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Abstract

We observe a process X on a fixed time interval [0, T ], at times 0, T/n, 2T/n, . . . , T

and we wish to decide whether the process has jumps or not. We study an evidence

measure driven by a full Bayesian analysis for Jump-diffusion model. In order to

compare power, we adapt the full Bayesian decision procedure, as defined in Pereira

and Stern, [7].
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1 The Jump-diffusion model formulation

In this section we study the jump-diffusion models that motivated the statistics test

that we are interested in. Let (Ω,F , P, {Ft}) be a completed filtered probability

space on which is defined a Brownian motion W and a compound Poisson process J ,

both adapted to the filtration {Ft}. More precisely, we assume that the process J

takes the following form:

Jt =
Nt
∑

j=1

(Vj − 1), t ≥ 0, (1)

where N = {Nt} is a standard Poisson process with rate λ, and {Vj}is a sequence of

i.i.d. nonnegative random variables. We assume that
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1. for each j, Xj = log(Vj) has a given distribution;

2. the process W , N , and Xj’s are independent;

3. Ft = σ{Ws, Js : 0 ≤ s ≤ t}, t ≥ 0, augmented under P so that it satisfies the

usual hypothesis.

In our jump-diffusion model we assume that all economics have a finite horizon

[0, T ], and the price of our underlying risky asset is given by the following stochastic

differential equation:

dSt

St
= µdt + σdWt + dJt = µdt + σdWt + d

(

Nt
∑

i=1

(Vi − 1)

)

. (2)

We assume that the drift µ, representing the expected return value, and the volatility

σ are constants. Recall that the jump-diffusion was first considered by Merton (1976)

[6], in which the logarithm of the jumps size is assumed to have Normal distribution.

Kuo and Wang (2001) [4] considered the case when the logarithm of the jumps size

has double exponential distribution. In [2] (2002), Galea, Ma and Torres consider

the case when the logarithm of the jumps size has power exponential distribution.

1.1 Discrete Model

The goal of this section, is to approximate the equation given in (2) using the Euler

method. We know that from [9], the solution to the Stochastic Differential Equation

(2) comes from:

St = S0e

(

µ−σ2

2

)

t+σWt
Nt
∏

i=1

Vi. (3)

Next

△St

St
=

St+1 − St

St
= exp







(

µ − σ2

2

)

△t + σ (Wt+△t − Wt) +

Nt+△t
∑

i=Nt+1

Xi







− 1. (4)

If △t is small enough, you can reject the terms of greatest order from the Taylor

expansion, approximating ex by 1 + x + x2/2, being left with then

△St

St
∼

(

µ − σ2

2

)

△t + σ (Wt+△t − Wt) +

Nt+△t
∑

i=Nt+1

Xi +
1

2
σ2 (Wt+△t − Wt)

2

∼ µ△t + σZ
√

△t +

Nt+△t
∑

i=Nt+1

Xi, (5)

where Z is a normal standard random variable and the parameters to be estimated

are µ, which represents the expected return, σ, the volatility, λ the jump rate, κ, the

expected size of the jumps in the instantaneous return (return in St), η the variability
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of jump size in the instantaneous return, and β the kurtosis of the power exponential

distribution.

As it was shown in [4], for △i small enough we have:

Nt+△t
∑

i=Nt+1

Xi =







XNt+△, w.p. λ△;

0, w.p. 1 − λ△.
(6)

In other words, if δ = |π| is sufficiently small, the return can be approximated in

distribution by
△St

St
= µδ + σZ

√
δ + B · X (7)

where B is a Bernoulli random variable with P (B = 1) = λδ and P (B = 0) = 1−λδ,

and Z ∼ N(0, 1). Note that

P (σ
√

δZ + BX ≤ x) = P (σ
√

δZ + X ≤ x)P (B = 1) + P (σ
√

δZ ≤ x)P (B = 0)

= P (σ
√

δZ + X ≤ x)λδ + P (σ
√

δZ ≤ x)(1 − λδ). (8)

The problem is thus to calculate the distribution of the random variable σ
√

δZ + X,

an independent sum of a normal random variable and a random variable with some

distribution F .

2 Some distributions to be considered

The Power Exponential Distribution: This distribution is a generalization of

the normal distribution, and is used to model distributions that deviate a little from

the normal. Varying the value of the exponent β, it is possible to describe Gaussian,

Laticurtic, and Leptocurtic distributions. Its density function is given as:

fX(x) =
βe

−1
2λ

|x−κ|β
2η

ηλΓ( 1
β )2

β+1
β

, β > 0. (9)

where λ =

(

Γ( 1
β
)

2
2
β Γ( 3

β
)

)1/2

, κ is the localization parameter, η is the scale parameter,

and β is a parameter that measures the kurtosis and controls how much the normal

distribution deviates.

When β = 2, the distribution corresponds to one that is normal and β = 1, the

distribution is a laplacian or double exponential.

As β grows, the function becomes more uniform [−η, η] if κ = 0. In the case where

β → ∞, the function becomes uniform. When β → 0 and η → 0, it corresponds to a

Kronecker delta function.
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The Beta distribution: The general formula for the probability density function

of the beta distribution is

f(x) =
(x − a)p−1 ∗ (b − x)q−1

B(p, q) ∗ (b − a)p+q−1
for a ≤ x ≤ b, p, q > 0 (10)

where p and q are the shape parameters, a and b are the lower and upper bounds,

respectively, of the distribution, and B(p, q) is the beta function. The beta function

has the formula

B(α, β) =

∫ 1

0
tα−1 ∗ (1 − t)β−1dt

The case where a = 0 and b = 1 is called the standard beta distribution. The

equation for the standard beta distribution is

f(x) =
xp−1 ∗ (1 − x)q−1

B(p, q)
for 0 ≤ x ≤ 1, p, q > 0

Typically we define the general form of a distribution in terms of location and scale

parameters. The beta is different in that we define the general distribution in terms

of the lower and upper bounds.

The Inverse Gaussian distribution: The inverse Gaussian distribution, also

known as the Wald distribution, is the distribution over [0,∞) with probability func-

tion given by

f(x) =

√

λ

2πx3
e
−λ(x−µ)2

2xµ2 (11)

where µ > 0 is the mean and λ > 0 is a scaling parameter. The Wald distribution is

the special case of the inverse Gaussian distribution in which µ = λ = 1. As λ tends

to infinity, the inverse Gaussian distribution becomes more like a normal (Gaussian)

distribution. The inverse Gaussian distribution has several properties analogous to a

Gaussian distribution. The name can be misleading. It is an ”inverse” only in that,

while the Gaussian describes the distribution of distance at fixed time in Brownian

motion, the inverse Gaussian describes the distribution of the time taken to reach a

fixed distance.

Gamma distribution: The gamma distribution is a two-parameter family of con-

tinuous probability distributions, (α, β), that represents, for integral shape parameter

α, the sum of α exponentially distributed random variables, each of which has mean

β.

When the shape parameter is set to 1, the gamma distribution is the exponential

distribution. For integer values of the shape parameter it is also known as the Erlang

distribution. The Chi-squared distribution is a gamma distribution in which the
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shape parameter is set to half of the degrees of freedom and the scale parameter is

set to two.

The general formula for the probability density function of the gamma distribution

is

f(x) =

x−µ
β

α−1
e

−(x−µ)
β

βΓ(α)
; x ≥ µ;α, β > 0 (12)

where α is the shape parameter, µ is the location parameter, β is the scale parameter,

and Γ is the gamma function which has the formula

Γ(a) =

∫ ∞

0
ta−1e−tdt

The case where µ = 0 and β = 1 is called the standard gamma distribution. The

equation for the standard gamma distribution reduces to

f(x) =
xγ−1e−x

Γ(γ)
; for x ≥ 0

Bernoulli distribution: The Bernoulli distribution is a discrete distribution having

two possible outcomes labelled by X = 0 and X = 1 in which X = 1 (”success”)

occurs with probability p and X = 0 (”failure”) occurs with probability q = 1 − p,

where 0 < p < 1. It therefore has probability function

P (x) =







p for x = 1;

1 − p, for x = 0.
(13)

2.1 Convolution Formula

2.1.1 Normal and Power Exponential

Suppose that X ∼ P (β, 0, φ) and Y ∼ N(0, σ2), and that X and Y are independent.

Then the density function of X + Y has the following series representations:

1. for β > 1,

fX+Y (z) =
C(φ, β)√

2πσ
e

−z2

2σ2

∞
∑

n=0

Γ

(

2n + 1

2β

)

(2n)!(2σ2)nφ2n+12
2n+1

β H2n

(

z√
2σ

)

(14)

2. for 0 < β < 1,

fX+Y (z) =
C(φ, β)√

2π
e

−z2

4σ2 ×
∞
∑

n=0

(−1)n
Γ (2βn + 1) σ2βn

n!2nφ2βn

[

D−(2βn+1)(z/σ) + D−(2βn+1)(−z/σ)
]

(15)
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2.1.2 Normal and Inverse Gaussian

Suppose that X ∼ IG(λ, µ2) and Y ∼ N(µ1, σ
2), and that X and Y are independent.

Then the density function of X + Y has the following series representations:

fX+Y (z) =

√
λ

2πσ
e

−(z−µ1)2

2σ2 + λ
µ2

∞
∑

n=1

2
Hn

(
√

2(z−µ1)
2σ

)

n!(
√

2σ)k
Kn−1/2(λ/µ2)

+H0

(√
2(z − µ1)

2σ

)

√

2π

λ
e

λ
µ2 (16)

2.1.3 Normal and Gamma

Suppose that X ∼ G(α, β) and Y ∼ N(µ, σ2), and that X and Y are independent.

Then the density function of X + Y has the following representation:

fX+Y (z) =
βασα−1

√
2π

e−(z−µ)β+ σ2β2

2
− z2

4σ2 D−α(−z/σ) (17)

2.1.4 Normal and Bernoulli

Suppose that X ∼ Ber(p) and Y ∼ N(µ, σ2), and that X and Y are independent.

Then the density function of X + Y has the following representation:

fX+Y (z) =
1√
2πσ

(

(1 − p)e
−1

2σ2 (z−µ)2 + p e
−1

2σ2 (z−(µ+1))2
)

(18)

2.1.5 Normal and Beta

Suppose that X ∼ B(α, β) and Y ∼ N(µ, σ2), and that X and Y are independent.

Then the density function of X + Y has the following series representations:

fX+Y (z) =
1

(α, β)
√

2πσ
e

−1

2σ2 (z−µ)2
∞
∑

n=0

B(α + n, β)

n!(
√

2σ)n
Hn

(

z − µ√
2σ

)

(19)

where Hn’s and B(α, β) are the Hermite polynomials and the Beta function, respec-

tively.

2.1.6 Normal and |Normal|

Suppose that X ∼ N(0, τ2) and Y ∼ N(µ, σ2), and that X and Y are independent.

Then the density function of |X| + Y has the following representation:

f|X|+Y (z) =
CA

4
e

−2
A

(z−B)2 +

√
2A

στ2
(z − B)e

−2
A

(z−B)2
[

Φ

(√
2√
A

(z − B)

)]

(20)

where A =
2σ2τ2

τ2 + 2σ2
, B =

τ2µ − 2σ2z

τ2 + 2σ2
and C =

−2√
2πστ2

e
2σ2τ2(µ+z)2

(τ2+2σ2)2 respectively.
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3 Convolution Formulae

Distribution Density f(x) Convolution fX+Y (z)

Bernoulli P (X = 0) = p = 1 − P (X = 1) 1√
2πσ

(

pe
−1

2σ2
(z−µ)2

+ (1 − p)e
−1

2σ2
(z−(µ+1))2

)

Beta
(x−a)p−1(b−x)q−1

B(p,q)(b−a)p+q−1 a ≤ x ≤ b, p, q > 0 1
(α,β)

√
2πσ

e
−1

2σ2
(z−µ)2∑∞

n=0

B(α+n,β)

n!(
√

2σ)n
Hn

(

z−µ√
2σ

)

Gamma

x−µ
β

γ−1
e

−(x−µ)
β

βΓ(γ)
; x ≥ µ; γ, β > 0

βασα−1
√

2π
e
−(z−µ)β+

σ2β2

2
− z2

4σ2 D−α(−z/σ)

Skew Normal Modulo CA
4

e
−2
A

(z−B)2
+

√
2A

στ2 (z − B)×

e
−2
A

(z−B)2
[

Φ
( √

2√
A

(z − B)
)]

Inverse Gaussian
√

λ

2πx3 e
− λ(x−µ)2

2xµ2
√

λ
2πσ

e

−(z−µ1)2

2σ2
+ λ

µ2

∞
∑

n=1

2Hn

(√
2(z−µ1)

2σ

)

n!(
√

2σ)k
K 2n−1

2

(
λ

µ2

)

+H0

(√
2(z−µ1)

2σ

)

√

2π
λ

e
λ

µ2

Power Exp.
βe

−1
2λ

|x−κ|β
2η

ηλΓ( 1
β

)2

β+1
β

, β > 0.
C(φ,β)√

2πσ
e
−z2

2σ2

∞
∑

n=0

Γ

(

2n + 1

2β

)

(2n)!(2σ
2
)
n

×φ2n+12
2n+1

β H2n

(

z√
2σ

)

for 0 < β < 1,

C(φ,β)√
2π

e
−z2

4σ2

∞
∑

n=0

(−1)
n Γ (2βn + 1) σ2βn

n!2nφ2βn

×
[

D−(2βn+1)(z/σ) + D−(2βn+1)(−z/σ)
]

where A =
2σ2τ2

τ2 + 2σ2
, B =

τ2µ − 2σ2z

τ2 + 2σ2
and C =

−2√
2πστ2

e
2σ2τ2(µ+z)2

(τ2+2σ2)2 .

4 Full Bayesian Significance Test

There are several approaches to deal with testing precise or sharp hypothesis in

statistical inference. The point of view we adopt here is that defined by Pereira and

Stern [7], and deeply discussed in Pereira et al. [8].

Let us consider a random variable D whose value d in the measurable sample

space (Ω,S) is to be observed.

Let Θ be the parametric space, that is, a set such that Pr(A|θ) is a well-defined

probability measure in S, for all θ ∈ Θ. Denote by (Θ,B, π) a probability measure
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structure on Θ such that π determines a priori probability on Θ.

After observing data d, the information about θ is updated by Bayes theorem and

quantified by the posterior probability law on Θ, πd.

Full Bayesian Significance Test (FBST) procedure is defined in the case when this

posterior distribution has a density function with respect to Lebesgue measure.

Let f(θ), f(d|θ), and f(θ|d) denote the priori density, the likelihood function and

the posterior density of θ given data d, respectively.

A precise hypothesis H is a submanifold Θ0 ⊂ Θ such that dim(Θ0) < dim(Θ).

We define the tangential set T0 to the null hypothesis Θ0 as the set

T0 = {θ ∈ Θ : f(θ|d) > f0},

where f0 = supΘ0
f(θ|d). In other words, the tangential set to Θ0 considers all points

“most probable” than Θ0, according the posterior law.

The credibility of T0 is its posterior probability

κ0 =

∫

T0

f(θ|d)dθ.

The evidence of the null hypothesis is then defined as

ev(Θ0) = 1 − κ0 = 1 − πd(T0). (21)

So, if tangential set has high posterior probability, the evidence in favor of Θ0 is

small; if it has low posterior probability, the evidence against Θ0 is small. Observe

that this measure is a well-defined posterior probability.

In Madruga et al. [5], the Bayesianity of the test of significance based on this

evidence measure is showed, that is, there exists a loss function such that the decision

for rejecting the null hypothesis is based on its posterior expected value minimization.

The computation of ev(Θ0) is performed in two steps: a numerical optimization

procedure to find f0, and a numerical integration to find κ0.

4.1 FBST for jumps

The problem stated in (2) and approximated by (7) can be formulated in terms of

the likelihood

f(d|λ, θ) =
n
∏

i=1

[λf(xi|θ) + (1 − λ)f(xi|θN )] ,

where θ = (µ, σ2, θ′) ∈k, θN = Exy(θ) = (µ, σ2) is the projection on the two first

coordinates, so that f(x|θ) is the likelihood of the model with jumps, and f(x|θN )

the likelihood of the model without jumps, as in equation (8), taking δ = 1. Data d

is the observed value (x1, . . . , xn) of the process ∆St/St. Parameter θ′ corresponds
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to the distribution of the random variable X, F (x|θ′). Factor λ belonging to [0, 1]

represents the jump rate.

In this context, the parameter space Θ can be defined as

Θ = {(λ, θ) ∈ [0, 1] × Rk},

where θ = (µ, σ2, θ′).

The null hypothesis considered is that the process has no jumps, and can be

described as

Θ0 = {(λ, θ) ∈ Θ : λ = 0}.

Let f(λ, θ) a priori density on Θ, and f(λ, θ|d) the resulting posterior density,

such that f(0, θ|d) 6= 0. This can be done by adopting a convenient beta distribution

as marginal priori for λ.

Then, the evidence of Θ0, ev(Θ0), given by (21) allows us to perform a significance

test for (Θ0), without assigning positive probability to null hypothesis.
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