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Summary: Lambert (1992, Technometrics 34, 1 − 14) described the zero-inflated Poisson (ZIP)

regression, a class of models for count data with an excess of zeros. In this paper, Lambert’s

methodology is extended to accommodate correlated genetic effects in the regression structure

of the Poisson and mixture parameters. In addition, an inter correlation structure between these

random genetic effects is introduced, and used to infer pleiotropy, an expression of the extent to

which the mixture and Poisson parameters are influenced by common genes. The methods described

here are implemented and illustrated with data on number of mastitis cases from Norwegian Red

cows. Bayesian analysis yields posterior distributions useful for studying environmental and genetic

variability, as well as genetic correlation. The model is assessed using posterior predictive checks.
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1. Introduction

Some important traits in animal breeding are recorded as count data, for example, lit-

ter size in pigs, embryo yield produced after superovulation, and number of mastitis (a

mammary gland disease) cases in dairy cattle. Sometimes, the number of zeros exceeds the

amount expected under a certain sampling model, as for example, the Poisson distribution.

A possibility for modeling extra-zeros is the zero-inflated Poisson (ZIP) model as proposed

by Lambert (1992). If a ZIP model is to be used in genetic animal breeding studies, it is

necessary to accommodate genetic covariances between effects. This study proposes to model

the mixture and Poisson parameters of a ZIP model hierarchically, each as a function of two

random effects, representing genetic and environmental sources of variability, respectively.

The random genetic effects are assumed correlated, to incorporate resemblance between

relatives, while the environmental effects are treated as independent. As pleiotropy is a

main cause of genetic correlation between traits (Falconer, 1989), a correlation structure

is introduced between the genetic effects affecting the mixture and Poisson parameters,

similar to the correlation between direct genetic and maternal genetic effects (Willham,

1963). This genetic correlation (measure of pleiotropy) expresses the extent to which the

mixture and Poisson parameters may be influenced by common genes. In a ZIP model,

the mixture parameter p is interpreted as the “perfect state” probability, and a negative

correlation between genetic effects affecting p and the Poisson parameter would be expected,

meaning that genes in favor of the perfect state decrease the expected number of counts.

A correlation close to zero would indicate that there are no common genes affecting these

parameters simultaneously.

A hierarchical ZIP model with correlated parameters is developed and applied to data on

number of mastitis cases in Norwegian Red cows in first lactation. First, a hierarchical Bayes

structure is presented. Second, a Markov chain Monte Carlo method for drawing samples
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from posterior distributions is described. Third, a model checking is conducted via an analysis

of residuals and of predictive ability.

2. The ZIP model with correlated parameters

Let y = (y1, y2, ..., yn)
′
be a vector containing the number of cases of an event per animal (e.g.,

number of mastitis cases in dairy cows). It is assumed that, given some parameters λi and

pi, the distribution of observation yi on animal i follows a zero-inflated Poisson distribution,

and that all such observations are conditionally independent. The density is then

p(yi = k|λi, pi) = [pi + (1− pi)e
−λi ]I(k=0)[(1− pi)e

−λiλk
i /k!]I(k>0), (1)

for i = 1, ..., n, 0 < λi < ∞ and 0 < pi < 1. Here, pi is the probability that a 0 is from the

“perfect” state, and λi is the parameter of the “imperfect” state (Poisson distribution). This

model tends to a conditional Poisson model as pi → 0.

Let λ∗ = (log(λ1), . . . , log(λn))
′
and p∗ = (logit(p1), . . . , logit(pn))

′
be vectors of unobserv-

able parameters. Further, suppose that λ∗ and p∗ jointly satisfy the linear mixed model




λ∗

p∗


 =




Xλ 0

0 Xp







βλ

βp


 +




Zλ 0

0 Zp







u1

u2


 +




ελ

εp


 , (2)

where βλ and βp are vectors of fixed effects; u1 and u2 are vectors of random effects, and

Xλ, Xp, Zλ and Zp are known incidence matrices. Factors included in βλ may or may not

be the same as those in βp. In (2), εp and ελ are vectors of residuals which are assumed to

follow a multivariate normal distribution on R2n, that is,




ελ

εp


 |Σ ∼ Normal







0

0


 , Σ⊗ In


 , (3)
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where Σ =




σ2
ελ

0

0 σ2
εp


, In is an identity matrix of order n, and σ2

ελ
and σ2

εp
are residual

variances reflecting overdispersion over and above that caused by extra zeros. The distribu-

tion of ελ and εp induces the distribution




λ∗|βλ,u1, σ
2
ελ

p∗|βp,u2, σ
2
εp


 ∼ Normal







Xλβλ + Zλu1

Xpβp + Zpu2


 , Σ⊗ In


 , (4)

where λ∗ and p∗ are as in (2).

Here, u = (u
′
1u

′
2)
′ ∼ N(0,Σu). In this study, we partition the Z incidence matrices as

Zλ = ( Z1,λ 0 Z2,λ 0 ) and Zp = ( 0 Z1,p 0 Z2,p
), respectively; these matrices relate

the random effects u1 = (h
′
λ,h

′
p)
′

and u2 = (a
′
λ, a

′
p)
′

to λ∗ and p∗. The vectors hλ and

hp, each of dimension nh, are non-genetic effects (e.g., herd effects); the vectors aλ and ap,

each of dimension na, are additive genetic effects. Additionally, Σu =




H⊗ Inh
0

0 G⊗A


,

where Inh
is an identity matrix of order nh;

H =




σ2
hλ

0

0 σ2
hp


 (5)

and

G =




σ2
aλ

σaλ,p

σaλ,p
σ2

ap


 . (6)

Further, A is a known additive genetic relationship matrix; σ2
hλ

and σ2
hp

are variances of

non-genetic (say herd) effects affecting λ∗ and p∗, respectively; σ2
aλ

and σ2
ap

are the additive

genetic variances, and σaλ,p
is the additive genetic covariance. The genetic correlation is

ρ = σaλ,p
/
√

σ2
aλ

σ2
ap

.
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2.1 Parameter inference

2.1.1 The likelihood and priors. Let τ = {λ∗,p∗,βλ,βp,hλ,hp, aλ, ap,H,G,Σ} be a set

of unknown quantities. The conditional (given τ ) likelihood for the ZIP regression model is

l(τ ;y) =
∏

yi=0

[pi + (1− pi)e
−λi ]

∏

yi>0

[(1− pi)e
−λiλyi

i /yi!]. (7)

Replacing λi and pi in (7) by the models in (2), the likelihood can be written as

l(τ ;y) =
∏

yi=0





e(x
′
i;pβp+z

′
i;1,php+z

′
i;2,pap)

1 + e(x
′
i;pβp+z

′
i;1,php+z

′
i;2,pap)

+
e−exp(x

′
i;λβλ+z

′
i;1,λhλ+z

′
i;2,λaλ)

1 + e(x
′
i;pβp+z

′
i;1,php+z

′
i;2,pap)





× ∏

yi>0

[1 + e(x
′
i;pβp+z

′
i;1,php+z

′
i;2,pap)]−1

×
{
e−exp(x

′
i;λβλ+z

′
i;1,λhλ+z

′
i;2,λaλ)

× eyi(x
′
i;λβλ+z

′
i;1,λhλ+z

′
i;2,λaλ)/yi!

}
, (8)

where x
′
i;λ, z

′
i;1,λ, z

′
i;2,λ, x

′
i;p, z

′
i;1,p and z

′
i;2,p and are the ith rows of matrices Xλ, Z1,λ, Z2,λ,

Xp, Z1,p and Z2,p, respectively. To achieve a reasonably vague prior, an uniform distribution

is assigned to each element of β, with large absolute values for the bounds βmin,λ, βmax,λ,

βmin,p, and βmax,p. Independent scale inverse chi-square distributions with degrees of freedom

(scale parameter) νε (δε) are assigned to σ2
ελ

and σ2
εp

, respectively, and independent inverse

chi-square distributions with degrees of freedom (scale parameter) νh (δh) are assigned to

σ2
hλ

and σ2
hp

, respectively. An inverse Wishart distribution with parameter matrix (degrees

of freedom) VG (νG) is assigned to G.

2.1.2 The joint posterior distribution. Considering (8) and the priors described above,

the joint posterior density can be written as

p(τ |y) ∝ (8)× (σ2
ελ

)−(n+νε+2
2 )(σ2

εp
)−(n+νε+2

2 )

× exp

{
− 1

2σ2
ελ

[
n∑

i=1

(λ∗i − x
′
i;λβλ − z

′
i;1,λhλ − z

′
i;2,λaλ)

2
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+ νεδ
2
ε

]}

× exp

{
− 1

2σ2
εp

[
n∑

i=1

(p∗i − x
′
i;pβp − z

′
i;1,php − z

′
i;2,pap)

2

+ νεδ
2
ε

]}

× (σ2
hλ

)−(nh+νh+2

2 )exp

[
− 1

2σ2
hλ

(hλ
′
hλ + νhδ

2
h)

]

× (σ2
hp

)−(nh+νh+2

2 )exp

[
− 1

2σ2
hp

(hp
′
hp + νhδ

2
h)

]

× |G|−(na+νG+3

2 )exp[−1

2
tr(G−1V∗

G)], (9)

where

V∗
G =




a
′
λA

−1aλ a
′
λA

−1ap

a
′
λA

−1ap a
′
pA

−1ap


 + V−1

G . (10)

The joint posterior distribution with density as in (9) is not recognizable, and can be

written only up to a proportionality constant. Also, marginal posterior distributions cannot

be obtained analytically. Therefore, a Metropolis-Gibbs sampling scheme was tailored to

sample from the marginal posterior distributions.

2.1.3 Sampling the Poisson parameters λ∗i . From (9), the conditional posterior density of

the vector of log-Poisson parameters λ∗ given all other parameters (“ELSE”) is p(λ∗|ELSE,y) ∝

l(τ ;y)p(λ∗|βλ,hλ, aλ, σ
2
ελ

). The λ∗i ’s are assumed independent, a priori, and their prior

densities are normal with parameters according to (4). Hence,

p(λ∗i |ELSE,yi) ∝ [ep∗ + e−exp(λ∗i )]1(yi=0)[e−exp(λ∗i )+λ∗i yi ]1(yi>0)

× exp

[
− 1

2σ2
ελ

(λ∗i − x
′
i,λβλ − z

′
i;1,λhλ − z

′
i;2,λaλ)

2

]
, (11)

i = 1, 2, ..., n. It can be seem that these fully conditional distributions are independent.

The density in (11) does not have any obviously recognizable form. A Metropolis-Hastings

algorithm was therefore tailored for drawing the λ∗i = log(λi) parameters, one at a time.
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2.1.4 Sampling the mixture parameters p∗i . From (9), the conditional posterior density of

the vector of logits p∗ is p(p∗|ELSE,y) ∝ l(τ ;y)p(p∗|βp,hp, ap, σ
2
εp

). The p∗i ’s are assumed

independent, a priori, and their prior densities are normal according to (4). The fully

conditional distribution of these parameters are independent, i.e.,

p(p∗i |ELSE,y) ∝ [ep∗i + e−exp(λ∗i )]1(y1=0)[1 + ep∗i ]−1

× exp

[
− 1

2σ2
εp

(p∗i − x
′
i,pβp − z

′
i;1,php − z

′
i;2,pap)

2

]
. (12)

This distribution is not recognizable either. A Metropolis-Hastings algorithm was developed

for drawing the p∗i ’s. Once samples of p∗i are drawn, samples for pi can be obtained as

pi = ep∗i /(1 + ep∗i ).

2.1.5 Sampling location effects affecting λ∗ and p∗. From (9), the fully conditional pos-

terior distribution of the β, h and a location parameters is

p(β,h, a|ELSE,y) ∝ p(λ∗,p∗|β,h, a)p(β)p(h|H)p(a|G). (13)

This is the conditional posterior density of location parameters in a bivariate Gaussian

model with known dispersion structure, in which λ∗ and p∗ play the role of “traits”, and

the only source of correlation is through genetic effects. The derivation of the fully posterior

distribution of the location parameters is given in Sorensen and Gianola (2002). Let θ =

(β
′
,h

′
,a

′
)
′
and

M =




Xλ 0 Z1,λ 0 Z2,λ 0

0 Xp 0 Z1,p 0 Z2,p


 . (14)

Note that this implies sorting of individuals within λ∗ and p∗, respectively. Then, the

standard mixed model equations of animal breeders are given by

Cθ̂ = t, (15)

where C = M
′
(Σ−1 ⊗ In)M + Ω, with
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Ω =




0 0 0

0 H−1 ⊗ Inh
0

0 0 G−1 ⊗A−1




(16)

and t = M
′
(Σ−1 ⊗ In)




λ∗

p∗


. The fully conditional posterior distribution of θ is the

multivariate normal process θ|ELSE,y ∼ Normal(θ̂,C−1) and, for any sub-vector θi of

θ, θi|ELSE,y ∼ Normal(θ̃i,C
−1
i,i ), where θ̃i satisfies Ci,iθ̃i = ti − Ci,−iθi. Here, Ci,i is an

appropriate sub-matrix of C; ti is the corresponding sub vector of t; Ci,−i is a block of C

linking the “θi equations” to the “θ−i equations”, and θ−i is θ with θi removed. The Gibbs

sampler is implemented in a scalar mode, drawing from the appropriated fully conditional

posterior distribution one element of θ at a time. In this case, θ̃i and Ci,i are scalars and

Ci,−i is a row vector.

2.1.6 Conditional posterior distribution of the residual variances. From (9), and the fact

that Σ is a diagonal matrix, it follows that

p(σ2
ελ
|ELSE,y) ∝ p(λ∗|βλ,hλ, aλ, σ

2
ελ

)p(σ2
ελ
|νε, δε)

∝ (σ2
ελ

)−(n+νε+2
2 )

× exp

{
− 1

2σ2
ελ

[
n∑

i=1

(λ∗i − x
′
i;λβλ − z

′
i;1,λhλ − z

′
i;2,λaλ)

2

+ νεδ
2
ε

]}
(17)

and

p(σ2
εp
|ELSE,y) ∝ p(p∗|βp,hp, ap, σ

2
εp

)p(σ2
εp
|νε, δε)

∝ (σ2
εp

)−(n+νε+2
2 )

× exp

{
1

2σ2
εp

[
n∑

i=1

(p∗i − x
′
i;pβp − z

′
i;1,php − z

′
i;2,pap)

2

+ νεδ
2
ε

]}
. (18)
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These are the densities of two independent scaled inverse chi-square random variables.

Sampling is straightforward.

2.1.7 Conditional posterior distribution of the non-genetic variances. From (9), it follows

directly that the two non-genetic variances are conditionally independent. In particular,

p(σ2
hλ
|ELSE,y) ∝ (σ2

hλ
)−(nh+νh+2

2 )exp

{
− 1

2σ2
hλ

hλ
′
hλ + νhδ

2
h

}
(19)

and

p(σ2
hp
|ELSE,y) ∝ (σ2

hp
)−(nh+νh+2

2 )exp

{
− 1

2σ2
hp

hp
′
hp + νhδ

2
h

}
. (20)

These are densities of two independent scale inverse chi-square random variables.

2.1.8 Conditional posterior distribution of the genetic covariance matrix G. From (9) it

follows directly that

p(G|ELSE,y) ∝ |G|−(na+νG+3

2 )exp
{
−1

2
tr(G−1V∗

G)
}

,

where V∗
G is given in (10). Hence, the conditional posterior distribution of G is the 2-

dimensional inverse Wishart process G|ELSE,y ∼ IW2(na + νG,V∗−1

G ).

2.2 The Gibbs-Metropolis algorithm and convergence criteria

Our Gibbs-Metropolis sampling algorithm consisted of cyclic sampling through all compo-

nents of τ , drawing each parameter or subset of parameters, conditionally on the realized

value of all other parameters, at each iteration of the algorithm. At iteration t, an ordering

of the components of τ was chosen and elements of τ were sampled sequentially from

their conditional distribution, given the current value of all other elements of τ . A normal

distribution with mean equal to the value of λ
∗(t)
i at iteration (t) and appropriate variance

was used as proposal distribution for sampling from (11). Similarly, a normal distribution

with mean equal to the value of p
∗(t)
i at iteration (t) and some appropriate variance was used
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as proposal distribution for sampling from (12). The variances of the proposal distributions

were chosen to attain acceptance rates between 30% and 50% (Gelman et al., 2004).

Visual inspection of trace plots of the MCMC run and the scale reduction factor diagnostic

suggested by Gelman and Rubin (1992) were used to determine the length of the burn-in

period and the total number of iterations for the Gibbs-Metropolis procedure. Two chains

with overdispersed starting points were used in the Gelman and Rubin (1992) method. This

monitors convergence of the iterative simulation by estimating the factor by which the scale of

the current distribution for a parameter under study, say τ , might be reduced if simulations

were continued for an infinite amount of time. The potential scale reduction is given by

R̂ =
√

ˆvar(τ |y)
W

, which declines towards 1 as the number of iterations J goes to infinity. Here,

v̂ar(τ |y) = J−1
J

W + 1
J
B, where W and B are estimates of the within and between-chain

variances. Discarding early draws as burn-in, such that the starting value is “forgotten”,

samples are drawn as needed to attain a sufficiently small Monte Carlo error of estimation

of features of the posterior distribution, such as the posterior mean.

2.3 Discrepancy statistic for model adequacy

The adequacy of the ZIP model fitted to the data was assessed by comparing the observed

value of a statistic Tk(y, τ ) with its predictive distribution under the ZIP model. As a

measure of “discrepancy”, the statistic Dk = Tk(y|τ )− Tk(yrep|τ ) was used. Here,

Tk(y, τ ) =

∑n
i=1 I(yi = k)

n
, (21)

where yi is the ith component of the observed vector y and k = 0, 1, .... Additionally,

Tk,l(yrep,l, τ ) =

∑n
i=1 I(yi;rep,l = k)

n
, (22)

where yi;rep,l is the ith component of the replicated vector yrep of size n in sample l = 1, ..., L.

In (21) and (22), I(.) is an indicator function. A distribution of Dk values was generated for

each value of k; if the model holds, Dk should be centered at 0. Computations were as follows:
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1) For L = 100, vectors v = (v1, ..., vn) of size n = number of individuals in the data set were

drawn. Each element vi of v followed a ZIP density evaluated at the posterior mean of λ∗i and

p∗i , respectively, as inputs for the Poisson and mixture parameters. 2) For each realization

of v at sample l,
∑n

i=1
I(yi;rep,l=k)

n
was calculated at each k, leading to 100 “future” relative

frequencies. 3) Dk was calculated for each k, with values far from zero being interpreted as

evidence against the model.

2.4 Residual analysis

A residual for the ith record was defined as ri = yi − E(yi|τ). The posterior mean of the

standardized residual was estimated as

r̂i =
1

J

J∑

j=1

(yi − E(yi|τ (j)))√
V ar(yi|τ (j))

, (23)

i = 1, ..., n, and J being the number of posterior samples. The expectation and variance

used were E(yi|τ (j)) = (1 − pi)λi and V ar(yi|τ (j)) = E(yi|τ (j))(1 + λipi), respectively. An

observation would be unusual if the posterior distribution of ri is concentrated away from

zero.

3. An animal breeding application

Quantitative genetic analysis of mastitis data has been carried out mainly with linear models

(e.g., Carlén, Schneider and Strandberg, 2005) and with threshold models (Gianola and

Foulley, 1983, Heringstad et al., 2001, Heringstad et al., 2004, Chang et al., 2004), with

the latter ones accounting for the binary structure of the data, at least when mastitis is

categorized as “absent” or “present”. Longitudinal binary response models have been used as

well (Heringstad et al., 2003). However, the number of episodes of a disease is a random count,

and a more appropriate sampling model would be the Poisson distribution. Further, the “zero

count” (e.g., no disease) may have higher frequency than what is expected under Poisson

sampling, so that a ZIP model might be suitable. If so, an extension for quantitative genetics
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analysis of counts with an excess of zeros is of interest. This application was investigate

alternative specifications for modeling number of incidences of mastitis via a ZIP model,

and for making inferences about genetic (co)variation between the Poisson and mixture

parameters involved in modeling.

The hierarchical ZIP model was fitted to a data set consisting of number of mastitis cases

in 36, 175 Norwegian first-lactation Red cows. The data is described in detail in Rodrigues-

Motta et al. (2007). The ZIP model in terms of (2) included 4 “fixed” factors affecting both λ∗

and p∗. Here, βλ = (β1,λ,β2,λ,β3,λ, β4,λ)
′
and βp = (β1,p,β2,p,β3,p, β4,p)

′
, respectively. The

vector β1,j included effects of 15 ages at first calving (< 20, 20, 21, 22, ..., 32, > 32 months),

the vector β2,j included effects of 12 calendar months at first calving, β3,j consisted of effects

of 3 years at first calving (from 1990 to 1992), and β4,j was a regression on the logarithm of the

number of days from first calving to the defined end of first lactation (culling, second calving,

or 300 days after calving, whichever occured first), with j = λ, p. To achieve a reasonably

vague prior, each element of βλ and βp was sampled from an uniform distribution spanning

from −999 to 999. Herd effects represented the non-genetic random factor contained in hλ

and hp, respectively. The non-genetic herd effects, represented by h = (h
′
λh

′
p)
′
, were assumed

to follow a priori a multivariate normal distribution with mean zero and covariance matrix

as in (5), where Inh
is an identity matrix of dimension nh = 5, 286. A ZIP “sire” model was

fitted, thus aλ and ap are vectors containing half of the breeding values affecting λ∗i and p∗i ,

respectively; each of these vectors was of order 437×1. The sire (genetic) effects, represented

by a = (a
′
λa

′
p)
′
, were assumed to follow a multivariate normal distribution with mean zero

and covariance matrix G ⊗A, where G is as in (6), and A is a known matrix of additive

genetic relationships of dimension 437. The A matrix was built from a sire pedigree file with

a total of 437 males, where the pedigree of the 245 sires with daughters in the data set were

traced back, through sires and maternal grandsires, as far back as possible. In quantitative
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genetics theory, variation between sires accounts only for 1/4 of the total additive genetic

variation (Falconer, 1989); the rest of the variation (genetic and environmental) is captured

by the residual terms ελ and εp. Therefore, the residual term in the model accounts for more

overdispersion, and for environmental effects beyond those due to herds. The degrees of

belief parameters of the scale inverse chi-squared and inverse Wishart distributions assigned

as priors for variance components and matrix G were νε = νh = νG = 5. Further,

VG =




0.45 −0.025

0.45


 , (24)

and δε = δh = 1. A Fortran program was written to sample the unknowns, following the

scheme proposed in Section 2.2. The Gelman and Rubin (1992) convergence criterion used 2

chains starting from overdispersed values, with 106 iterations and a burn-in period of 5×105

samples. The scale reduction factors for the residual, herd and sire variances affecting λ∗

were 1.05, 1 and 1, respectively; the scale reduction factors for the residual, herd and sire

variances affecting p∗ were 1.04, 1.05 and 1, respectively. The scale reduction factor for the

sire covariance was 1. These values suggest convergence to the equilibrium distribution.

However, the trace plots (results not shown) indicated that additional iterations would

produce more accurate posterior estimates of the residual variance associated to λ∗, and of

all variance components associated to p∗. A total of 500, 000 after-burn-in samples (without

thinning) from one of the two chains was used to calculate Monte Carlo errors associated to

the posterior mean of the variance components. The Monte Carlo error variances of residual,

herd and sire variances affecting λ∗ were 2.1× 10−8, 5.8× 10−9 and 8× 10−10, respectively;

the Monte Carlo error of variances of residual, herd and sire variances affecting p∗ were

1.7 × 10−7, 2.3 × 10−7 and 1.7 × 10−7, respectively. The Monte Carlo error variance of the

covariance between sire effects was 5.7×10−9. These small Monte Carlo errors indicated that

posterior mean estimates were precise enough.

The posterior distributions of the dispersion components affecting λ∗ and p∗ are given
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in Figures 1 and Figure 2, respectively. The posterior means and standard deviation (SD)

of the residual, herd and sire variances affecting λ∗ were 0.76 (0.04), 0.36 (0.02) and 0.07

(0.01), respectively, with the most important source of variation being that due to residual

effects, followed by herds and then by sires. In Figure 1, the posterior distributions of the

residual and herd variances were nearly symmetric, while the posterior distribution of the

sire variance was slightly asymmetric with a longer tail to the right. The posterior means

(SD) of the residual, herd and sire variances affecting p∗ were 0.4 (0.11), 0.45 (0.13) and

0.27 (0.11), respectively, with the largest source of variation being herd effects, followed by

residuals and then sires. As shown in Figure 2, the posterior distributions of the residual,

herd and sire variances affecting p∗ were all skewed, with long tails to the right. These results

suggest that it is more difficult to infer components of variance precisely for p∗ than for λ∗.

[Figure 1 about here.]

[Figure 2 about here.]

The posterior distribution of the covariance (correlation) between sire effects on λ∗ and p∗

is shown in Figure 1, with the mean (SD) of the sire covariance being 0.01 (0.02). The 90%

credible interval is given by (−0.02; 0.05), suggesting that genetic effects affecting λ∗ and p∗

are uncorrelated. There was large uncertainty about the sire correlation (which is equal to

the genetic correlation, under additive inheritance at the λ∗ and p∗ levels). The posterior

distribution assigned high density to values of the correlation varying from −0.4 to 0.4.

As shown in Figure 2, the distribution (over observations) of the posterior means of the

perfect state probabilities p was skewed, and its mean (SD) was 0.07 (0.11); the 5% and 95%

percentiles yielded the 90% interval (0.02; 0.22). This leads to the inference that, on average,

about 7% of first-lactation cows would not get mastitis, either due to being totally resistant

to the disease or for never being exposed to mastitis.

The posterior predictive densities of the discrepancy statistic Dk displayed in Figure 3
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(left panel) indicated that the predictive ability of the ZIP model is not entirely satisfactory.

However, for number of cases of mastitis less or equal to 2, the agreement between observed

and replicate data was close. The plot of posterior means of residuals displayed in Figure 3

(right panel) suggested that the model fitted the zero counts reasonably, but that it was less

successful for fitting number of mastitis cases larger than 0 because the mean residual values

were far from zero.

[Figure 3 about here.]

For comparative purposes, a Poisson model having the same exploratory structure for λ∗

was fitted to the data. In the Poisson model, the posterior means (SD) of the residual, herd

and sire variances affecting λ∗ were 0.9 (0.03), 0.35 (0.02) and 0.05 (0.01), respectively.

The residual variance was larger in the Poisson than in the ZIP model, suggesting that the

overdispersion due to zeros was absorbed by the residual term in the Poisson model. The

ZIP model captured more genetic variation, since the variation between sires was larger than

in the Poisson model (posterior means were 0.07 and 0.05, respectively). Since the genetic

correlation between λ∗ and p∗ was near zero, another ZIP model with σaλ,p
= 0 was fitted.

The mean (SD) of the posterior distribution of p in the uncorrelated and correlated ZIP

models were 0.1 (0.11) and 0.07 (0.11), respectively. Estimates of the variance components

affecting p∗ and λ∗ are summarized in Table 1. In general, estimates were similar, except

for σ2
ap

, where the mean was 37% larger (0.37 vs 0.27) in the uncorrelated ZIP model. Since

the credible interval for the covariance between sire effects included zero, the principle of

parsimony favors the uncorrelated ZIP model.

[Table 1 about here.]
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4. Discussion

Count data models have been developed for animal breeding applications, which pose either

a Poisson mixed effects model (Foulley et al., 1987) or accommodate “extra-Poisson” residual

variation explicitly (Tempelman and Gianola, 1996). However, part of this extra variation

may be due to extra zeros relative to Poisson sampling. In this case, a ZIP model may

provide a better fit to the data (Lambert, 1992). From an animal breeding perspective,

quantities of main interest are the genetic values of candidates for selection and associated

variance components. Here, the ZIP model was extended to accommodate genetic effects by

introducing correlated random effects in the structure of the log-Poisson parameter (λ∗) and

of the logit of the mixture probability (p∗). This structure is analogous to that of a multiple-

trait linear model described, for example, in Sorensen and Gianola (2002). Moreover, a

correlation between these two genetic effects would account for pleiotropic genes affecting

the Poisson and the mixture probability, as in models in which a correlation between direct

and maternal effects is fitted (Willham, 1963). The hierarchical structures posed for λ∗ and

p∗ would permit to discriminate between individuals being resistance to a certain disease

and those that are mildly liable.

In an application of this model to number of mastitis cases in first-lactation Norwegian

Red cows, it seemed that a Poisson regression model absorbed overdispersion due to zeros

in the residual term. If this is so, the Poisson mixed model would produce poorer estimates

of the variance components. In the ZIP model, the components of variance affecting p∗ were

inferred less precisely than those affecting λ∗.

Although the scale reduction factor value proposed by Gelman and Rubin (1992) was

satisfied as a convergence criterion, trace plots (not shown here) suggested that, in the

case of variance components affecting p∗, additional iterations were needed for convergence.

However, this can be computationally very intensive. Mixing might be improved by switching
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sampling order of the unknowns at each iteration of the Gibbs-Metropolis algorithm as this

would reduce the serial correlation between successively sampled quantities. The posterior

correlation structure indicated a high correlation between the genetic variance affecting λ∗

and the genetic covariance (0.93); between the genetic variance affecting p∗ and genetic

covariance (0.86), and between the genetic variances affecting λ∗ and p∗ (0.63). Another

form of improving mixing would be via a blockwise Gibbs-Metropolis sampler, as proposed

by Gelman et al. (2004).

The fully conditional distributions of λ∗ and p∗ are not recognizable, so a Metropolis-

Hastings scheme was needed to sample the appropriate unknowns. We found that a normal

proposal distribution had a better performance than a random-walk proposal. It would be

of interest to examine the performance of the Metropolis-Hastings scheme under different

proposal distributions. Besag, York and Mollie (1991), working in a different problem, sug-

gested that although a proper flat prior leads to a proper joint posterior distribution, it may

produce a singularity invalidating the Gibbs sampler. This problem was not detected here,

but a zero-mean normal prior with a large variance may be a better option.
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Figure 1. Posterior distributions of the dispersion components affecting λ∗ and of sire
covariances and correlations between λ∗ and p∗.
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Figure 2. Posterior distribution of the dispersion components affecting p∗ and distribution
of the posterior means of the probability of the perfect state (p).
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Table 1
Inference on residual (σ2

ελ
, σ2

εp
), herd (σ2

hλ
,σ2

hp
) and sire (σ2

aλ
,σ2

ap
) variances affecting λ∗ and p∗ in ZIP models

with or without genetic correlation between λ∗ and p∗.

Posterior mean (standard error)
Uncorrelated ZIP Correlated ZIP

σ2
ελ

0.72 (0.04) 0.76 (0.04)
σ2

hλ
0.36 (0.02) 0.36 (0.02)

σ2
aλ

0.09 (0.01) 0.07 (0.01)
σ2

εp
0.36 (0.10) 0.40 (0.11)

σ2
hp

0.41 (0.13) 0.45 (0.13)

σ2
ap

0.37 (0.10) 0.27 (0.11)


