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Abstract

In this paper we discuss inferential aspects of the multivariate null intercept measure-
ment error model where the unobserved value of the covariate (latent variable) follows
a skew-normal distribution. First, closed form expressions of the marginal likelihood,
the score function and the observed information matrix of the observed quantities are
presented allowing direct inference implementation. Then, we indicate how maximum
likelihood estimators of the parameter vector may be obtained via the ECM algorithm.
Additionally, an EM-type algorithm for evaluating the restricted maximum likelihood
estimate under equality constraints on the regression coefficients is examined. In order
to discuss some diagnostic techniques in this type of models, we derive the appropriate
matrices to assess the local influence on the parameters estimate under different pertur-
bation schemes. The results and methods are applied to a dental clinical trial presented
in Hadgu and Koch (1999).

Key Words: Skew-normal distribution; EM algorithm; Skewness; Multivariate null
intercept model; Measurement error; Local influence.

1 Introduction

The development of parametric families and the study of their properties have ever been a per-
sistent theme of the statistical literature. A substantial part of this recent literature is broadly
related to the skew-normal distribution, which represents a superset of the normal family and
has a shape parameter that defines the direction of the asymmetry of the distribution. Advan-
tages of using such general structures in practice, include easiness of interpretation, as well as
estimation efficiency. Motivation was originated from real data sets presenting clear indication
of skewness (not following the symmetric normal law) in diverse areas, such as, engineering,
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medicine, psychology and agriculture, among others. In this paper we use a real data set from
a dental clinical trial in which the outcome measurements (plaque index) are typically not
symmetric so that it seems more adequate to consider a skew-normal distribution to describe
the behavior of these measurements.

As discussed by Arellano-Valle et al. (2005), we say that a k-dimensional random vector
X has a standardized multivariate skew-normal distribution with skewness vector λ, namely
X ∼ SNk(λ), if its probability density function (pdf) is given by

fX(x) = 2φk(x)Φ1(λ
>x), x ∈ Rk, (1)

where, as usual, φk(.) and Φk(.) denote, respectively, the probability density function (pdf)
and cumulative distribution function (cdf) of the Nk(0, Ik) distribution. More generally, for
the Nk(µ,Ψ), we denote such functions by φk(·|µ,Ψ) and Φk(·|µ,Ψ), respectively. Now, as
a location-scale extension of (1), we consider the distribution of Y = µ +Ψ1/2X, yielding the
following pdf

fY(y) = 2φk(y|µ,Ψ)Φ1(λ
>Ψ−1/2(y − µ)), y ∈ Rk, (2)

which will be denoted by Y ∼ SNk(µ,Ψ,λ), with stochastic representation given by

Y
d
= µ + Ψ1/2(δ|T0|+ (Ik − δδ>)1/2T1), with δ =

λ√
1 + λ>λ

, (3)

where T0 ∼ N1(0, 1) and T1 ∼ Nk(0, Ik) are independent, and ”
d
= ” meaning ”distributed

as”. For more details on this approach, see Arellano–Valle and Genton (2005) and Arellano–
Valle et al. (2005). Note that when k = 1 we obtain the univariate skew-normal distribution
introduced by Azzalini (1985) and (3) is reduced to the stochastic representation obtained in
Henze (1986).

Error-in-variables regression models constitute an attractive alternative to modeling many
practical experimental problems, specially when the same responses are observed on the same
units under different experimental conditions. A wide bibliography can be found in Fuller
(1987) and Cheng and Van Ness (1999). Recently, Aoki et al. (2003) has discussed a multi-
variate symmetric null intercept error-in-variables regression model with a dependency struc-
ture between the response variables within the same group appropriate to longitudinal data
studies. A generalization of that proposed model can be written as

Xi = xi + δi, (4)

yki
= xiβki

+ εki
, (5)

i = 1, . . . , p, k = 1, . . . , m, where Xi = (Xi1, . . . , Xini
)>, yki

= (yki1
, . . . , ykini

)>, xi =

(xi1, . . . , xini
)>, εki

= (εki1
, . . . , εkini

)>, δi = (δi1, . . . , δini
)>. In the dental clinical data set,

presented in Hadgu and Koch (1999), 105 volunteers with preexisting dental plaque were ran-
domized to two experimental mouth rinses (A and B) or a control mouth rinse with double
blinding and evaluated with respect to the dental plaque index at baseline (Xi), after three
months (y1i

) and after six months (y2i
) from the baseline with the use of the corresponding

mouth rinses (A, B or control C). Considering this data set, we have i = 1, 2, 3 representing
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the control mouth rinse, the experimental mouth rinse A and experimental mouth rinse B,
respectively. We have m = 2, with k = 1 (k = 2) representing three months from the baseline
(six months from the baseline). As the covariates are measured imprecisely, Aoki et al. (2003)
proposed the use of the measurement error model and since null pretest dental plaque index
implies null expected post test values, the null intercept model was considered. To account
for the possible dependence of the within subject measurements a structural model was con-

sidered. Typically, it is assumed that δij
iid∼ N1(0, σ

2), εkij
ind∼ N1(0, σ

2
ei
), δij and εkij are not

correlated and independent of xij
iid∼ N1(µx, σ

2
x), i = 1, . . . , p, j = 1, . . . , ni k = 1, . . . , m. As

the observed quantities are not symmetric, the dental plaque index in the baseline (xij) may
require data transformation in order to be better approximated by the normal distribution.
Azzalini and Dalla–Valle (1996) give several reasons to avoid variables transformation if a
more suitable theoretical model is found. Thus, the main objective of this paper is the study
of inference and influence diagnostics in the multivariate null intercept measurement error re-
gression model defined in (4)–(5) with the assumption that the unknown quantity xij (latent
variable) follows a univariate skew-normal distribution, implying that the observation vector
zij = (Xij, y1ij

, . . . , ymij
)>, i = 1, . . . , p, j = 1, . . . , ni, follows a multivariate skew-normal dis-

tribution within the setup defined in (2).

Influence diagnostic is an important step in the analysis of a data set, as it provides us
indication of bad model fitting or influential observations. This analysis has received a great
deal of attention since the paper by Cook (1977). Typically the analysis is based on the
case-weight perturbation scheme where the case (observation) is either deleted or retained.
Cook (1986) proposed a method of assessing the local influence of minor perturbations of a
statistical model. Since then several papers have been written with respect to the local influ-
ence approach which is considered by some authors in measurement error regression models.
For example, Kelly (1984) derived the influence functions for the model parameters. Wellman
and Gunst (1991) shows the need for influence diagnostic in such models using the influence
functions. Abdullah (1995) applied some diagnostic methods in regression analysis to the
functional model. Kim (2000) applied local influence methods in structural measurement er-
ror models. In a normal context, Aoki, et al. (2001) proposed a null intercept measurement
error regression models with additional within-subjects correlation structure to analyze data
from pretest/posttest. Labra et al. (2005) applied the local influence methodology in that
model considering the Student-t distribution. More recently, Lachos et al. (2006) applied the
local influence method in the skew-normal null intercept measurement error model without
considering longitudinal structure, i.e, m = 1. Here, we extend those results to a model that
allows the longitudinal structure.

The paper is organized as follows. In Section 2 the multivariate null intercept measurement
error model under the skew-normal distribution is defined (SN-MEM, hereafter). Moreover,
the score function and the observed information matrix are derived algebraically allowing a
direct implementation of inferences. On the other hand, these matrices can be obtained numer-
ically by using the marginal likelihood function and statistical software, as the Ox program.
In Section 3 the ECM-algorithm for maximum likelihood estimation (MLE) is developed by
exploring statistical properties of the considered model, yielding closed form expressions for
the equations in the CM-step. Then, we present an EM-type algorithm for evaluating the
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restricted maximum likelihood estimate under equality constraints on the regression coeffi-
cients. Also, we discuss hypothesis testing considering the likelihood ratio, score and Wald
test statistics with special emphasis in the regression coefficients. Section 4 contains the main
concepts of local influence and the related concepts of diagnostics. Considering the model pro-
posed in Section 2, we derive the appropriate matrices to obtain the normal curvature under
various perturbation schemes. Finally, in Section 5 applications of the results and methods
are illustrated with a numerical example and in Section 6 some final conclusions are discussed.

2 The skew-normal multivariate null intercept measure-

ment error model

To specify the null intercept measurement error model in the multivarite skew-normal class,
notice that we can write the linear model defined in (4)-(5) as,

zij = β0ixij + ζij, (6)

where zij = (Xij, y1ij
, . . . , ymij

)> is the vector of observations; β0i = (1,β>i )>, with βi =
(β1i

, . . . , βmi
)> is the vector of the regression parameters and ζij = (δij, ε1ij

, . . . , εmij
)> is the

vector of random errors . Here, the linear model defined in (6) will be called SN-MEM if

ζij
ind∼ Nm+1(0, D(φi)) and xij

iid∼ SN1(µx, φx, λx), (7)

i = 1, . . . , p, j = 1, . . . , ni, where D(φi) is a diagonal matrix with the diagonal elements given
by φi and φi = (σ2

u, σ
2
ei
, . . . , σ2

ei
)> with dimension (m + 1) × 1. The above model considers,

for instance, that in the case of the Hadgu and Koch (1999) data set the dental plaque index
may not be symmetrically distributed in the population. On the other hand, the errors ζij,
are related to measurement errors so that it is expected to be normally distributed. The
asymmetry parameter λx incorporates skewness in the latent variable xij and consequently in
the observed quantities zij, i = 1, . . . , p, j = 1, . . . , ni, which can be shown to have marginally
a m + 1-variate skew-normal distribution. If λx = 0, then the asymmetric model reduces to
the multivariate normal null intercept measurement error model (N-MEM), so this construc-
tion allows a continuous variation from normality to non-normality. Note from (3) that, the
regression set up defined in (6)-(7) can be written hierarchically as

zij | xij
ind∼ Nm+1(β0ixij, D(φi)), (8)

xij | Tij = tij
ind∼ N1(µx + φ1/2

x δxtij, φx(1− δ2
x)), (9)

Tij
iid∼ HN1(0, 1), (10)

i = 1, . . . , p, j = 1, . . . , ni, all independent, where HN1(0, 1) denote the standardized univari-
ate half-normal distribution and δx = λx/(1+λ2

x)
1/2. Classical inference on the parameter vec-

tor θ = (β>, σ2
e, σ

2
u, µx, φx, λx)

> ∈ R(m+1)p+4, with β = (β>1 , . . . , β>p )>, βi = (β1i
, . . . , βmi

)>,
σ2

e = (σ2
e1

, . . . , σ2
ep

)> is based on the marginal distribution for the response zij, which is given
by

fZij
(zij|θ) = 2φm+1(zij|µi,Σi)Φ1(λ̄i

>
Σ
−1/2
i (zij − µi)), (11)

4



i = 1, . . . , p, j = 1, . . . , ni, i.e., zij
ind∼ SNm+1(µi,Σi, λ̄i), where

µi = β0iµx, Σi = D(φi) + φxβ0iβ
>
0i, λ̄i =

λxφxΣ
−1/2
i β0i√

φx + λ2
xΛi

, with Λi =
φx

1 + φxβ
>
0iD

−1(φi)β0i

.

(12)

It follows that the log-likelihood function for θ given the observed sample z = (z>11, . . . ,
z>1n1

, . . . , z>p1, . . . , z>pnp
)> is given by

`(θ) =

p∑
i=1

ni∑
j=1

`ij(θ), (13)

where `ij(θ) = log(2)− (m+1)
2

log(2π)− 1
2
log |Σi| − 1

2
gij + log(Kij), with

gij = (zij − µi)
>Σ−1

i (zij − µi), Kij = Φ1(λ̄
>
i Σ

−1/2
i (zij − µi)) (14)

and µi, Σi, λ̄i as in (12).

2.1 Score function

From (11), we have after some algebraic manipulations that the expression of Kij given in

(14) can be written as Kij = Φ1(Aiaij), with Ai =
λxΛi√

φx + λ2
xΛi

, aij = (zij −µi)
>D−1(φi)β0i,

Λi =
φx

ci

and ci = 1+φxβ
>
0iD

−1(φi)β0i, i = 1, . . . , p, j = 1, . . . , ni. The score function is given

by

U(θ) =
∂`(θ)

∂θ
=

∂

∂θ

p∑
i=1

ni∑
j=1

lij(θ) =




(
ni∑

j=1

Uij(θ1)

)>

,

(
p∑

i=1

ni∑
j=1

Uij(θ2)

)>

>

, (15)

where Uij(θ1) =
∂`ij(θ)

∂θ1

= (Uij(β1), · · · , Uij(βp), Uij(σ
2
e1

), · · · , Uij(σ
2
ep

))> and Uij(θ2) =
∂`ij(θ)

∂θ2

=

(Uij(σ
2
u), Uij(µx), Uij(φx), Uij(λx))

>, with

Uij(γ) =
∂`ij(θ)

∂γ
= −1

2

∂log|Σi|
∂γ

− 1

2

∂gij

∂γ
+

∂logKij

∂γ
, (16)

where
∂logKij

∂γ
= WΦ1(Aiaij)

[
Ai

∂aij

∂γ
+ aij

∂Ai

∂γ

]
, with WΦ1(u) = φ1(u)/Φ1(u), u ∈ R, γ =

β1, · · · ,βp, σ
2
e1

, · · · , σ2
ep

, σ2
u, µx, φx, λx, i = 1, . . . , p, j = 1, . . . , ni. Analytical expressions for the

above derivatives are given in the Appendix A.
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2.2 The observed information matrix

The matrix of second derivatives with respect to θ is given by

L =
∂2`(θ)

∂θ∂θ>
=

∂2

∂θ∂θ>

p∑
i=1

ni∑
j=1

`ij(θ) =




∑ni

j=1

∂2`ij(θ)

∂θ1∂θ>1

∑ni

j=1

∂2`ij(θ)

∂θ1∂θ>2∑ni

j=1

∂2`ij(θ)

∂θ2∂θ>1

∑p
i=1

∑ni

j=1

∂2`ij(θ)

∂θ2∂θ>2


 , (17)

with θ1 = (β>1 , · · · ,β>p , σ2
e1

, · · · , σ2
ep

)> and θ2 = (σ2
u, µx, φx, λx). From (16) it follows that the

observed, per element, information matrix is given by

Jij = −
[

∂2`ij(θ)

∂γ∂τ>

]
, (18)

where
∂2`ij

∂γ∂τ>
= −1

2

∂2log|Σi|
∂γ∂τ>

− 1

2

∂2gij

∂γ∂τ>
+

∂2logKij

∂γ∂τ>
, with

∂2logKij

∂γ∂τ>
= WΦ1(Aiaij)

[
∂Ai

∂γ

∂aij

∂τ>
+ Ai

∂2aij

∂γ∂τ>
+

∂aij

∂γ

∂Ai

∂τ>
+ aij

∂2Ai

∂γ∂τ>

]

+∆Φ1(Aiaij)

[
Ai

∂aij

∂γ
+ aij

∂Ai

∂γ

] [
Ai

∂aij

∂τ>
+ aij

∂Ai

∂τ>

]
,

∆Φ1(u) = W ′
Φ1

(u) = −WΦ1(u)(u + WΦ1(u)), u ∈ R, γ, τ = β1, · · · ,βp, σ
2
e1

, · · · , σ2
ep

, σ2
u, µx, φx,

λx. The results of this derivatives are given in the Appendix B. Asymptotic confidence intervals
and testing on the ML estimates can be obtained considering this matrix. In the next section
we discuss the MLE of the vector of parameters θ using the ECM algorithm. Note that
algorithms such as Newton-Raphson can be implemented using the above results.

3 MLE via the ECM-algorithm and the hypothesis test-

ing

3.1 Maximum likelihood estimation

The EM algorithm (Dempster, Laird and Rubin (1977)) is a popular iterative algorithm for
ML estimation in models with incomplete data. More specifically, let z denote the observed
data and s denote the missing data. The complete data r = (z, s) is z augmented with s. We
denote by `c(θ|z, s), θ ∈ Θ, the complete data log-likelihood function and by Q(θ,θ(m−1))
the expected value of the complete data log-likelihood function with respect to the unknown
data s given the observed data z and the current parameters estimates. That is, we define:

Q(θ, θ(m−1)) = E[`c(θ|z, s)|z,θ(m−1)],

where θ(m−1) is the vector of current estimate of the parameters, which are used to evaluate
the expectation and θ are the new parameters that we optimize to increase Q.

Each iteration of the EM algorithm involves two steps, the expectation step and the max-
imization step:
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E-step: Compute Q(θ,θ(m−1)) as a function of θ;

M-step: Find θ(m) such that Q(θ(m),θ(m−1)) = maxθ∈Θ Q(θ,θ(m−1)).

These two steps are repeated until convergence. Each iteration of the EM algorithm in-
creases the likelihood function `(θ) and the EM algorithm typically converges to a local or
global maximum of the likelihood function.

An extension of this method was proposed by Meng (1993) and called the ECM algorithm.
The ECM algorithm replaces each M-step of the EM algorithm by a sequence of S conditional
maximization steps, which is called the CM-steps, each of which maximizes Q over θ but with
some vector function of θ, gs(θ) (s = 1, · · · , S) fixed at its previous value.

Let z = (z>11, . . . , z
>
1n1

, . . . , z>p1, . . . , z
>
pnp

)>, with zij = (Xij, y1ij
, . . . , ymij

)>, i = 1, . . . , p, j =

1, . . . , ni, x = (x11, . . . , x1n1 , . . . , xp1, . . . , xpnp)
> and t = (t11, . . . , t1n1 , . . . , tp1, . . . , tpnp)

>. In
the following we implement the ECM algorithm for the SN-MEM using double augmentation
by considering that (x, t) are missing data. Thus, under the hierarchical representation (8)-

(10), with υ2 = φx(1− δ2
x) and τ = φ

1/2
x δx, it follows that the complete log-likelihood function

associated with (z,x, t) is

`c(θ|z,x, t) ∝ −
p∑

i=1

ni

2
log(|D(φi)|)−

1

2

p∑
i=1

ni∑
j=1

(zij − β0ixij)
>D−1(φi)(zij − β0ixij)

−N

2
log(υ2)− 1

2υ2

p∑
i=1

ni∑
j=1

(xij − µx − τtij)
2 − 1

2

p∑
i=1

ni∑
j=1

t2ij, (19)

where N =
∑p

i=1 ni. Let x̂ij = E[xij|θ = θ̂, zij], x̂2
ij = E[x2

ij|θ = θ̂, zij], t̂ij = E[Tij|θ =

θ̂, zij], t̂2ij = E[T 2
ij|θ = θ̂, zij] and t̂xij = Etij ,xij

[Tijxij|θ = θ̂, zij], i = 1, . . . , p, j = 1, . . . , ni.
Considering double conditional expectations and the moments of the truncated normal distri-
butions (see Johnson et al., 1994, Section 10.1) we obtain that

t̂ij = µ̂Tij
+ WΦ1(

µ̂Tij

N̂Ti

)N̂Ti,

t̂2ij = µ̂2
Tij

+ N̂2
Ti + WΦ1(

µ̂Tij

N̂Ti

)N̂Tiµ̂Tij
,

x̂ij = ĉij + d̂i t̂ij,

x̂2
ij = M̂2

i + ĉ2
ij + 2ĉij d̂i t̂ij + d̂i

2
t̂2ij, and

t̂xij = ĉij t̂ij + d̂i t̂2ij, (20)

where WΦ1(u) = φ1(u)/Φ1(u), N̂2
Ti = [1+τ̂ 2β̂

>
0i(D(φ̂i)+υ̂2β̂0iβ̂

>
0i)

−1β̂0i]
−1, µ̂Tij

= τ̂ N̂2
Tiβ̂

>
0i(D(φ̂i)

+ υ̂2β̂0iβ̂
>
0i)

−1(zij − β̂0iµ̂x), M̂2
i = υ̂2[1 + υ̂2β̂

>
0iD

−1(φ̂i)β̂0i]
−1, ĉij = µ̂x + M̂2

i β̂
>
0iD

−1(φ̂i)(zij −
β̂0iµ̂x) and d̂i = τ̂(1− M̂2

i β̂
>
0iD

−1(φ̂i)β̂0i).
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It follow that the conditional expectation in the E-step has the form

E[`c(θ|z,x, t)|z, θ̂] ∝ −
p∑

i=1

ni

2
log(|D(φi)|)

−1

2

p∑
i=1

ni∑
j=1

(zij − β0ix̂ij)
>D−1(φi)(zij − β0ix̂ij)− 1

2

p∑
i=1

ni∑
j=1

(x̂2
ij − (x̂ij)

2)β>0iD
−1(φi)β0i

−N

2
log(υ2)− 1

2υ2

p∑
i=1

ni∑
j=1

(x̂2
ij + µ2

x + τ 2t̂2ij − 2x̂ijµx − 2τ t̂xij + 2τµxt̂ij), (21)

which leads to the following ECM algorithm:

E-step: Given θ = θ̂, compute t̂ij, t̂2ij, x̂ij, x̂2
ij and t̂xij for i = 1, . . . , p and j = 1, . . . , ni

using (20).

CM-step: Update θ̂ by maximizing E[`c(θ|z,x, t)|z, θ̂] over θ, which leads to

β̂ki
=

∑ni

j=1 ykij
x̂ij∑ni

j=1 x̂2
ij

, k = 1, . . . ,m, i = 1, . . . , p, (22)

σ̂2
ei

=
1

mni

(
m∑

k=1

ni∑
j=1

y2
kij
−

∑m
k=1(

∑ni

j=1 ykij
x̂ij)

2

∑ni

j=1 x̂2
ij

), i = 1, . . . , p, (23)

σ̂2
u =

1

N

p∑
i=1

ni∑
j=1

(X2
ij − 2Xijx̂ij + x̂2

ij), (24)

µ̂x =
1

N

p∑
i=1

ni∑
j=1

(x̂ij − τ t̂ij), (25)

υ̂2 =
1

N

p∑
i=1

ni∑
j=1

(x̂2
ij + µ2

x + τ 2t̂2ij − 2µxx̂ij − 2τ t̂xij + 2τµxt̂ij), and (26)

τ̂ =

∑p
i=1

∑ni

j=1(t̂xij − µxt̂ij)∑p
i=1

∑ni

j=1 t̂2ij

. (27)

Notice that we have closed form expressions for β̂ki
, σ̂2

ei
and σ̂2

u, k = 1, · · · ,m, i = 1, · · · , p.
Although the joint maximization of the vector of parameters θ are not in closed form, we note
that the conditional maximum likelihood estimate of µx in the mth iteration given τ = τ (m−1)

would be given by the equation (25). On the other hand, given µx = µ
(m)
x , the conditional

maximum likelihood estimate of τ in the mth iteration is obtained by using the equation (27).
Also the conditional maximum likelihood estimate of υ2 in the mth iteration, given τ = τ (m)

and µx = µ
(m)
x would be given by the equation (26). So considering the ECM algorithm, the

obtention of the maximum likelihood estimate is straight forward in our case.

Note that (22) can be written, alternatively, as β̂ = ∆−1
x δxy, where ∆x = diag(

∑n1

j=1 x̂2
1j,

. . . ,
∑np

j=1 x̂2
pj, . . . ,

∑n1

j=1 x̂2
1j, . . . ,

∑np

j=1 x̂2
pj) and δxy = (

∑n1

j=1 y11j
x̂1j, . . . ,

∑np

j=1 y1pj
x̂pj,∑n1

j=1 y21j
x̂1j, . . . ,

∑np

j=1 y2pj
x̂pj, . . . ,

∑n1

j=1 ym1j
x̂1j, . . . ,

∑np

j=1 ympj
x̂pj)

>. The shape and scale
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parameters of the latent variable x, can be estimated by noting that τ/υ = λx, and φx =
τ 2 + υ2. Starting values are often chosen to be the corresponding estimates under a normal
assumption, where the starting value for the asymmetric parameter is set to be 0 and, as
recommended in the literature, it is useful to run the ECM-algorithm several times with dif-
ferent starting values. Inspection of information criteria such as Akaike Information Criterion
(AIC, −`(θ̂) + P ), Schawarz’s Bayesian Information Criterion (BIC, −`(θ̂) + 0.5 log(mN)P ),

and the Hannan-Quinn Criterion (HQ, −`(θ̂) + log(log(mN))P ), where P is the number of
free parameters in the model and N =

∑p
i=1 ni, can be used in practice to select between

N-MEM and SN-MEM fits. In the next section we discuss the EM-algorithm for evaluating
the restricted MLE in the SN-MEM with especial emphasis in the slope parameter.

3.1.1 Restricted estimation

The main objective of the analysis in this type of models is to estimate β and to test the
hypothesis H01 : βk1 = . . . = βkp or H02 : β1i

= . . . = βmi
, i = 1, . . . , p, k = 1, . . . , m.

For instance, in the dental clinical trial the interest was to know if the experimental mouth
rinse A and B are more efficient than the control mouth rinse C after three and after six
months from the baseline leading to the following testing hypothesis: H01 : β11 = β12 = β13

and H02 : β21 = β22 = β23 , respectively. Another question of interest was to know if the
experimental mouth rinses A and B were long lasting, i.e., H03 : β12 = β22 and H04 : β13 = β23 ,
respectively. So, it is important to also find an estimation procedure under the restriction
imposed by H0 and use these results to construct likelihood ratio and score test statistics
for testing the above hypothesis. As such, suppose that our interest centers in estimating
the parameters β under q linearly independent restrictions defined as C>

s β − ds = 0, where
Cs, s = 1, . . . , q, are mp × 1 vectors and ds, s = 1, . . . , q, are scalars, both of which are
known and fixed. The problem here is to maximize the complete log-likelihood function
E[`c(θ|z,x, t)|z, θ̂] subject to the linear constraints Cβ − d = 0, where C = (C1, . . . ,Cq)

>

and d = (d1, . . . , dq)
>. Similarly as Nyquist (1991), we will apply the methodology of penalty

functions by considering the quadratic penalty function

P (θ,Υ) = E[`c(θ|z,x, t)|z, θ̂]− 1

2

q∑
s=1

γs(ds −C>
s β)2, (28)

where, Υ = (γ1, ...γq)
>. The procedure consists in finding the solution of maxθP (θ,Υ) for

positive and fixed values of γs, s = 1, . . . , q. The solution for β will be denoted by β(Υ). The
restricted equality estimate β is given by

β̂c = lim
γ1,...,γq→∞

β(Υ).

Using a similar approach of that given in Nyquist (1991), one may show that β(Υ) is the
solution of the following iterative process:

β̃
(r+1)

c =
(
∆(r)

x

)−1

δ(r)
xy +

(
∆(r)

x

)−1

C>[C
(
∆(r)

x

)−1

C>]−1[d−C
(
∆(r)

x

)−1

δ(r)
xy ]

= β̂
(r)

+
(
∆(r)

x

)−1

C>[C∆(r)
x

−1
C>]−1[d−Cβ̂

(r)
] (29)
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for r = 0, 1, . . . , where β̂
(r)

, δ(r)
xy and ∆(r)

x are obtained using the CM-step given in the previous
Section. The ECM algorithm for estimating the parameters of the model (6)-(7) under the

restriction Cβ = d, denoted by θ̃c, follows the same procedures given in (20)-(27), replacing

β̂ by β̃c in the CM-step of the algorithm. Note from (29) that the problem of testing linear
inequality hypotheses of the form H0 : Cβ − d ≥ 0 can easily be treated using conditions
given in Fahrmeir and Klinger (1994) which guarantee that β̃c corresponds to the inequality
restricted estimate. See Cysneiros and Paula (2004) for further details on this approach

3.2 Hypothesis testing

Let J0 =
[∑p

i=1
ni

N
E (Jij(θ)) |θ=θ0

]
, where N =

∑p
i=1 ni, θ0 is the true parameter vector and

Jij(θ) as presented in Section 2. Then under regularity conditions (Bradley and Gart (1962)),√
N(θ̂ − θ0) has asymptotically as N → ∞ the multivariate normal distribution with zero

means and variance-covariance matrix J−1
0 , with θ̂ denoting the MLE of θ. Considering this

distribution we may obtain the asymptotic confidence intervals and hypothesis testing for the
parameter θ. In the context of dental clinical trial the hypothesis of interest concerns β.

Next, we conduct inference regarding the regression coefficients β. As discussed in the
previous section, to test H01, H02, H03 and H04 we may consider the likelihood ratio (ξLR),
score (ξSR) or Wald (ξW ) test statistics. These tests, which are sometimes called the classi-
cal tests are particulary useful when the parameter space is multidimensional and they are
asymptotically equivalent under the null hypothesis. Let θ̂ and θ̃ be the ML estimates of
θ ∈ Rmp+p+4 under the unrestricted model and under the null hypothesis, respectively. We
notice that the hypothesis of interest can be written as H0 : Cβ = d , where C is a q ×mp
dimensional matrix with rank(C) = q ≤ mp and d is a q × 1, known vector. Thus, the
statistics ξLR, ξSR and ξW can be written as

ξLR = 2[`(θ̂)− `(θ̃)], ξSR = [Uβ(θ̃)]>[J−1
ββ (θ̃)][Uβ(θ̃)]

and
ξW = [Cβ̂ − d]>[CJ−1

ββ (θ̂)C>]−1[Cβ̂ − d],

where `(θ) is the log-likelihood function, Uβ and J−1
ββ corresponds to the partition of U(θ) de-

fined in (15) and J defined in (18) as U(θ) = (U>
β, U>

θ−β)> and J−1 =

[
J−1

ββ
J−1

β,θ−β
J−1

θ−β,β
J−1

θ−β,θ−β

]
,

with β = (β>1 , · · · ,β>p )> and θ−β = (σ2
e1

, · · · , σ2
ep

, σ2
u, µx, φx, λx)

>. Under the null hypothesis,
the three statistics follow asymptotically a chi-square distribution with q degrees of freedom
(χ2

q).

4 Local influence

Outliers and detection of influential observations is an important step in the analysis of a
data set. There are several alternatives to evaluate the influence of perturbations in the data
and/or in the model on the parameter estimate, see for example, Cook and Weisberg (1982),
Chatterjee and Hadi (1988).
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Case deletion is a common way to assess the effect of an observation on the estimation
process. This is a global influence analysis, since the effect of the observation is evaluated
by eliminating it from the data set. Alternatively, local influence is based more on geometric
differentiation rather than on the elimination of the observations. A differential compari-
son of estimators is used before and after perturbing the data and/or model assumptions.
In order to evaluate the robustness of the maximum likelihood estimator, to possible atypi-
cal observations in the data set, we use the local influence concept introduced by Cook (1986).

Let l(θ) and l(θ|ω) denote, respectively, the log-likelihood function from the postulated
model and the log-likelihood function of the perturbed model, with θ ∈ Rp and ω a q×1 vector
of perturbations restricted to some open subset of Rq. Denoting the vector of no perturbation
by ω0, we assume that l(θ|ω0) = l(θ). To asses the influence of the perturbations on the
maximum likelihood estimate of θ, one may consider the likelihood displacement defined as

LD(ω) = 2[l(θ̂)− l(θ̂ω)],

where θ̂ω (θ̂) denotes the maximum likelihood estimator under the model l(θ|ω) (l(θ)). The
idea of local influence (Cook, 1986) is concerned with characterizing the behavior of LD(ω)
at ω0. The procedure consists in selecting a unit direction l, ||l|| = 1, and then to consider
the plot of LD(ω0 + al) against a ∈ R. This plot is called lifted line. Notice that since
LD(ω0) = 0, LD(ω0+al) has a local minimum at a = 0. Each lifted line can be characterized
by considering the normal curvature Cl(θ) around a = 0. The suggestion is to consider the
direction lmax corresponding to the largest curvature Clmax(θ). The index plot of lmax may
reveal those observations that under small perturbations exert notable influence on LD(ω).
Cook (1986) showed that the normal curvature at the direction l takes the form

Cl(θ) = 2|l>∆>L−1∆l|, (30)

where −L is the observed information matrix for the postulated model (ω = ω0) and ∆ is
the p× q matrix with elements

∆rs =
∂2`(θ|ω)

∂θr∂ωs

,

evaluated at θ = θ̂ and ω = ω0, r = 1, ..., p and s = 1, ..., q. Therefore, the maximization
of (30) is equivalent to finding the largest absolute eigenvalue, Clmax, of the matrix B =
−∆>L−1∆ and lmax is the corresponding eigenvector. In some situations, it may be of interest
to assess the influence on a subset θ1 of θ = (θ>1 ,θ>2 )>. For example, one may have interest
on θ1 = (µx,β

>)> or θ1 = λx. In such situations, the curvature at the direction l is given by

Cl(θ1) = 2|l>∆>(L−1 −B22)∆l|, (31)

where

B22 =

(
0 0
0 L−1

22

)
,

and L22 is obtained from the partition of L according to the partition of θ. The eigenvector
lmax corresponds to the largest absolute eigenvalue of the matrix B = ∆>(L−1 −B22)∆.
Another important direction, according to Escobar and Meeker (1992) (see also Verbeke and
Molenberghs, 2000) is l = ek, a N × 1 vector of zeros with a one in the k-th position.
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In that case, the normal curvature called the total local influence of subject k, is given by
Ck = 2|e>k Bek| = 2|bkk|, where bkk is the kth diagonal element of B, k = 1, ..., N . In the case
of the SN-MEM we have that N =

∑p
i=1 ni.

In order to compare local and global influence, we may use the Cook’s distance (Dij) and
the likelihood displacement (LDij), which are defined, respectively, as

Dij = (θ̂(ij) − θ̂)>(− L)(θ̂(ij) − θ̂)/(mp + p + 4), (32)

LDij = 2
[
l(θ̂)− l(θ̂(ij))

]
, (33)

i = 1, . . . , p, j = 1, . . . , ni, where θ̂(ij) denotes the ML estimates without the case ij. See Zhao
and Lee (1998) for details.

4.1 Curvature derivation for SN-MEM

In this Section we derive the ∆ matrix for different perturbation schemes.

4.1.1 Case weight perturbation

Notice that the logarithm of the likelihood function for the model (6)-(7) is given by (13),
where `ij(θ) is the contribution of the ijth observation (equally weighted) to the likelihood,
i = 1, . . . , p, j = 1, . . . , ni. A perturbed log-likelihood function - allowing different weights for
different observations - can be defined by

`(θ/ω) =

p∑
i=1

ni∑
j=1

ωij`ij(θ), (34)

where, θ = (β,σ2
e, σ

2
u, µx, φx, λx)

> and ω = (ω11, . . . , ω1n1 , . . . , ωp1 . . . ωpnp)
>. ω is the vector

of weights corresponding to the contribution of each observation to the likelihood, ω0 =
1N = (1, . . . , 1)>, with N =

∑p
i=1 ni (no perturbation vector). This perturbation scheme is

intended to evaluate whether the contribution of the observations with differing weights affect
the maximum likelihood estimate of θ. Perhaps, this is the method most commonly used to
evaluate the influence of a small modification of the model. Thus, using (34) it follows, after
some algebraic manipulation, that the delta matrix is given by

∆ = (∆11(θ), . . . ,∆1n1(θ), . . . ,∆p1(θ), . . . ,∆pnp(θ)), (35)

where, ∆ij =
∂`ij(θ)

∂θ
, i = 1, . . . , p, j = 1, . . . , ni, with individual elements given by

∂lij(θ)

∂γ
= −1

2

∂log|Σi|
∂γ

− 1

2

∂gij

∂γ
+

∂ log(Kij)

∂γ
, γ = β, σ2

e, σ
2
u, µx, φx, λx. (36)

The components of
∂lij(θ)

∂γ , i.e.,
∂log|Σi|

∂γ
,

∂gij

∂γ
and

∂ log(Kij)

∂γ
are presented in the Appendix

A. The above ∆ matrix is to be evaluated at θ̂.
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4.1.2 Response variables perturbation

In this subsection, our interest is to detect the sensitivity of the model when ykij
is perturbed.

The perturbation considered here, is given by

ykij
(ωij) = ykij

+ Skωij, (37)

where Sk is a sequence of scale factors S1, . . . , Sm, which can be taken, for example, as the
sample standard deviation of the observations indexed by k and ω = (ω11, . . . , ω1n1 , . . . ,
ωp1, . . . , ωpnp)

>. The no perturbation case follows by taking ωo = 0 and the perturbed log-
likelihood function can be obtained from (13) with ykij

replaced by ykij
(ωij), i = 1, . . . , p, j =

1, . . . , ni. Then

`(θ|ω) =

p∑
i=1

ni∑
j=1

`ij(θ|ωij), (38)

where `ij(θ|ωij) ∝ −1

2
log |Σi|−1

2
gij(ωij)+log(Kij(ωij)) with gij(ωij) = (zij(ωij)−µi)

>Σ−1
i (zij

(ωij)− µi), and Kij(ωij) = Φ1 (Aiaij(ωij)) with aij(ωij) = (zij(ωij)− µi)
>D−1(φi)β0i.

Differentiating `(θ|ω) with respect to ω and θ leads to ∆ as defined in (35), where

∆ij(θ) = −∂Pij(ωij)

∂θ
+ WΦ1 (Aiaij(ωij))

[
∂Ai

∂θ
Qij(ωij) + Ai

∂Qij(ωij)

∂θ

]

+AiW
′
Φ1

(Aiaij(ωj))Qij(ωij)[Ai
∂aij(ωij)

∂θ
+ aij(ωij)

∂Ai

∂θ
], (39)

with Pij(ωij) = (zij(ωij) − µi)
>Σ−1

i d, Qij(ωij) = d>D−1(φi)β0i, WΦ1(u) = φ1(u)/Φ1(u),

W ′
Φ1

(u) = −WΦ1(u)(u + WΦ1(u)), u ∈ R, d =
∂zij(ωij)

∂ωij

= (d1,d
>
2 )> a (m + 1) × 1 vector

and
∂aij(ωij)

∂θ
is as in the unperturbed case, replacing zij = (Xij, y1ij

, . . . , ymij
)> by zij(ωij) =

(Xij, y1ij
+ S1ωij, . . . , ymij

+ Smωij)
>, i = 1, . . . , p, j = 1, . . . , ni.

The expressions for
∂Pij(ωij)

∂θ
evaluated at ωo = 0 is given by

∂Pij(ωij)

∂βi

= − 1

σ2
ei

d2 + 2
Λ2

i

σ2
ei

aijβiβ
>
0iD

−1(φi)d−
Λi

σ2
ei

[(W 2ij − µxβi)β
>
0iD

−1(φi)d + aijd2],

∂Pij(ωij)

∂σ2
ei

= − 1

σ4
ei

W>
2ijd2 − Λ2

i

σ4
ei

aijβ
>
0iD

−1(φi)d +
Λi

σ4
ei

[W>
2ijβiβ

>
0iD

−1(φi)d + aijβ
>
i d2],

∂Pij(ωij)

∂σ2
u

= −d1

σ4
u

W1ij − Λ2
i

σ4
u

aijβ
>
0iD

−1(φi)d +
Λi

σ4
u

[W1ijβ
>
0iD

−1(φi)d + aijd1],

∂Pij(ωij)

∂µx

= −β>0iΣ
−1
i d,

∂Pij(ωij)

∂φx

= −c−2
i aijβ

>
0iD

−1(φi)d,
∂Pij(ωij)

∂λx

= 0,

where W1ij = Xij − µx, W 2ij = Y ij(ωij) − βiµx, d1 = 0 and d2 = S, with Y ij(ωij) =
(y1ij

+ S1ωij, . . . , ymij
+ Smωij)

>, i = 1, . . . , p, j = 1, . . . , ni and S = (S1, ..., Sm)>. Then

Qij(ωij) = 1
σ2

ei
S>βi. The vector

∂aij(ωij)

∂θ
is as given in the unperturbed case and can be found

in Appendix A. The ∂Ai

∂θ
can also be found in the Appendix A.
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4.1.3 Explanatory variables perturbation

If we are interested in investigating the sensitivity of minor perturbation in the explanatory
variable, we can define for example, the following perturbation scheme for the explanatory
variable, in the same way that was defined for the response variable

Xij(ωij) = Xij + ωij. (40)

The perturbed log-likelihood follows from (38) with Xij replaced by Xij(ωij) and ykij
(ωij)

replaced by ykij
,i = 1, . . . , p, j = 1, . . . , ni. As in the response variables perturbation scheme,

ω = (ω11, . . . , ω1n1 , . . . , ωp1 . . . ωpnp)
>, ωo = 0 and the ∆ matrix is as given in (35), with ∆ij

as given in (39) replacing zij = (Xij, y1ij
+ S1ωij, . . . , ymij

+ Smωij)
> by zij(ωij) = (Xij +

ωij, y1ij
, . . . , ymij

)>. In this case d1 = 1 and d2 = 0m, which leads to Qij(ωij) = 1
σ2

u
. The

expressions for
∂Pij(ωij)

∂θ
evaluated at ωo = 0 are the same as given in the response variable

perturbation shceme, noting that W1ij = Xij+ωij−µx, W 2ij = Y ij−βiµx and d = (1,0m
>)>.

5 Application

In this section, we apply the methodology discussed in this work to a real data set analyzed
in Hadgu and Koch (1999) using generalized estimating equations. The data set and the
objective of the study was described in the Introduction and Section 3.1, respectively.

Figure 1: Dental plaque index data set. Histogram of the observed covariate X (plaque-index
at baseline) superimposed by the estimated densities using skew-normal (solid) and normal
distribution (dashed).
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The ML estimates of the parameters of the model were obtained for the SN-MEM and
N-MEM and are presented in Table 1. As can be seen, the estimate of the parameters for
the two models are close, except for the estimates of µx and σ2

x. Moreover, clearly, the
values of βij which is less than 1 indicates dental plaque reduction. Note that the estimated
standard deviation for λx seems to be large, but AIC, BIC and HQ values shown in the
bottom of the Table 1 seems to favor SN-MEM over N-MEM, supporting the contention of the
departure from normality. This conclusion is also supported by the results from the likelihood
ratio test for H0 : λx = 0 (ξLR = 17.8642, p-value ' 0) and also graphically by Figure 1.
Nevertheless, a nominally 95% symmetric confidence interval for λx, calculated using the (very
large) estimated standard deviation of 6.0782 and large-sample normal approximation, was
found to be (−5.8, 18.0), in clear disagreement with the previously quoted results. However,
as noted in simulation studies conducted by the authors, it appears to indicate that Wald type
statistics based on the asymptotic covariance matrix, estimated using the observed information
matrix, is typically less powerful at detecting skewness than the likelihood ratio statistic.

Table 1: Results of fitting SN-MEM and N-MEM to the dental plaque index data set. SE
represents the estimated asymptotic standard errors based on the information matrix given
in Appendix B.

SN-MEM N-MEM
Parameter Estimate SE Estimate SE

β11 0.7020 0.0339 0.7021 0.0340
β12 0.5239 0.0441 0.5241 0.0442
β13 0.5088 0.0317 0.5087 0.0317
β21 0.6857 0.0339 0.6859 0.0340
β22 0.5016 0.0441 0.5017 0.0441
β23 0.4139 0.0317 0.4139 0.0317
σ2

e1
0.2746 0.0460 0.2739 0.0461

σ2
e2

0.4306 0.0752 0.4308 0.0751
σ2

e3
0.2257 0.0377 0.2253 0.0380

σ2
u 0.0010 0.0154 0.0021 0.0210

µx 2.1082 0.0425 2.5343 0.0325
σ2

x 0.2907 0.0550 0.1086 0.0210
λx 6.1291 6.0782 - -

log-likelihood -194.4457 -203.3778
AIC 1.9757 2.0512
BIC 2.1400 2.2029
HQ 2.0422 2.1127

Considering the hypothesis H01 : β11 = β12 = β13 , which corresponds to a compar-
ison of the effects after three months, of the experimental mouth rinses A and B with
that of the control mouth rinse C, the restricted ML estimates are given by β̃11 = β̃12 =

β̃13 = 0.5811, β̃21 = 0.6857, β̃22 = 0.5016, β̃23 = 0.4139, σ̃2
ε1 = 0.2746, σ̃2

ε2 = 0.4305, σ̃2
ε3 =

0.2257, σ̃2
u = 0.0011, µ̃x = 2.1082, σ̃2

x = 0.2907 and λ̃x = 6.1285. The H01 hypothesis is
emphatically rejected since ξLR = 19.59, ξW = 19.5635 and ξSR = 25.0820 corresponding
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to a p-values around zero. Considering the hypothesis H02 : β21 = β22 = β23 , which cor-
responds to a comparison of the effects after six months, of the experimental mouth rinses
A and B with that of the control mouth rinse C, the restricted ML estimates are given by
β̃21 = β̃22 = β̃23 = 0.5372, β̃11 = 0.7020, β̃12 = 0.5239, β̃13 = 0.5088, σ̃2

ε1 = 0.2746, σ̃2
ε2 =

0.4305, σ̃2
ε3 = 0.2257, σ̃2

u = 0.2257, µ̃x = 2.1082, σ̃2
x = 0.2907 and λ̃x = 6.1285. The H02

hypothesis is also rejected since ξLR = 34.9505, ξW = 34.8530 and ξSR = 51.7213 which
corresponds to p-values around zero. If we consider the hypothesis H03 : β12 = β22 and
H04 : β13 = β23 , we obtain ξLR = 0.1288, ξW = 0.1287, ξSR = 0.1294 and ξLR = 4.4733,
ξW = 4.4730, ξSR = 5.0487 respectively. Thus, we fail to reject H03 and reject H04, which
means that the experimental mouth rinse B is long lasting. If we now consider the hypothesis
H05 : β11 = β21 , β12 = β22 , which corresponds to analyzing whether the control mouth rinse
C and the mouth rinse A reduce dental plaque at the same rates over the entire clinical trial,
we fail to reject it since ξLR = 0.2440, ξW = 0.2439 and ξSR = 0.2440, which corresponds to
p-values greater than 0.1. The general conclusion is that the mouth rinse B is more effective
for dental plaque reduction.

Next, we apply the diagnostic methods specified in Section 4 to the Hadgu and Koch data
set. The index plots of lmax to assess the influence of the perturbation on the ML estimate
of the parameter vector θ = (β1,. . . ,βp, σ2

e1
, . . . , σ2

ep
, σ2

u, µx, φx, λx)
T are presented in Figure

2 through Figure 5. Considering these graphs, the first 36 observations correspond to the
observations obtained by the volunteers who used the control mouth rinse C, the observations
37 through 69 correspond to those obtained using the experimental mouth rinse A, while the
last 36 observations correspond to those obtained using the experimental mouth rinse B.

Figure 2: Dental plaque index data set. Index plot of (a) |lmax| and (b) Ck for the case weight
perturbation scheme. (—) and (...) denotes the index plot for the SN-MEM and N-MEM,
respectively.
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In Figure 2 we present the index plot of |lmax| and |Ck| under the case weights perturbation.
Based on this perturbation scheme we find that subjects 7, 19 and 26 of the control month
rinse C and subjects 27 and 104 of B are the most influential on θ̂ under the SN-MEM. These
volunteers are the ones with the smallest dental plaque index in the beginning of the study
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and also they presented a reasonable reduction of the dental plaque index after the use of the
control mouth rinse C and experimental mouth rinse B, respectively. Notice that, if we focus
on the first 36 observations which corresponds to those obtained by the use of the control
mouth rinse C, these observations (7, 19 and 26) stands out more than the observations 27
and 104 stands out considering the last 36 observations, which corresponds to the values
obtained by the use of the experimental mouth rinse B. This result is in accordance with the
fact that the behavior of these observations considering the ones obtained using the control
mouth rinse C are more atypical. Under the N-MEM the observations that corresponds to
the subjects 6 of A and 21 of the month rinse B are the most influential. The observation 6
of A is the observation with the highest value of the dental plaque index in the beginning of
the study. So the observations which are influential considering these two models (SN-MEM
and N-MEM) are not the same.

Figure 3: Dental plaque index data set. Index plot of (a) Likelihood displacement LDk and
(b) Cook’s distance Dk. (—) and (...) denotes the index plot for the SN-MEM and N-MEM,
respectively.
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In order to compare with the result of local influence, in Figure 3 we present some results
of global influence, such as, likelihood distance (LDk) and Cook’s distance (Dk), k = 1, . . . , N .
Note that, (LDk) and (Dk) reveals subjects 6 and 16 of A as the most globally influential
under the N-MEM and SN-MEM. These two observations are the ones with the greatest value
of the dental plaque index in the beginning of the study. Also, these observations stands out
more in the N-MEM then in SN-MEM.

Under the perturbation of the response and explanatory variables we find that the Clmax(θ̂)

= 6.2178 and Clmax(θ̂) = 110.4162, respectively. The index plot of |`max| and |Ck| under the
perturbation of the response variable is given in Figure 4. Notice that the observations corre-
sponding to the control mouth rinse C stands out. When the explanatory variable perturbation
is considered (Figure 5), subjects 20 of the month rinse A and 30 and 32 of the month rinse
B are the most influential, which are also very different of the one under the N-MEM as
expected, due to the asymmetric distribution that we have considered.
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Figure 4: Dental plaque index data set. Perturbation of the responses variables. Index plot of
(a) |lmax| and (b) |Ck|. (—) and (...) denotes the index plot for the SN-MEM and N-MEM,
respectively.
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Figure 5: Dental plaque index data set. Perturbation of the of the explanatory variable. Index
plot of (a) |lmax| and (b) |Ck|. (—) and (...) denotes the index plot for the SN-MEM and
N-MEM, respectively.
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6 Final conclusions

In this work we have treated the problem of estimation, hypothesis testing and influence di-
agnostics to the null intercept measurement error model under the skew-normal distribution.
Parameter estimates are obtained via maximum likelihood considering the ECM algorithm,
yielding closed form expression for the equations in the CM-step. Hypothesis testing is ap-
proached by using likelihood ratio, score and Wald statistics. We also have derived the local
influence methods for SN-MEM in order to evaluate the effect of a small perturbation in
the model or the data and different perturbation schemes were investigated. We applied the
proposed methodology considering the real data set analyzed previously in Hadgu and Koch
(1999). The main conclusion is that the skew-normal model presents a better fit and influent
observations are different from those obtained when we consider the normal model. The con-
clusion of the analysis of the data set regarding the questions of interest are the same in all of
the considered models. Finally, we want to mention that this work extends the early results
found in Lachos et al. (2006).
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Appendix A: The score function

In this appendix we give the necessary expressions to obtain the first order partial derivatives
of the log-likelihood function in (14) with respect to β1,. . . ,βp, σ2

e1
, . . . , σ2

ep
, σ2

u, µx, φx and λx.
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with β0i, βi and zij as given in (6), φi as in (7), µi as in (11) and ci and aij as given in Section
2.1, i = 1, . . . , p, j = 1, . . . , ni.

Appendix B: The observed information matrix

Here we derive the necessary formulas to obtain the second order partial derivatives of the
log-likelihood function in (18) with respect to β1,. . . ,βp, σ2
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, . . . , σ2

ep
, σ2

u, µx, φx and λx. Let

(I) represent
∂2log|Σi|

∂γ∂τ
, (II) represent

∂2gij

∂γ∂τ
, (III) represent

∂2aij

∂γ∂τ
and (IV ) represent

∂2Ai

∂γ∂τ

for γ, τ = β1, · · · ,βp, σ
2
e1

, · · · , σ2
ep

, σ2
u, µx, φx, λx, i = 1, . . . , p, j = 1, . . . , ni, then we have:
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with Bi, bij, β0i, βi, yij, zij, φi, µi, ci, aij,W1ij and W 2ij as given in Appendix A, i = 1, . . . , p,
j = 1, . . . , ni.
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