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Abstract

In this note, we consider the random linear transport equation. We indicate that
standard averaging approaches to obtain an equation for the evolution of the sta-
tistical mean of the solution may also be valid for all the statistical moments of
the solution. With this result we can obtain more statistical information about the
random solution, as illustrated in two particular examples.
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1 Introduction

In this note, we consider the transport of a passive scalar by an incompressible
random velocity field as described by the equation

Ut(x, t) +∇.[V(x, t)U(x, t)] = 0, U(x, t0) = g(x), (1)

where U is the density of a passively advected agent (concentration of a chem-
ical species, temperature, etc.), V is a random velocity field, and g(x) is the
deterministic initial distribution of the scalar. The subscript t in Ut(x, t) de-
notes the partial derivative with respect to this variable. Taking into account
the incompressibility of V, i.e., ∇ ·V = 0, we rewrite equation (1) as
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Ut(x, t) + Vi(x, t)Uxi
(x, t) = 0, U(x, t0) = g(x), (2)

where repeated indices indicate summation.

Standard approaches (see, e.g., [2,6,7,9,10,12]) to derive an equation for the
mean of U use the Reynolds decomposition

Vi(x, t) = 〈Vi(x, t)〉+ V ′
i (x, t)

(angle brackets denote ensemble averaging) in (2) to obtain the following non-
closed averaged equation

〈U〉t + 〈Vi(x, t)〉〈U〉xi
+ 〈V ′

i (x, t)Uxi
〉 = 0. (3)

The basic difficulty with such approaches lies in the necessity to approximate
(model) the unknown correlation moment between the random velocity fluctu-
ations and U(x, t), the term 〈V ′

i (x, t)Uxi
(x, t)〉 in (3). Moreover, the knowledge

of the mean, 〈U(x, t)〉, is not enough to provide a detailed understanding of
the random transport process. One must at least examine higher moments of
U(x, t). With that in mind, it is our purpose to show that for the linear trans-
port equation (1), some approaches used to approximate 〈V ′

i (x, t)Uxi
(x, t)〉 in

(3) may be also used to approximate all the moments of the solution. In Sec-
tion 2 we present this result, and in Sections 3–4 we illustrate the approach
with two examples.

2 Main result

Proposition 1 Let Vi(x, t) = 〈Vi(x, t)〉+ V ′
i (x, t) in (2). Then

〈Um(x, t)〉t + 〈Vi(x, t)〉〈Um(x, t)〉xi
+ 〈V ′

i (x, t)Um
xi

(x, t)〉 = 0, (4)

where 〈Um(x, t)〉, m ∈ Z, m ≥ 1, is the mth moment of the solution to (2).

PROOF. Notice that Um(x, t), m ∈ Z, m ≥ 1, satisfies an equation like
(2). Indeed, differentiating Um(x, t) with respect to t and x, and using (2) we
obtain

(Um)t + Vi(x, t)(Um)xi
= m U (m−1)[φUt(x, t) + Vi(x, t)Uxi

(x, t)] = 0.

Averaging this expression and using the Reynolds decomposition of the veloc-
ity, Vi(x, t) = 〈Vi(x, t)〉+ V ′

i (x, t), yields (4).
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Remark 2 In [1] some of us have shown that in one-dimensional transport
problems with a constant random velocity, V , if the partial differential equation
for the moments is a convection-diffusion equation with diffusion coefficient
ν, then ν must satisfy the equation −f

′
V (x/t)ν = fV (x/t)(x − 〈V 〉t), where

fV (ξ) is the probability density function of V . For such problems equation (3)
is closed with −〈V ′Ux〉 = ν〈U〉xx.

3 First application: Gaussian processes

Consider the following one-dimensional version of problem (1):

Ut(x, t) + V (t)Ux(x, t) = 0, U(x, 0) = H(−x), (5)

where H(x) is the Heaviside function, and the random velocity, V (t), is Gaus-
sian with 〈V (t)〉 = V constant and an exponentially decaying covariance func-
tion, CovV (t, τ) = σ2

V exp (−|t− τ |/β). The covariance function is parameter-
ized by the variance, Var[V (t)] = σ2

V (which is assumed to be constant), and
by the correlation length, β > 0, which governs the decay rate of the time
correlation.

According to [6,9,10], the correlation moment between the random flow-velocity
and the random concentration U can be written in the form

〈V ′(t)Ux(x, t)〉 = −
(∫ t

0
CovV (t, τ) dτ

)
〈U(x, t)〉xx. (6)

Thus, the mean concentration is exactly governed by

〈U(x, t)〉t + V 〈U(x, t)〉x =
(∫ t

0
CovV (t, τ) dτ

)
〈U(x, t)〉xx,

〈U(x, 0)〉 = H(−x).
(7)

In view of Proposition 1 we can use (6) to calculate all the moments, i.e., the
mth moment satisfies the following equation:

〈Um(x, t)〉t + V 〈Um(x, t)〉x =
(∫ t

0
CovV (t, τ) dτ

)
〈Um(x, t)〉xx,

〈Um(x, 0)〉 = [H(−x)]m = H(−x).
(8)

The solution to (8) is

〈Um(x, t)〉 =
1

2
erfc

(
x− V t

ξ(t)

)
, (9)
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where erfc(x) is the complementary error function and

ξ(t) = 2
[∫ t

0

∫ η

0
CovV (η, τ)dτdη

]1/2

.

We now compare the moments (9) with those yielded by the Monte Carlo
method. To generate the realizations V (t, ω) required by the Monte Carlo
method, we use the subroutine [mvnrnd.m] of MATLAB. The analytical solu-
tion for each realization is

U(x, t, ω) = U
(
x−

∫ t

0
V (s, ω) ds, 0

)
= H

(∫ t

0
V (s, ω) ds− x

)
.

In our numerical experiments the integration of V (t, ω) is performed using the
Simpson’s quadrature rule (see [3], for example). Figures 1 and 2 illustrate
the mean, variance, and third central moment of the solution to (5) computed
using the averaging approach and the Monte Carlo method (with 50 000 re-
alizations). The plots correspond to the following data: 〈V (t)〉 = V = −0.2;
σ2

V = 0.4; t = 0.6; ∆t = 0.001; and ∆x = 0.0005. In Figure 1 we use β = 0.1
and in Figure 2 we use β = 1.0, i.e, a more correlated field. All the numerical
experiments were done in double precision with some MATLAB codes on a
1.73Ghz Intel Core Duo 2 with 2Gb of memory.
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Fig. 1. Mean (left), variance (middle), and third central moment (right) of the solution to (5); β = 0.1.
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Fig. 2. Mean (left), variance (middle), and third central moment (right) of the solution to (5); β = 1.0.
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3.1 The probability density function

For this particular example, we have shown that each moment of the solution
to (5), 〈Um(x, t)〉 (even in the case of a more general random initial condition,
G(x)) satisfies the following convection-diffusion equation:

ψt(x, t) + V ψx(x, t) = β(t) ψxx(x, t),

ψ(x, 0) = 〈G(x)m〉,
(10)

where β(t) =
∫ t

0
CovV (t, τ) dτ . As a consequence, the probability density

function for the random solution U(x, t), fU(u; x, t), also satisfies an initial
value problem for the convection-diffusion equation (10), i.e.,

(fU)t + V (fU)x = β(t) (fU)xx,

fU(u; x, 0) = fG(u; x).
(11)

Indeed, the Fourier transform of fU(u; x, t), under the assumption that the
probability density function is uniquely determined by its moments (see, e.g.,
[5] for conditions for uniqueness in the problems of moments), is

f̂U(ω; x, t) =
∞∑

j=0

(iω)j

j!
〈Um(x, t)〉, (12)

where φ〈Um(x, t)〉t + V 〈Um(x, t)〉x = β(t) 〈Um(x, t)〉xx. Taking the derivative
with respect to t and x in (12), we arrive at

(f̂U)t + V (f̂U)x = β(t) (f̂U)xx. (13)

Since the variable ω does not appear in the derivatives, we can go back to
the variable u and find (11). The respective initial condition follows from the
probability density function of G(x). This result for the density probability
of U(x, t), fU(u; x, t) agrees with that presented in [11] on page 247 using a
different methodology.

4 Second application: Telegraph processes

In this section, we consider the one-dimensional transport with the random
telegraph process (see [4,8], for example) as a model for the velocity, V (t).
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According to [10], this is a convenient model of a function that has finite
jumps in random times. The random telegraph process is a stochastic process
V (t) defined by

V (t) = V + ξ(−1)N(t), (14)

where the state space of V (t) is {V − α0, V + α0}, the times at which the
process changes the values (V − α0) and (V + α0) are distributed according
to a Poisson process N(t) with intensity rate λ, and ξ is a random variable
independent of N(t) and such that P{ξ = α0} = 1/2 = P{ξ = −α0}. This
process is stationary (see [4], for more details) with mean 〈V (t)〉 = V and
covariance CovV (t, τ) = α2

0 exp (−2λ|t− τ |).

According to [6,10], the correlation moment between V ′(t) and U(x, t) is ex-
actly given by

〈V ′(t)U(x, t)〉 = −
∫ t

0
CovV (t, τ)

∂

∂x
〈U(x− V (t− τ), τ)〉 dτ. (15)

Using (15) in (3) we obtain the differential equation for the mean concentra-
tion,

〈U(x, t)〉t + V 〈U(x, t)〉x =
∂

∂x

∫ t

0
CovV (t, τ)

∂

∂x
〈U(x− V (t− τ), τ)〉 dτ. (16)

Proposition 1 asserts that Equation (16) is the same for all statistical moments,
i.e., the mth moment satisfies the equation

〈Um(x, t)〉t + V 〈Um(x, t)〉x =
∂

∂x

∫ t

0
CovV (t, τ)

∂

∂x
〈Um(x− V )(t− τ), τ)〉 dτ.

The analysis of the exact solution to (16) is presented in [10].
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