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Abstract

Given a continuous n-homogeneous polynomial P : E −→ F between
Banach spaces and 1 ≤ q ≤ p < ∞, in this paper we investigate some
properties concerning lineability and spaceability of the (p; q)-summing set
of P , defined by Sp;q(P ) = {a ∈ E : P is (p; q)−summing at a}.

Introduction

Several different generalizations of absolutely summing linear operators to homo-
geneous polynomials have already been studied and besides its intrinsic mathe-
matical interest, this line of investigation has interesting applications (for exam-
ple, in the study of convolution equations: a nonlinear concept related to abso-
lutely summing operators is used in [12, 21] to generalize results from [16, 17, 18]).
One of the possible polynomial extensions of the concept of absolutely summing
operator is the class of homogeneous polynomials which are absolutely summing
at a given point of the domain, which was introduced by M. C. Matos [20] and de-
veloped in [5, 6, 9, 24, 25]. This class is interesting, among other reasons, because
it is suitable to extend the theory to arbitrary nonlinear mappings in the follow-
ing fashion: given 1 ≤ q ≤ p < ∞ and a mapping f : E −→ F between Banach
spaces, we say that f is (p; q)-summing at a point a ∈ E if (f(a + xj)− f(a))∞j=1

is absolutely p-summable in F whenever (xj)∞j=1 is unconditionally q-summable
in E.

The (p; q)-summing set of the mapping f is defined by

Sp;q(f) = {a ∈ E : f is (p; q)−summing at a}.

If p = q we just say that f is p-summing at a and simply write Sp(f). Letting
E be infinite-dimensional, the following questions are natural: Is Sp;q(f) non-
empty? If yes, is it a linear subspace of E? If yes, is it 6= {0}? If yes, is it
infinite-dimensional? Closed? The whole space? If no, does it contain a lin-
ear subspace G of E? If yes, does it contain an infinite-dimensional subspace?
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Closed?
In this paper we address the above questions for homogeneous polynomials.

In Section 3 we characterize the summing set of a polynomial in terms of the
summability of its derivatives at the origin and we study the cases of polynomials
P : E −→ F for which Sp;q(P ) = ∅, Sp;q(P ) = {0} and Sp;q(P ) = E. In section 4
we identify the precise point where linearity is lost. More specifically, we prove
that the summing set of either a 2-homogeneous polynomial or a scalar-valued 3-
homogeneous polynomial is a linear subspace; whereas the summing set of either a
vector-valued 3-homogeneous polynomial or a scalar-valued n-homogeneous poly-
nomials, n ≥ 4, may fail to be a linear subspace. We also prove that, even when
the summing set is an infinite-dimensional subspace, it may fail to contain a
closed infinite-dimensional subspace. In a final result we prove that, regardless of
the positive integer n ≥ 2, any finite-dimensional subspace of L2 is the summing
set of a certain n-homogeneous polynomial.

It is worth mentioning that this line of investigation, for different sorts of
sets, has been previously explored. For example, given a continuous homogeneous
polynomial P : E −→ F , the sets

C(P ) = {a ∈ E; P is weakly sequentially continuous at a} and

cw(P ) = {a ∈ E;P is weakly continuous on bounded sets at a}
were investigated in [4, 27] and [8], respectively (see Section 3).

1 Background and notation

Throughout this paper E and F will stand for Banach spaces over K = R or
C, E′ is the dual of E and n will always be a positive integer. By P(nE; F )
we denote the Banach space of all continuous n-homogeneous polynomials from
E to F with the usual sup norm. If F = K we simply write P(nE). Given
P ∈ P(nE;F ), a ∈ E and k ∈ {1, . . . , n}, denoting by P̌ the symmetric n-linear
mapping associated to P , as usual we define:

d̂kP (a) : E −→ F : d̂kP (a)(x) =
n!

(n− k)!
P̌ (an−k, xk) ; dkP (a) ∈ P(kE;F );

d̂kP : E −→ P(kE;F ) : a −→ dkP (a) ; d̂kP ∈ P(n−kE;P(kE;F )).

Here, (an−k, xk) means (a, . . . , a, x, . . . , x), where a appears (n− k) times and x
appears k times. For k = 1 we write d̂P (a) and d̂P instead of d̂1P (a) and d̂1P .
For the general theory of multilinear mappings, homogeneous polynomials and
holomorphic mappings we refer to [11, 22].

Let p ≥ 1. By `p(E) we mean the Banach space of all absolutely p-summable

sequences (xj)∞j=1, xj ∈ E for all j, with the norm ‖(xj)∞j=1‖p =
(∑∞

j=1 ‖xj‖p
)1/p

.
`w
p (E) denotes the Banach space of all sequences (xj)∞j=1, xj ∈ E for all j, such

that (ϕ(xj))∞j=1 ∈ `p for every ϕ ∈ E′ with the norm

‖(xj)∞j=1‖w,p = sup{‖(ϕ(xj))∞j=1‖p : ϕ ∈ E′, ‖ϕ‖ ≤ 1}.
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`u
p(E) is the closed subspace of `w

p (E) formed by the sequences (xj)∞j=1 satisfying
limk→∞ ‖(xj)∞j=k‖w,p = 0. Such sequences are called unconditionally p-summable.

According to the definition stated in the introduction, given 1 ≤ q ≤ p < ∞,
a mapping f : E −→ F is (p; q)-summing at a ∈ E if (f(a+xj)−f(a))∞j=1 ∈ `p(F )
whenever (xj)∞j=1 ∈ `u

q (E). For a polynomial P ∈ P(nE;F ), by [19, Proposition
2.4] we know that P is (p; q)-summing at the origin if and only if (P (xj))∞j=1 ∈
`p(F ) whenever (xj)∞j=1 ∈ `w

q (E). Making n = 1 we recover the classical ideal of
(p; q)-summing linear operators. The space of all (p; q)-summing linear operators
from E to F will be denoted by Πp;q(E;F ). For the theory of absolutely summing
linear operators we refer to [10].

According to [2, 15] and others, a subset A of a topological vector space E is
said to be:
• n-lineable if A ∪ {0} contains an n-dimensional linear subspace of E.
• lineable if A ∪ {0} contains an infinite-dimensional linear subspace of E.
• spaceable if A∪{0} contains a closed infinite-dimensional linear subspace of E.

2 Known related facts

Several known results and examples can be rephrased in the language of summing
sets. We list some of them in this section in order to inform the reader about the
state of the art and for further reference.

Example 2.1. [20, Example 3.2 and Theorem 6.3] Let E be an infinite-dimensional
Banach space, n ≥ 2, p ≥ 1 and ϕ ∈ E′, ϕ 6= 0. If P : E −→ E is the n-
homogeneous polynomial defined by P (x) = ϕ(x)n−1x, then Sp(P ) = ker(ϕ).

Proposition 2.2. [5, Corollary 3.6] Let P ∈ P(nE; F ), n ≥ 2. If P is (p; q)-
summing at a ∈ E, then P is (p; q)-summing at λa for every λ ∈ K. In conse-
quence, Sp;q(P ) is either empty, or {0} or 1-lineable. In particular Sp;q(P ) 6= ∅
if and only if 0 ∈ Sp;q(P ).

Proposition 2.3. [1, Theorem 3.10] Let n ≥ 2 and E be a Banach space. For
every P ∈ P(nE), 0 ∈ S1(P ).

Remember that a Banach space E has the Orlicz property if the identity
operator on E is (2; 1)-summing. Spaces of cotype 2 have the Orlicz property.

Proposition 2.4. [19, Proposition 2.9] Let n ≥ 2, E be a Banach space with
the Orlicz property, F be an arbitrary Banach space and P ∈ P(nE; F ). Then
0 ∈ S1(P ).

If a mapping f : E −→ F is such that Sp;q(f) = E, f is called everywhere
(p; q)-summing. Several such cases are known, for example:

Proposition 2.5.
(a) [20, Corollary 4.2] Let E be an L1-space and F be an L2-space. Then S1(f) =
E for every analytic mapping f : E −→ F .
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(b) [25, Theorem 5.2] Let F be a Banach space of cotype q and E be an arbitrary
Banach space. Then Sq;1(f) = E for every analytic mapping f : E −→ F .
(c) [25, Theorem 2.4] Let n ∈ N. A Banach space E has cotype q > 2 if and only
if Sq;1(P ) = E for every P ∈ P(nE; E).
(d) [25, Theorem 2.10] If E is an L∞-space and F has cotype q, then Sq;2(P ) = E
for every P ∈ P(nE;F ).

3 General examples and results

Our first three examples show that, though apparently similar at first glance, the
theory of summing sets Sp;q(P ) is actually quite different from that of the sets
C(P ) of [4] (for the definition see the Introduction). Recall that a polynomial
P ∈ P(nE; F ) is p-dominated [19, Definition 3.2], 1 ≤ p < +∞, if (P (xj))∞j=1 ∈
` p

n
(F ) whenever (xj)∞j=1 ∈ `w

p (E).

Example 3.1. Let P ∈ P(nE; F ) be a p-dominated polynomial. On the one
hand, Sp(P ) = C(P ) = E. Indeed, the fact that P can be written as P = Q ◦ u
where u is an absolutely p-summing linear operator, hence completely continuous,
shows that C(P ) = E. The fact that Sp(P ) = E is a straightforward consequence
of [9, Theorem 3((iii) and (v))]. On the other hand, in general Sq(P ) 6= C(P )
for q < p. For example, S1(v) = ∅ 6= E = C(v) for any absolutely 2-summing
non-absolutely 1-summing linear operator v on E.

In particular, from the previous example we conclude that when E is either an
L∞-space, the disc algebra A or the Hardy space H∞, then Sp(P ) = C(P ) = E
for every P ∈ P(2E) and every p ≥ 2. In fact, from [7, Proposition 2.1] we know
that every such P is p-dominated (p ≥ 2).

Example 3.2. The polynomial

P : `2 −→ R ; P ((αj)∞j=1) =
∞∑

j=1

α2
j .

is absolutely 1-summing (and hence 0 ∈ Sp(P )), but C(P ) = ∅ because (a+ej)∞j=1

is weakly convergent to a but (P (a+ej))∞j=1 fails to be norm convergent to P (a).

Example 3.3. If ϕ ∈ E′, we know from Example 2.1 that P (x) = ϕ(x)x is so
that S1(P ) = Ker(ϕ). On the other hand, if E = `1 we have C(P ) = `1 since `1

has the Schur property.

All summing sets of finite type polynomials and 1-summing sets of nuclear
polynomials can be easily described:

Example 3.4. Let P ∈ P(nE; F ) be a polynomial of finite type, that is P (x) =∑k
j=1 ϕj(x)nbj , where k ∈ N, ϕ1, . . . , ϕk ∈ E′ and b1, . . . , bk ∈ F . An easy

adaptation of the proof of [20, Lemma 6.2] shows that Sp;q(P ) = E for every
1 ≤ q ≤ p.
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Example 3.5. A polynomial P ∈ P(nE; F ) is said to be nuclear [11, Definition
2.9] if there exist (λj)∞j=1 ∈ `1 and bounded sequences (ϕj)∞j=1 in E′ and (bj)∞j=1

in F such that

P (x) =
∞∑

j=1

λjϕj(x)nbj for every x ∈ E.

It is not difficult to show that S1(P ) = E for every nuclear polynomial P ∈
P(nE; F ).

Let us see that the summing set may be empty even for simple nonlinear
mappings. For p = 2 the scalar-valued case is enough:

Example 3.6. Consider the n-homogeneous polynomial (n≥ 2)

P : `2 −→ K ; P ((αj)∞j=1) =
∞∑

j=1

αn
j .

Let 2 ≤ q ≤ p. Since (ej)∞j=1 ∈ `w
2 (`2) ⊆ `w

q (`2) and P (ej) = 1 for every j, we
have that P is not (p; q)-summing at 0. So, Sp;q(P ) = ∅ by Proposition 2.2 for
every 2 ≤ q ≤ p. In particular Sp(P ) = ∅ for every p ≥ 2.

For p = 1, Proposition 2.3 forces a vector-valued example:

Example 3.7. Consider the n-homogeneous polynomial

P : c0 −→ c0 ; P ((αj)∞j=1) = (αn
j )∞j=1.

Let 1 ≤ q ≤ p. Since (ej)∞j=1 ∈ `w
1 (c0) ⊆ `w

q (c0) and ‖P (ej)‖ = ‖ej‖ = 1 for every
j, we have that P is not (p, q)-summing at 0. So, Sp;q(P ) = ∅ by Proposition 2.2.
for every 1 ≤ q ≤ p. In particular Sp(P ) = ∅ for every p ≥ 1.

The recent developments obtained in [5] allow us to prove the following char-
acterization, which, besides its own interest, will be helpful several times later.

Theorem 3.8. Let P ∈ P(nE;F ) and a ∈ E. Then a ∈ Sp;q(P ) if and only if
0 ∈ Sp;q(d̂kP (a)) for every k = 1, . . . , n.

Proof. Assume that 0 ∈ Sp;q(d̂kP (a)) for every k = 1, . . . , n. Given (xj)∞j=1 ∈
`w
q (E), (d̂kP (a)(xj))∞j=1 ∈ `p(F ) for k = 1, . . . , n. For every j,

P (a + xj)− P (a) =
n∑

k=1

(
n

k

)
P̌ (an−k, xk

j ) =
n∑

k=1

1
k!

d̂kP (a)(xj),

so a ∈ Sp;q(P ) because `p(F ) is a linear space. Conversely, let a ∈ Sp;q(P ) and
k ∈ {1, . . . , n}. By [5, Proposition 3.5] we know that P̌ is (p; q)-summing at
(a, . . . , a) in the sense of [5, Section 2] or [6, Definition 9.1]. So it follows from
[5, Proposition 3.1] that the k-linear mapping

(x1, . . . , xk) ∈ Ek −→ P̌ (an−k, x1, . . . , xk) ∈ F

5



is (p; q)-summing at the origin. Calling on [5, Proposition 3.5] once more it
follows that the polynomial generated by this k-linear mapping is (p; q)-summing
at the origin. But this polynomial is a multiple of d̂kP (a), hence d̂kP (a) is (p; q)-
summing at the origin, that is 0 ∈ Sp;q(d̂kP (a)).

First we apply this characterization to prove a substantial improvement of
Proposition 2.3:

Proposition 3.9. Let E be a Banach space and n ≥ 2. Then S1(P ) = E for
every P ∈ P(nE).

Proof. Using multilinear mappings the result follows from an easy combination of
[25, Lemma 1] and [5, Proposition 3.5]. We prefer to provide a direct reasoning:
let P ∈ P(nE) and a ∈ E. For every k = 1, . . . , n, d̂kP (a) is a scalar-valued
k-homogeneous polynomial on E, so it is 1-summing at the origin by Proposition
2.3. The result follows from Theorem 3.8.

Remark 3.10. Example 3.7 shows that Proposition 3.9 is no longer true for
vector-valued polynomials. Actually, we know much more: for every infinite-
dimensional Banach space E, every p ≥ 1, every n ≥ 2 and every a ∈ E, [5,
Theorem 3.7] assures that there is a polynomial P ∈ P(nE; E) such that a /∈
Sp(P ).

Following the same line of thought of Proposition 3.9 we obtain:

Proposition 3.11. Let E be a Banach space with the Orlicz property. Then
S2,1(P ) = E for every n, every F and every P ∈ P(nE;F ).

Proof. Given (xj)∞j=1 ∈ `w
1 (E), (xj)∞j=1 ∈ `2(E) because E has the Orlicz prop-

erty. Then,

∞∑

j=1

‖P (xj)‖2 ≤



∞∑

j=1

‖P (xj)‖
2
n




n

≤ ‖P‖2




∞∑

j=1

‖xj‖2




n

< +∞.

This shows that 0 ∈ S2,1(P ) for every homogeneous polynomial P on E. The
result follows from Theorem 3.8.

We finish this section showing that, for every n, the summing set of an n-
homogeneous polynomial may be {0}, thus may fail to be 1-lineable.

Example 3.12. Consider the 2-homogeneous polynomial

P : L2([0, 1];K) −→ L1([0, 1];K) ; P (f) = f2.

Let us see that S1(P ) = {0}. 0 ∈ S1(P ) by Proposition 2.4 because L2([0, 1];K)
has the Orlicz property. Let 0 6= f ∈ L2([0, 1];K). Choose a sequence (αj)∞j=1 in
`2 but not in `1 and an orthonormal sequence (hj)∞j=1 in L2([0, 1];K) such that,
for every j ∈ N, |hj(x)| = 1 almost everywhere, Lebesgue measure (for example,
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the Rademacher functions). Now we consider the sequence (αjhj)∞j=1. For every
g ∈ L2([0, 1];K), by Bessel’s inequality we have

∞∑

j=1

|〈g, αjhj〉|=
∞∑

j=1

|αj ||〈g, hj〉| ≤



∞∑

j=1

|αj |2



1
2

·



∞∑

j=1

|〈g, hj〉|2



1
2

≤‖(αj)∞j=1‖`2‖g‖L2 .

This shows that (αjhj)∞j=1 ∈ `w
1 (L2([0, 1];K)). On the other hand, since d̂P (f)(g) =

2P̌ (f, g) = 2fg, we have

∞∑

j=1

‖d̂P (f)(αjhj)‖L1 = 2
∞∑

j=1

∫ 1

0
|f(t)||αj ||hj(t)|dt = 2‖f‖L1

∞∑

j=1

|αj | = +∞,

showing that d̂P (f) is not 1-summing. f /∈ S1(P ) by Theorem 3.8.

Now we handle the case n ≥ 3. For each x ∈ [−π, π], we consider the set

Jx := {t ∈ [−π, π] : x− t ∈ [−π, π]} =
{

[x− π, π], 0 ≤ x ≤ π,
[− π, x + π], −π ≤ x ≤ 0.

Given f, g ∈ L2([−π, π];K), the convolution f ∗ g is defined on [−π, π] by

f ∗ g(x) =
∫

Jx

f(x− t)g(t)dt.

By Young’s inequality [13, Proposition 8.7] we know that f ∗ g ∈ L2([−π, π];K)
and ‖f ∗ g‖L2 ≤ ‖f‖L2‖g‖L2 . Given f ∈ L2([−π, π];K) and n ≥ 2, since the
convolution is associative ((f ∗ g) ∗ h = f ∗ (g ∗ h) - see [13, Proposition 8.6(b)]),
inductively we can define

f ∗ (n)· · · ∗ f := f ∗ (f ∗ (n−1)· · · ∗ f).

Proposition 3.13. Let n ≥ 2. Consider the (n + 1)-homogeneous polynomial

P : L2([−π, π];K) −→ L1([−π, π];K) ; P (f) = (f ∗ (n)· · · ∗ f) · f.

Then, S1(P ) = {0}.
Proof. 0 ∈ S1(P ) by Proposition 2.4 because L2([−π, π];K) has the Orlicz prop-
erty. Let 0 6= f ∈ L2([−π, π];K). For every g ∈ L2([−π, π];K),

d̂P (f)(g) = (n + 1)P̌ (fn, g) = (f∗ (n)· · · ∗f) · g + n(f∗ (n−1)· · · ∗f ∗ g) · f. (*)

Claim 1: The linear operator

u : L2([−π, π];K) −→ L1([−π, π];K) ; u(g) = (f∗ (n−1)· · · ∗f ∗ g) · f
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is 1-summing.
Proof of Claim 1: For x ∈ [−π, π] define

hx : [−π, π] −→ K ; hx(t) =

{
(f∗ (n−1)· · · ∗f)(x− t), t ∈ Jx,

0, t /∈ Jx.

We have hx ∈ L2([−π, π];K) and ‖hx‖L2 ≤ ‖f‖n−1
L2

. Regarding hx as a linear
functional on L2([−π, π];K), for every g ∈ L2([−π, π];K) we obtain

hx(g) = 〈g, hx〉 =
∫

Jx

g(t)hx(t)dt =
∫

Jx

g(t)(f∗ (n−1)· · · ∗f)(x− t)dt

= (f∗ (n−1)· · · ∗f ∗ g)(x).

We conclude that u is 1-summing observing that, for g1, . . . , gk ∈ L2([−π, π];K),
k∑

j=1

‖u(gj)‖ =
k∑

j=1

‖(f∗ (n−1)· · · ∗f ∗ gj) · f‖L1

=
k∑

j=1

∫ π

−π
|(f∗ (n−1)· · · ∗f ∗ gj)(x)||f(x)|dx

=
∫ π

−π

k∑

j=1

|hx(gj)||f(x)|dx =
∫ π

−π
‖hx‖L2

k∑

j=1

∣∣∣∣
hx

‖hx‖L2

(gj)
∣∣∣∣ |f(x)|dx

≤ ‖f‖n−1
L2

‖f‖L1‖(gj)k
j=1‖w,1.

Claim 2: The linear operator

v : L2([−π, π];K) −→ L1([−π, π];K) ; v(g) = (f∗ (n)· · · ∗f) · g
fails to be 1-summing.
Proof of Claim 2: As we did in Example 3.12, let (hj)∞j=1 be an orthonormal
sequence in L2([−π, π];K) such that, for every j ∈ N, |hj(x)| = 1√

2π
almost

everywhere. Choosing a sequence (αj)∞j=1 in `2 but not in `1, the argument we
used in Example 3.12 shows that (αjhj)∞j=1 ∈ `w

1 (L2([−π, π];K)). v fails to be
1-summing because

∞∑

j=1

‖v(αjhj)‖ =
∞∑

j=1

‖(f∗ (n)· · · ∗f) · αjhj)‖L1

=
∞∑

j=1

∫ π

−π
|(f∗ (n)· · · ∗f)(x)||αj ||hj(x)|dx

=
1√
2π
‖(f∗ (n)· · · ∗f)‖L1

∞∑

j=1

|αj | = +∞.

Combining Claim 1, Claim 2 and (*) we conclude that d̂P (f) fails to be 1-

summing. By Theorem 3.8 it follows that f /∈ S1(P ).
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4 Lineability and spaceability

In this section we show that the case n = 3 marks the loose of linearity: while
non-void summing sets of either 2-homogeneous polynomials or scalar-valued 3-
homogeneous polynomials are always linear subspaces, the same is no longer
true for vector-valued 3-homogeneous polynomials. We also show that for n-
homogeneous polynomials, n ≥ 4, even in the scalar-valued case the summing set
may fail to be a linear subspace. We start by showing that the summing set of a
2-homogeneous polynomial is either empty or a linear subspace:

Theorem 4.1. Let E and F be Banach spaces, P ∈ P(2E; F ) and 1 ≤ q ≤ p.
Then either Sp;q(P ) = ∅ or Sp;q(P ) = {a ∈ E : d̂P (a) is (p; q)−summing}. So,
Sp;q(P ) is either empty or a linear subspace of E. In particular, if P ∈ P(2E),
then either Sp;q(P ) = ∅ or Sp;q(P ) = E.

Proof. Suppose Sp;q(P ) 6= ∅. By Proposition 2.2 we have that P is (p; q)-summing
at the origin. In this case, Theorem 3.8 yields that a ∈ Sp;q(P ) ⇐⇒ d̂P (a) is
(p; q)-summing, which proves the first assertion. So, Sp;q(P ) = (d̂P )−1(Πp;q(E; F )),
which is a linear subspace of E because d̂P is a linear operator and Πp;q(E; F )
is a linear subspace of L(E; F ). For P ∈ P(2E), regardless of the vector a ∈ E,
d̂P (a) is a linear functional, thus (p; q)-summing, so the last assertion follows.

Next example shows that, though always a linear subspace, the summing set
of a 2-homogeneous polynomial may fail to be spaceable.

Example 4.2. (A non-closed lineable non-spaceable summing set) Consider the
2-homogeneous polynomial

P : `2 −→ `1 ; P ((αj)∞j=1) = (α2
j )
∞
j=1.

P is 1-summing at the origin by Proposition 2.4 because `2 has the Orlicz prop-
erty. By Theorem 4.1 it follows that S1(P ) = {a ∈ `2 : d̂P (a) is 1− summing}.
Given a = (ak)∞k=1 ∈ `2, d̂P (a) is the linear operator

(αk)∞k=1 ∈ `2 −→ d̂P (a)((αk)∞k=1) = 2P̌ ((ak)∞k=1), (αk)∞k=1)) = 2(akαk)∞k=1 ∈ `1.

That is, 1
2 d̂P (a) is the diagonal operator by the vector a. By [14, Theorem 9]

it follows that d̂P (a) is 1-summing if and only if a ∈ `1, so S1(P ) = {a ∈ `2 :
d̂P (a) is 1− summing} = `1, which is a non-closed infinite-dimensional subspace
of `2 (obvious) that fails to be spaceable (it is well known that, as a subset of `2,
`1 is not spaceable).

Concerning summing sets, scalar-valued 3-homogeneous polynomials behave
like 2-homogeneous polynomials:

Proposition 4.3. Let E be a Banach space and P ∈ P(3E). Then, Sp;q(P ) is
either empty or a linear subspace of E for every 1 ≤ q ≤ p.

9



Proof. Suppose Sp;q(P ) 6= ∅ and let a ∈ E. By Proposition 2.2 we know
that P is (p; q)-summing at the origin. d̂P (a) is (p; q)-summing because it is
a linear functional. Calling on Theorem 3.8 it follows that a ∈ Sp;q(P ) ⇐⇒
d̂2P (a) is (p; q)-summing at the origin. We denote the space of all scalar-valued
2-homogeneous polynomials on E which are (p; q)-summing at the origin by
Pas(p;q)(2E). Hence Sp;q(P ) = (d̂2P )−1(Pas(p;q)(2E)), which is a linear subspace
of E because d̂2P : E −→ P(2E) is a linear operator.

Now we prove a multipurpose result:

Theorem 4.4. Let E and F be Banach spaces, n ∈ N, P ∈ P(nE) and g : E −→
F be a continuous mapping. If Sp;q(P ) = E, then Sp;q(P · g) = kerP ∪ Sp;q(g).

Proof. Given (xj)∞j=1 ∈ `u
q (E), g(xj) −→ g(0) because xj −→ 0. It follows that

(g(xj))∞j=1 is bounded, so there is M ≥ 0 such that ‖g(xj)‖ ≤ M for every j. First
let us show that Sp;q(P · g) 6= ∅. (P (xj))∞j=1 is absolutely p-summable because
Sp;q(P ) = E, so

∞∑

j=1

‖(P · g)(xj)‖p =
∞∑

j=1

|P (xj)|p‖g(xj)‖p ≤ Mp
∞∑

j=1

|P (xj)|p < +∞,

showing that 0 ∈ Sp;q(P · g). Let a ∈ E. For every j,

(P · g)(a + xj)− (P · g)(a) = P (a + xj)g(a + xj)− P (a)g(a)
= P (a + xj)(g(a + xj)− g(a)) +

+g(a)(P (a + xj)− P (a)).

We know that ((P (a+xj)−P (a))∞j=1 is absolutely p-summable because Sp;q(P ) =
E, so a ∈ Sp;q(P · g) if and only if (P (a + xj)(g(a + xj)− g(a)))∞j=1 is absolutely
p-summable. a ∈ Sp;q(P ) because Sp;q(P ) = E by assumption, so Theorem
3.8 yields that d̂kP (a) is (p; q)-summing at the origin for every k = 1, . . . , n.
Combining this with the fact that the sequence (g(a + xj)− g(a))∞j=1 is bounded
(because a + xj −→ a and g is continuous), from

P (a + xj)(g(a + xj)− g(a)) = P (a)(g(a + xj)− g(a)) + (g(a + xj)

−g(a))
n∑

k=1

(
n

k

)
P̌ (an−k, xk).

= P (a)(g(a + xj)− g(a)) + (g(a + xj)

−g(a))
n∑

k=1

1
k!

d̂kP (a)(xj) for every j,

it follows that a ∈ Sp;q(P·g) if and only if (P (a)(g(a+xj)−g(a)))∞j=1 is absolutely
p-summable. So, kerP ⊆ Sp;q(P · g) and for a /∈ kerP we have a ∈ Sp;q(P · g) if
and only if g is p-summing at a, that is a ∈ Sp;q(g).
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A formula for Cp(P · Q) was proved in [4, Theorem 5] for scalar-valued ho-
mogeneous polynomials P and Q. Observe that the formula we obtained above
for Sp;q(P · g) holds true for arbitrary continuous mappings g.

Corollary 4.5. Let E and F be Banach spaces, n ∈ N, P ∈ P(nE) and g : E −→
F be a continuous mapping. Then S1(P · g) = kerP ∪ S1(g).

Proof. By Proposition 3.9 we know that S1(P ) = E. Now the result follows from
Theorem 4.4.

Corollary 4.6.
(a) (Complex case) Let E and F be complex Banach spaces with E infinite-
dimensional. Let P and g be as in Theorem 4.4. Then S1(P · g) is spaceable.
(b) (Real case) Let E and F be real Banach spaces with E infinite-dimensional.
At least one of the following possibilities occur:

(b1) There exists P ∈ P(3E; E) such that S1(P ) = {0};
(b2) For every P and g as in Theorem 4.4 with n = 2, S1(P · g) is spaceable.

Proof. (a) By Theorem 4.4 we know that kerP ⊆ S1(P·g), and from [26, Theorem
5] we know that there exists an infinite-dimensional subspace G ⊆ kerP . But
kerP = P−1(0) is closed, so G ⊆ kerP = kerP ⊆ S1(P · g). (b) Suppose that

E admits a positive definite 2-homogeneous polynomial Q ∈ P(2E). Defining
P ∈ P(3E; E) by P (x) = Q(x)x, by Theorem 4.4 we get S1(P ) = kerQ = {0},
proving that (b1) occurs in this case. If E does not admit a positive definite 2-
homogeneous polynomial, by [3, Theorem 1] we know that for every P ∈ P(2E),
kerP contains an infinite-dimensional subspace of E. A repetition of the proof of
(a) shows that (b2) occurs in this case.

Remarks 4.7. (a) It is not always true that kerP ⊆ S1(P ). For instance, if P
is the polynomial of Example 3.7, then S1(P ) = ∅ whereas kerP = {0}.
(b) It is interesting to mention that possibility (b1) above occurs if there is
a continuous linear injection from E into a Hilbert space, and possibility (b2)
occurs otherwise (see [3, Proposition 2]).
(c) Corollary 4.6(a) can be used to obtain information about non-reducibility of
polynomials: if the polynomial P ∈ P(nE; F ) between complex Banach spaces
(dimE = +∞) is such that S1(P ) is non-spaceable, then P is irreducible, that
is: P cannot be written as P = P1 · P2 with 1 ≤ k ≤ n − 1, P1 ∈ P(kE) and
P2 ∈ P(n−kE; F ). For example, the convolution polynomials from L2([−π, π],C)
to L1([−π, π],C)) of Proposition 3.13 are irreducible.

Example 4.8. (The summing set of a 3-homogeneous polynomial may fail to be a
linear subspace) Let E be an infinite-dimensional Banach space. Fix ϕ1, ϕ2 ∈ E′

with kerϕ1 6⊆ kerϕ2 and kerϕ2 6⊆ kerϕ1. For example, choose linearly indepen-
dent vectors a, b ∈ E and functionals ϕ1, ϕ2 ∈ E′ such that ϕ1(a) = ϕ2(b) = 0
and ϕ2(a) = ϕ1(b) = 1. Consider the polynomial

P : E −→ E : P (x) = ϕ1(x)ϕ2(x)x ; P ∈ P(3E;E).

11



S1(idE) = ∅ because the identity operator on an infinite-dimensional Banach
space is never absolutely summing. From Corollary 4.5 we obtain

S1(P ) = ker(ϕ1 · ϕ2) = kerϕ1 ∪ kerϕ2.

So, both a and b belong to S1(P ). Assume for a while that (a + b) ∈ S1(P ). So,
(a+b) ∈ kerϕ1 or (a+b) ∈ kerϕ2; and in this case we would have b = (a+b)−a ∈
kerϕ1 or a = (a + b) − b ∈ kerϕ2 - a contradiction. We have just proved that
(a + b) /∈ S1(P ), therefore S1(P ) is not a linear subspace of E. Note that S1(P )
is spaceable, because kerϕ1 ⊆ S1(P ).

Proposition 4.9. For every n ≥ 4 and every 2 ≤ q ≤ p there exists a scalar-
valued n-homogeneous polynomial P so that Sp;q(P ) 6= ∅ and fails to be a linear
subspace.

Proof. Given n ≥ 4 and 2 ≤ q ≤ p, let E be a Banach space which admit
a polynomial Q ∈ P(n−2E) such that Sp;q(Q) = ∅ (for example, the (n − 2)-
homogeneous polynomial on `2 defined in Example 3.6). Let ϕ1, ϕ2 ∈ E′ be as in
Example 4.8, that is, kerϕ1 6⊆ kerϕ2 and kerϕ2 6⊆ kerϕ1. Define P := ϕ1 ·ϕ2 ·Q ∈
P(nE). Example 3.4 gives Sp;q(ϕ1 · ϕ2) = E, so by Theorem 4.4 we have

Sp;q(P ) = ker(ϕ1 · ϕ2) ∪ Sp;q(Q) = ker(ϕ1 · ϕ2) = kerϕ1 ∪ kerϕ2,

which fails to be a linear subspace of E.

In all our examples and results thus far, the summing set of a homogeneous
polynomial is either void, {0} or lineable. So, a final question concerns the
existence of non-trivial (6= ∅, 6= {0}) non-lineable summing sets. We shall solve
this problem by proving that, given n ≥ 2, every finite-dimensional subspace of
L2 is the summing set of a certain n-homogeneous polynomial.

Let G be a complemented subspace of a Banach space E. It is plain that
the projection from E onto G is p-summing if and only if G is finite-dimensional.
Nevertheless, for q < p, the projection onto an infinite-dimensional complemented
subspace may be (p; q)-summing.

Proposition 4.10. Let G be a complemented subspace of E such that the pro-
jection from E onto G is (p; q)-summing. If there is a polynomial P ∈ P(nE; F )
such that Sp;q(P ) = {0}, n ≥ 2, then there exists a polynomial Q ∈ P(nE; F )
such that Sp;q(Q) = G.

Proof. Let H be the topological complement of G, that is E = G ⊕ H. By
πH , πG : E −→ E we denote the projections onto H and G, respectively. Define
Q := P◦πH ∈ P(nE; F ). Let a ∈ G. Given (xj)∞j=1 ∈ `w

q (E), (πH(xj))∞j=1 ∈ `w
q (E)

because πH is a bounded linear operator. Hence (Q(xj))∞j=1 = (P (πH(xj)))∞j=1 ∈
`p(F ) because 0 ∈ Sp;q(P ). Since πH(a) = 0, (Q(a+xj)−Q(a))∞j=1 = (Q(xj))∞j=1 ∈
`p(F ), showing that a ∈ Sp;q(Q). We proved that G ⊆ Sp;q(Q). Now we con-
sider a /∈ G. In this case πH(a) /∈ Sp;q(P ) because πH(a) 6= 0. So we can find
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a sequence (xj)∞j=1 ∈ `w
q (E) such that (P (πH(a) + xj) − P (πH(a)))∞j=1 /∈ `p(F ).

Since

P (πH(a) + xj)− P (πH(a)) =
n∑

k=1

(
n

k

)
P̌ (πH(a)n−k, xk

j ),

there is k ∈ {1, . . . , n} such that (P̌ (πH(a)n−k, xk
j ))

∞
j=1 /∈ `p(F ). For every x ∈ E,

x = πH(x) + πG(x), so

P̌ (πH(a)n−k, xk
j ) = P̌ (πH(a)n−k, (πH(xj) + πG(xj))k)

=
k∑

i=0

(
k

i

)
P̌ (πH(a)n−k, πH(xj)k−i, πG(xj)i).

Hence (P̌ (πH(a)n−k, πH(xj)k−i, πG(xj)i))∞j=1 /∈ `p(F ) for some i ∈ {0, . . . , k}.
Assume, for a while, that i 6= 0. πG is (p; q)-summing by assumption, so∑∞

j=1 ‖πG(xj)‖p < +∞. Let K be such that ‖xj‖ ≤ K for every j. We have

∞∑

j=1

‖P̌ (πH(a)n−k, πH(xj)k−i, πG(xj)i)‖p

=
∞∑

j=1

‖P̌ (πH(a)n−k, πH(xj)k−i, πG(xj)i−1, πG(xj))‖p

≤ ‖P̌‖p‖πH‖(n−i)p‖πG‖(i−1)p‖a‖(n−k)pK(k−1)p
∞∑

j=1

‖πG(xj)‖p < +∞,

showing that (P̌ (πH(a)n−k, πH(xj)k−i, πG(xj)i))∞j=1 ∈ `p(F ). It follows that i =
0, that is (P̌ (πH(a)n−k, πH(xj)k)∞j=1 /∈ `p(F ). But

P̌ (πH(a)n−k, πH(xj)k) = (P ◦ πH)∨(an−k, xk
j ) =

(n− k)!
n!

d̂kQ(a)(xj),

therefore 0 /∈ Sp;q(d̂kQ(a)). Now a /∈ Sp;q(Q) by Theorem 3.8.

Corollary 4.11. For every positive integer n ≥ 2 and every finite-dimensional
subspace G of L2([−π, π];K), there exists an n-homogeneous polynomial Q from
L2([−π, π];K) to L1([−π, π];K) such that S1(Q) = G.

Proof. The projection from L2([−π, π];K) onto G is 1-summing because it is a
finite rank operator. By Example 3.12 and Proposition 3.13 we can consider a
polynomial P ∈ P(nL2([−π, π];K);L1([−π, π];K)) such that S1(P ) = {0}. The
result follows from Proposition 4.10
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