
(p),r−1σ

(p),r−1
k + · · ·+ aκµ(κ),r−p−1+κσ

(κ),r−p−1+κ
k i.e,

hk = σ
(p+1),r
k + apµ

(p),r−1σ
(p),r−1
k + · · ·+ aκµ(κ),r−p−1+κσ

(κ),r−p−1+κ
k .

The next lemma will be used in Theorem 3.3.

Lemma 3.2. Suppose that ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1). Then

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1) = Zr
p

Proof: Since ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1) then Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1) is a

submodule of

Zr
p,k−p = Z2[µ(p+1),rσ

(p+1),r
k , µ(p),r−1σ

(p),r−1
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ]
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but it is not a submodule of

Zr−1
p−1,k−(p−1) = Z2[µ(p),r−1σ

(p),r−1
k , µ(p−1),r−2σ

(p−1),r−2
k , . . . , µ(κ),r−p−1+κσ

(κ),r−p−1+κ
k ].

Then µ(p+1),r = 1 and Zr−1
p−1 + ∂Zr−1

p+r−1,(k+1)−(p+r−1) = Zr
p .

Theorem 3.3. The matrix ∆r obtained from the sweeping method applied to ∆ determines Er
p.

Proof: We will prove that

Er
p,k−p =

Zr
p,k−p

Zr−1
p−1,k−(p−1) + ∂Zr−1

p+r−1,(k+1)−(p+r−1)

is either zero or a �nite generated Z2-module whose generator corresponds to a k-chain associated to the

(p + 1)-st column of ∆r.

Note that ∆r
p−r+1,p+1 is on the r-th diagonal and plays a crucial role in determining Er

p,k−p.

We now proceed to identify the e�ect that entries on the r-th auxiliary diagonal of ∆r have on determining

the generators of the Z2-modules Er
p .

A nonzero entry on the r-th auxiliary diagonal can be either a primary pivot, a change of basis pivot or it

is in a column above a primary pivot. A zero entry can be in a column above a primary pivot or all entries

below it are also zero.

1. Suppose the entry ∆r
p−r+1,p+1 has been identi�ed by the sweeping method as a primary pivot. Then

∆r
s,p+1 = 0 for all s > p − r + 1. Therefore, the chain associated to the (p + 1)-st column in ∆r

corresponds to a generator of Zr
p,k−p. By the sweeping method this chain is a linear combination over

Z2 of the hk columns of ∆ to the left of the (p + 1)-st column such that the coe�cient of the (p + 1)-st

hk column is 1. This chain is σ
(p+1),r
k and since the coe�cient of the (p + 1)-st hk column is nonzero,

σ
(p+1),r
k is not contained in the generators of Zr−1

p−1,k−(p−1).

Claim 1: If ∆r
p−r+1,p+1 has been identi�ed by the sweeping method as a primary pivot then

∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1).

The generators of Zr−1
p+r−1,(k+1)−(p+r−1) must correspond to (k+1)-chains associated to hk+1 columns

with the property that their boundaries are above the (p + 1)-st row and consequently all entries

below the (p+1)-st row are zero. Hence the entries of these hk+1 column on the (p+1)-st row must,

by the sweeping method, either be a primary pivot or a zero entry. See �gure 17.

By Proposition 2.2 the (p + 1)-st row can not contain a primary pivot since we have assumed that

the (p + 1)-st columns has a primary pivot. Therefore, the entries of these hk+1 columns on the

(p + 1)-st row must be zeroes. It follows that ∂Zr−1
p+r−1,(k+1)−(p+r−1) does not contain in its set of

generators the generator σ
(p+1),r
k . The claim follows.

By Proposition 3.1 we have that Er
p,k−p = Z2[σ

(p+1),r
k ].
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Figure 17: ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1).

2. If the entry ∆r
p−r+1,p+1 is identi�ed by the sweeping method as a change of basis pivot then the sweeping

method guarantees that ∆r+1
p−r+1,p+1 = 0. Furthermore, ∆r

s,p+1 = 0 for all s > p − r + 1 and, like in the

previous case, the generator corresponding to the k-chain associated to (p + 1)-st column σ
(p+1),r
k in ∆r

is a generator of Zr
p,k−p.

Thus we have to analyze the (p + 1)-st row. There are two possibilities:

(a) ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1), i.e, all the boundaries of the elements in Zr−1
p+r−1,(k+1)−(p+r−1)

are above the p-th row.

In this case, as before, by Proposition 3.1 Er
p,k−p = Z2[σ

(p+1),r
k ].

(b) ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), i.e, there exist elements in Zr−1
p+r−1,(k+1)−(p+r−1) whose

boundary has a nonzero entry on the (p + 1)-st row which is necessarily a primary pivot.

By Lemma 3.2 Er
p,k−p = 0.

3. If the entry ∆r
p−r+1,p+1 is nonzero, but is not a primary pivot nor a change of basis pivot then it must be

an entry above a primary pivot. In other words, there exists s > p− r + 1 such that ∆r
s,p+1 is a primary

pivot. It follows that σ
(p+1),r
k is not in Zr

p,k−p. Thus, Zr−1
p−1,k−(p−1) = Zr

p,k−p and hence Er
p,k−p = 0.

4. If the entry ∆r
p−r+1,p+1 is a zero entry we have the following possibilities:

(a) There is a primary pivot below ∆r
p−r+1,p+1 i.e, there exists s > p−r+1 such that ∆r

s,p+1 is a primary

pivot. In this case the generator corresponding to the k-chain associated to (p+1)-st column σ
(p+1),r
k
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Figure 18: ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1).

is not a generator of Zr
p and hence Zr−1

p−1,k−(p−1) = Zr
p,k−p. It follows that Er

p,k−p = 0.

(b) ∆r
s,p+1 = 0 for all s > p− r + 1. In this case, the generator corresponding to the k-chain associated

to (p + 1)-st column σ
(p+1),r
k in ∆r is a generator of Zr

p,k−p. Thus we must analyze the (p + 1)-st

row. We have the following possibilities:

i. ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1), i.e, all the boundaries of the elements in Zr−1
p+r−1,(k+1)−(p+r−1)

are above the p-th row.

In this case, as before, by Proposition 3.1 Er
p,k−p = Z2[σ

(p+1),r
k ].

ii. ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1), i.e, there exist elements in Zr−1
p+r−1,(k+1)−(p+r−1) whose

boundary has a nonzero entry on the (p + 1)-st row. By Proposition 3.1 and Lemma 3.2

Er
p,k−p = 0.

5. The entry ∆r
p−r+1,p+1 is not in ∆r

k. This includes the case where p− r + 1 < 0, i.e, ∆r
p−r+1,p+1 is not on

the matrix ∆r.

The analyzes of Er
p is very similar to the previous one, i.e, we have two possibilities:

(a) There is a primary pivot on the (p + 1)-st column in a auxiliary diagonal r < r. In this case the

generator corresponding to the k-chain associated to (p + 1)-st column σ
(p+1),r
k is not a generator of

Zr
p,k−p. Hence Zr−1

p−1,k−(p−1) = Zr
p,k−p and Er

p,k−p = 0.

(b) All the entries in ∆r on the (p + 1)-st column in auxiliary diagonals lower than r are zero, i.e, the
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generator corresponding to the k-chain associated to (p + 1)-st column σ
(p+1),r
k in ∆r is a generator

of Zr
p,k−p. Then we have to analyze the (p + 1)-st row.

i. If ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1) then, by Proposition 3.1, Er
p,k−p = Z2[σ

(p+1),r
k ].

ii. If ∂Zr−1
p+r−1,(k+1)−(p+r−1) * Zr−1

p−1,k−(p−1) then, by Proposition 3.1 and Lemma 3.2, Er
p,k−p = 0.

4 The Di�erentials of the Spectral Sequence

In this section we will show how the sweeping method applied to ∆ induces the di�erentials dr
p : Er

p → Er
p−r in

the spectral sequence. We need to analyze the cases where both Er
p and Er

p−r are nonzero since otherwise dr
p

is zero. We will denote by κ the �rst column of a connection matrix associated to a k-chain and by κ the �rst

column associated to a (k + 1)-chain.

Lemma 4.1. Let Er
p = Z2[σ

(p+1),r
k ] and suppose that ∆r

p−r+1,p+1 is a zero entry with a column of zeroes below

it. Then

1. If ∆r
p+1,p+r+1 is a primary pivot, Er+1

p,k−p = 0.

2. If ∆r
p+1,p+r+1 is a zero entry with a column of zeroes below it, Er+1

p,k−p = Z2[σ
(p+1),r+1
k ].

Proof: Since ∆r
p−r+1,p+1 is zero with a column of zero entries below it then ∆r+1

p−r+1,p+1 = 0 and

thus σ
(p+1),r+1
k ∈ Zr+1

p,k−p. It follows that Zr
p−1,k−(p−1)  Zr+1

p,k−p. Moreover, since Er
p = Z2[σ

(p+1),r
k ] then

we have that ∂Zr−1
p+r−1,(k+1)−(p+r−1) ⊆ Zr−1

p−1,k−(p−1). But the di�erence between ∂Zr−1
p+r−1,(k+1)−(p+r−1) and

∂Zr
p+r,(k+1)−(p+r) is that the last one includes the boundary of the (p + r + 1)-st column. See Figure 19. The

element in the (p + r + 1)-st column and (p + 1)-st row is ∆r
p+1,p+r+1.

If ∆r
p+1,p+r+1 is a primary pivot then ∂Zr

p+r,(k+1)−(p+r) * Zr
p−1,k−(p−1) and Er+1

p,k−p = 0.

If ∆r
p+1,p+r+1 = 0 then ∂Zr

p+r,(k+1)−(p+r) ⊆ Zr
p−1,k−(p−1) and, Er+1

p = Z2[σ
(p+1),r
k ].

Theorem 4.2. If Er
p and Er

p−r are both nonzero, then the map dr
p : Er

p → Er
p−r is induced by δr

p, i.e,

multiplication by the entry ∆r
p−r+1,p+1 whenever it is either a primary pivot or a zero with a column of zero

entries below it.

Proof: Suppose that Er
p and Er

p−r are both nonzero. We must show in each of the following cases that

Kerδr
p

Imδr
p+r

= Er+1
p .

Since we want Er
p nonzero, from Theorem 3.3, we will lead us to consider three mail cases for the entry

∆r
p−r+1,p+1: primary pivot, change of basis pivot and zero with a column of zeroes below it. However, if

∆r
p−r+1,p+1 is a change of basis pivot then there exists a primary pivot in the (p− r + 1)-st row on a diagonal

below the r-th auxiliary diagonal. It follows by Theorem 3.3 2(b) that Er
p−r = 0. Hence, whenever Er

p and
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· · · σ
(p+r),r
k+1 σ

(p+r+1),r
k+1

σ
(p+1),r
k · · · ∆r

p+1,p+r ∆r
p+1,p+r+1


r

r − 1

Figure 19: Di�erence between ∂Zr−1
p+r−1,(k+1)−(p+r−1) and ∂Zr

p+r,(k+1)−(p+r).

Er
p−r are both nonzero, the entry ∆r

p−r+1,p+1 in ∆r is either a primary pivot or a zero with a columns of zero

entries below it.

1. ∆r
p−r+1,p+1 is a primary pivot.

If ∆r
p−r+1,p+1 is a primary pivot, we know by Theorem 3.3 that Er

p = Z2[σ
(p+1),r
k ]. Moreover Er

p−r =

Z2[σ
(p−r+1),r
k−1 ]. In fact, Er

p−r could not be zero because this would imply in the existence of a primary

pivot on a diagonal below the r-th auxiliary diagonal. We have the following sequence:

... Z2[σ
(p−r+1),r
k−1 ]oo Z2[σ

(p+1),r
k ]

δr
poo Er

p+r

δr
p+roo ...oo (2)

(a) Suppose Er
p+r = 0. Then Imδr

p+r = 0. Moreover, since δr
p : Z2[σ

(p+1),r
k ] → Z2[σ

(p−r+1),r
k−1 ] is

multiplication by ∆r
p−r+1,p+1 = 1 then Kerδr

p = 0. Hence
Kerδr

p

Imδr
p+r

= 0.

(b) Suppose Er
p+r 6= 0. As in the previous case, δr

p : Z[σ(p+1),r
k ] → Z[σ(p−r+1),r

k−1 ] is multiplication by

∆r
p−r+1,p+1 6= 0 and hence Kerδr

p = 0.

Since Er
p+r 6= 0, let us consider the three possibilities for ∆r

p+1,p+r+1. Either it is a primary pivot,

a change of basis pivot or a zero entry with a column of zero entries below it. However, since

∆r
p−r+1,p+1 is a primary pivot, by Proposition 2.2 there is no primary pivot on the (p + 1)-st row.

Hence ∆r
p+1,p+r+1 can not be a primary pivot nor a change of basis pivot. Thus, ∆r

p+1,p+r+1 is a

zero and Imδr
p+r = 0. It follows that

Kerδr
p

Imδr
p+r

= 0.

On the other hand, for both cases above, since ∆r
p−r+1,p+1 is a primary pivot then σ

(p+1),r+1
k = σ

(p+1),r
k .

Note that its boundary in the (p−r+1)-st row is ∆r
p−r+1,p+1 6= 0 and hence it is not above the (p−r)-th

row. It follows that σ
(p+1),r+1
k /∈ Zr+1

p and thus Zr+1
p = Zr

p−1 and Er+1
p = 0.

2. ∆r
p−r+1,p+1 = 0 with a column of zeroes below it. In this case Kerδr

p = Er
p and σ

(p+1),r
k = σ

(p+1),r+1
k .
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(a) If ∆r
p+1,p+r+1 is an entry above a primary pivot then we have µ(p+r+1),r = 0 and Er

p+r = 0. Hence

Imδr
p+r = 0 and thus

Kerδr
p

Imδr
p+r

= Er
p .

On the other hand since µ(p+r+1),r = 0, Er+1
p = Er

p .

(b) If ∆r
p+1,p+r+1 = 0 with a column of zero entries below it then Imδr

p+r = 0 and

Kerδr
p

Imδr
p+r

= Er
p .

On the other hand, it follows from Lemma 4.1 that Er+1
p = Er

p .

(c) If ∆r
p+1,p+r+1 = 1 is a primary pivot then there is neither a primary pivot in the the (p + 1)-st row

nor a primary pivot in the (p + r + 1)-st column in a diagonal below the r-th auxiliary diagonal.

Hence Er
p = Z2[σ

(p+1),r
k ] and Er

p+r = Z2[σ
(p+r+1),r
k ].

... Er
p−r

oo Z2[σ
(p+1),r
k ]

δr
poo Z2[σ

(p+r+1),r
k+1 ]

δr
p+roo ...oo (3)

Therefore
Kerδr

p

Imδr
p+r

=
Z2[σ

(p+1),r
k ]

Z2[σ
(p+1),r
k ]

= 0.

On the other hand, since ∆r
p+1,p+r+1 is a primary pivot by Lemma 4.1 Er+1

p,k−p = 0.

(d) If ∆r
p+1,p+r+1 is a change of basis pivot then there is a primary pivot in the the (p + 1)-st row

in a diagonal below the r-th auxiliary diagonal. Hence Er
p = 0 and this case does not need to be

considered.

We have seen that for all cases
Kerdr

p

Imdr
p+r

= Er+1
p,k−p =

Kerδr
p

Imδr
p+r

.
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