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Abstract. In this paper we introduce two products of tempered distributions

with positive support. These products are based in the Laguerre representation
of distributions.

1. Introduction.

Multiplication of distributions is a difficult and involving problem. In general,
there does exist a product of distributions with the classical properties extending
the usual product of functions (see [11] and [8]). In [3] we studied a method to
multiply tempered distribution based on the Hermite representation theorem for S ′.
As continuation of that work, here we study products of tempered distributions with
positive support, now taking the approximation given by the Laguerre expansion of
distributions (see [5] pp 550 and [4] Theorem 2.8 and 2.9.), which establishes that
every T ∈ (S+)′ can be represented in the weak sense by a series

∞∑
n=0

bnLn

where {Ln} are the Laguerre functions and bn =< T,Ln >.
In this context we say that there exists the product [S]T of the tempered dis-

tributions with positive support S and T , if
∑∞

k=0 ckLk is a tempered distribution
where the coefficients ck are given by

(1) ck = lim
m→∞

m∑
n=0

bn < T,LnLk > .

The product [S]T of S and T , is by definition,
∑∞

k=0 ckLk. Symmetrically, we
define the product S[T ].

This paper is organized as follows: In section 2 we summarize the relevant ma-
terial on Laguerre functions, tempered distributions with positive support and rep-
resentation theorems for S+ and (S+)′. In section 3, we introduce the Laguerre
products and some properties. We present some examples in section 4: [T ]δ = eT ,
[δ]xλ

+ = δ[xλ
+] = 0 and [xλ

+]xµ
+ = xλ+µ

+ for appropriate λ and µ. In the appendix
we compile some basic facts of hypergeometric series.
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2. Laguerre expansion of tempered distributions with positive
support

This section collects relevant properties of Laguerre functions and tempered dis-
tributions with positive support (see L. Schwartz [10] and N. Lebedev [7]). Let n
be a nonnegative integer, the n-th Laguerre polinomials Ln is

(2) Ln(z) =
n∑

j=0

(
n

n− j

)
(−z)j

j!
.

The Laguerre polynomials satisfy the following relations:

(1) xd2Ln(x)
dx2 + (1− x)dLn(x)

dx + nLn(x) = 0,

(2)
∫∞
0

Ln(x)Lj(x)e−xdx = δjn,

(3) Buchholz’s identity (see [2], pp. 144): Let ν > −1 such that ν 6= 0, 1, 2....
Then

xν =
∑

n

(−ν)nΓ(ν + 1)
Γ(n + 1)

Ln(x)

where (γ)n = Γ(γ+n)
Γ(γ) is the Pochhammer symbol.

The n-th Laguerre function Ln(x) is

(3) Ln(x) = e−
x
2 Ln(x).

It is easy to see that the set of Laguerre functions is an orthonormal basis for
L2((0,∞)). Expressing any f ∈ L2((0,∞)) in this basis we obtain its Laguerre
expansion, f =

∑
n fnLn with n-th Laguerre coefficient

fn =
∫ ∞

0

f(x)Ln(x) dx.

By the Laguerre coeficients of f , denoted by L(f), we mean the sequence (fn).
Let S = S(R) be the Schwartz space of infinitely differentiable functions which

together with all its derivatives are of rapidly decreasing, and S ′ its dual, i.e., the
space of tempered distributions.

We define the space S+ as the set of functions φ : [0,∞) → C such that φ =
ϕ|[0,∞) for some ϕ ∈ S. The topology of S+ is generated by the seminorms

(4) ‖φ‖m,n = sup
x∈[0,∞)

| xmD(n)φ(x) |

where m,n ∈ N.
We observed that the dual space (S+)′ can be identified with the space of tem-

pered distributions with positive support.
For T ∈ (S+)′, the Laguerre coefficients of T are the sequence (< T,Ln >), ,

denoted by L(T ).
In order to characterize the space of tempered distributions with positive support

in terms of its Laguerre coefficients, we introduce the space s of rapidly decreasing
sequences and s′ its dual, i.e., the space of slowly decreasing sequences. We recall
that

s = {(an) ⊂ C : for every p ∈ N, lim
n→∞

npan = 0}.
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The topology of s is generated by the seminorms ‖(an)‖2
p =

∑∞
n=0(1 + n)2p| an|2

for p ∈ N. The dual of s is given by

s′ = {(bn) ⊂ C : for some (C, k) ∈ R× N, |bn| ≤ C|(1 + n)k| for all n ∈ N}.
The Laguerre coefficients provide topological isomorphisms between S+ and the

space of rapidly decreasing sequences and between (S+)
′

and the space of slowly
decreasing sequences.

Theorem 1. 1) Let φ ∈ S+ and an =
∫∞
0

φ(x)Ln(x) dx. Then (an) ∈ s and
φ =

∑
n anLn. Conversely,

∑
n anLn(x) ∈ S+ if (an) ∈ s.

2) Let T ∈ (S+)′ and bn =< T,Ln >. Then (bn) ∈ s′ and T =
∑

n bnLn.
Conversely,

∑
n bnLn ∈ S+ if (bn) ∈ s′.

Proof. See [4], Theorem 2.8 and 2.9 or [5], pp 550. �

Next, we compute the Laguerre coefficients of some tempered distributions with
positive support.

Example 1. The delta distribution.

(5) L(δ) = (< δ,Ln >= Ln(0) = 1).

Example 2. The k-th derivative of the delta distribution.

(6) L(δk) = (< δk,Ln >= (−1)kL(k)
n (0) =

k∑
m=0

(1
2

)k−m
(

k

m

)(
n

m

)
).

Example 3. The Heaviside function

(7) L(H) = (< H,Ln >= 2(−1)n).

Example 4. For complex λ with <λ > −1 the function xλ
+ defines a regular dis-

tribution in (S+)′:

(8) L(xλ
+) = (

∫ ∞

0

xλLn(x)dx) = Γ(λ + 1)2λ+1F (−n, λ + 1; 1; 2))

where F (a, b; c; z) is the usual hypergeometric function (see [6], pp. 850). An easy
computation shows that

(9) L(xλ
+) = (

n∑
j=0

(
n

j

)
(−1)j

j!
Γ(λ + j + 1) 2λ+j+1).

3. Laguerre products of distributions

Let S and T be in (S+)′ with L(S) = (bn) and L(T ) = (em). The Laguerre
representation theorem for (S+)′ ensures that the followings definitions are well
posed.

Definition 1. Suppose that for all k ∈ N ∪ {0} there exists

ck = lim
m→∞

m∑
n=0

bn < T,LnLk >

and that (ck) ∈ s′. We define the left Laguerre product [S] · T ∈ S ′ by

(10) [S] · T =
∞∑

k=0

ckLk.
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Definition 2. Suppose that for all k ∈ N ∪ {0} there exists

dk = lim
m→∞

m∑
n=0

en < S,LnLk >

and that (dk) ∈ s′. We define the right Laguerre product S · [T ] ∈ S ′ by

(11) S · [T ] =
∞∑

k=0

dkLk.

It is clear from the definitions that the Laguerre products satisfies the Leibnitz
rule and the following commutative rule, [S] · T = T · [S].

In examples 5 and 6 we will show that the products [H]δ and δ[H] does not
exists and that [δ]H = H[δ] = δ. So, the left and right Laguerre products are not
commutative.

Remark 1. We have that

ck = lim
m→∞

m∑
i=0

∞∑
n=0

bienC(n, i, k)

and

dk = lim
m→∞

m∑
n=0

∞∑
i=0

enbiC(n, i, k),

where C(n, i, k) =
∫∞
−∞ Ln(x)Li(x)Lk(x) dx.

The space of multipliers of S ′, denoted by O+
M , is the set of infinitely differen-

tiable functions f : (0,+∞) → C such that its derivatives are estimated as follows:
for all α ∈ N there exists (Nα, Cα) ∈ N× R such that

|(Dαf)(x)| ≤ Cα(1 + x2)Nα .

The Laguerre products extend the product of O+
M by (S+)′.

Theorem 2. Let T ∈ (S+)
′
and f ∈ O+

M . Then

[T ]f = [f ]T = fT.

〈T 〉f and 〈f〉T exists and 〈T 〉f = fT = 〈f〉T .

Proof. The proof is the same of Proposition 3.3 of [3]. �

4. Some examples of Laguerre products

Example 5. Let T ∈ (S+)′ with Laguerre coefficients L(T ) = (em). The product
[T ]δ exists if and only if

∑∞
n=0 en = e < ∞, and in this case

[T ]δ = eδ.

In fact, we have that

< [T ]δ,Lk >= lim
m→∞

m∑
n=0

en < δ,LnLk >= lim
m→∞

m∑
n=0

en = e =< eδ,Lk > .

In particular, the products [δ]δ; [δ(k)]δ >, for k ∈ N and [H]δ does not exists (see
examples (5), (6) and (7)).

Example 6. Let T ∈ (S+)′. Then [T ]H = T .
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In fact, we have that

< [T ]H,Lk >= lim
m→∞

m∑
n=0

en < H,LnLk >= lim
m→∞

m∑
n=0

en

∫ ∞

0

Ln(t)Lk(t)dt = ek

Since < T,Lk >= ek, Theorem 1 shows that [T ]H = T .

Example 7. Let λ ∈ C such that <λ > 0. Then

[δ]xλ
+ = δ[xλ

+] = 0.

Let us recall the following formulae involving the generalized hypergeometric
function F :

(12)
∫ ∞

0

xλLn(x)e−
1
2 xdx = Γ(λ + 1)F (−n, λ + 1; 1; 1),

(see [6], pp.850),

(13)
∞∑

n=0

F (−n, λ + j + 1; 1; 1) = 0

and

(14)
∞∑

n=0

F (−n, λ + 1; 1; 2) = 0

(see Appendix for proofs of (13) and (14) ).
In order to prove that [δ]xλ

+ = 0, we calculate

(15) ck = lim
m→∞

m∑
n=0

∫ ∞

0

xλLn(x)Lk(x)dx.

Substituting (3) and (2) into (15) and using (12) we have that

(16) ck =
k∑

j=0

(
k

j

)
(−1)j

j!
Γ(λ + j + 1)

∞∑
n=0

F (−n, λ + j + 1; 1; 1).

Applying (13) we conclude that ck = 0. Theorem 1 gives [δ]xλ
+ = 0.

It remains to prove that δ[xλ
+] = 0, which is clear from (5), (8) and (14).

Example 8. Let λ, µ ∈ C such that <λ > −1, <µ > −1 and <(λ+µ) > −1. Then

[xλ
+]xµ

+ = xλ+µ
+ .

We calculate ck = limm→∞
∑m

n=0 < xλ
+,Ln >< xµ

+,LnLk >. From (8) we have

(17) ck = lim
m→∞

m∑
n=0

Γ(λ + 1)2λ+1F (−n, λ + 1; 1; 2)
∫ ∞

0

xµLn(x)Lk(x)dx.

Substituting (16) into (17) we obtain

ck = Γ(λ+1)2λ+1
k∑

j=0

(
k

j

)
(−1)j

j!
Γ(µ+j+1)

∞∑
n=0

F (−n, λ+1; 1; 2)F (−n, µ+j+1; 1; 1).

Since

(18)
∞∑

n=0

F (−n, λ + 1; 1; 2)F (−n, µ + j + 1; 1; 1) =
Γ(µ + j + λ + 1)Γ(1)
Γ(λ + 1)Γ(µ + j + 1)

2µ+j
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(see Appendix for a proof), we have

(19) ck =
k∑

j=0

(
k

j

)
(−1)j

j!
Γ(µ + j + λ + 1)2µ+j+λ+1.

We conclude that [xλ
+]xµ

+ = xλ+µ
+ from (15) and Theorem 1.

5. Appendix

The generalized hypergeometric series are defined by

(20) pFq(α1, ..., αp;β1, ..., βq; z) =
∞∑

n=0

(α1)n(α2)n...(αp)n

n!(β1)n(β2)n...(βq)n
zn,

where (α)n is the Pochhammer symbol. The series (20) converges for all z ∈ C if
p < q + 1 and for |z| < 1 if p = q + 1. In this case, the convergence is absolute in
|z| = 1 if

<(
q∑

j=1

βj −
p∑

i=1

αi) > 0.

In the case p = 2 and q = 1 we write, 2F1(α, β; γ; z) = F (α, β; γ; z).
F (α, β; γ; z) satisfies the Gauss’s recursion formulae:

(21) cF (a, b; c; z)− (c− b)F (a, b; c + 1; z)− bF (a, b + 1; c + 1; z) = 0,

(22) c(1− z)F (a, b; c; z)− cF (a− 1, b; c; z) + (c− b)zF (a, b; c + 1; z) = 0

and
(23)
(c−a)(c−b)F (a, b; c+1; z)−c(c−a−b)F (a, b; c; z) = ab(1−z)F (a+1, b+1; c+1; z).

Theorem 3. (Gauss) Let <(c− b− a) > 0, c 6= 0,−1,−2, .... Then

(24) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

Proof. See [7], pp 243. �

Corollary 1. Let n ∈ N ∪ {0}. Then

(25) F (−n, b; c, 1) =
(c− b)n

(c)n

Theorem 4. For <(c + ν) > 0, <(b + ν) > 0 and z > 0. Then

∞∑
n=0

(−ν)n

n!
F (−n, b; c; z) =

Γ(ν + b)
Γ(b)

Γ(c)
Γ(ν + c)

zν

Proof. See [9], Proposition 3. �
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5.1. Proof of formula (13). We observe that F (0, λ + j + 1; 1; 1) = 1. From (22)
we have that F (−n− 1, λ + j + 1; 1; 1) = −(λ + j)F (−n, λ + j + 1; 2; 1). Thus

∞∑
n=0

F (−n, λ + j + 1; 1; 1) = 1 +
∞∑

n=0

F (−n− 1, λ + j + 1; 1; 1)(26)

= 1− (λ + j)
∞∑

n=0

F (−n, λ + j + 1; 2; 1)

Taking ν = −1 in Theorem 4 we have

(27)
∞∑

n=0

F (−n, λ + j + 1; 2; 1) =
∞∑

n=0

(−(−1))n

n!
F (−n, λ + j + 1; 2; 1) =

1
(λ + j)

.

Substituting (27) into (26) yields
∞∑

n=0

F (−n, λ + j + 1; 1; 1) = 0.

5.2. Proof of formula (14). From (21) and Theorem 4 with ν = −1, we have
∞∑

n=0

F (−n, λ + 1; 1; 2) = −λ

∞∑
n=0

F (−n, λ + 1; 2; 2) + (λ + 1)
∞∑

n=0

F (−n, λ + 2; 2, 2)

= −λ
Γ(−1 + λ + 1)Γ(2)

Γ(λ + 1)Γ(1)
2−1 + (λ + 1)

Γ(−1 + λ + 2)Γ(2)
Γ(λ + 2)Γ(1)

2−1

= 0.

5.3. Proof of formula (18). By Corollary 1 and Theorem 4, it follows that
∞∑

n=0

F (−n, λ + 1; 1; 2)F (−n, µ + j + 1; 1; 1) =
∞∑

n=0

(−(µ + j))n

n!
F (−n, λ + 1; 1; 2)

=
Γ(µ + j + λ + 1)Γ(1)
Γ(λ + 1)Γ(µ + j + 1)

2µ+j .
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