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Abstract

Scale mixture of normal distributions are often used as a challenging family
for statistical procedures of symmetrical data. In this article, we have defined
a skewed version of these distributions and we have derived several of its prob-
abilistic and inferential properties. The main virtue of the members of this
family of distributions is that they are easy to simulate from and they also sup-
ply genuine EM algorithms for maximum likelihood estimation. For univariate
skewed responses, the EM-type algorithm has been discussed with emphasis
on the skew-t, skew-slash, skew-contaminated normal and skew-exponential
power distributions. Some simplifying and unifying results are also noted with
the Fisher informating matrix, which is derived in closed form for some distri-
butions in the family. Results obtained from simulated and real data sets are
reported illustrating the usefulness of the proposed methodology. The main
conclusion in reanalyzing a data set previously studied is that the models so
far entertained are clearly not the most adequate ones.
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1 Introduction

The scale mixture of normal distributions (Andrews and Mallows, 1974) provide a
group of thick-tailed distributions that are often used for robust inference of sym-
metrical data. The theory and application (through simulation or experimentation)
often generate a great amount of data sets that are skewed or heavy-tailed as, for
instance, the data on family income (Azzalini et al., 2003) or substance concen-
tration (Galea-Rojas et al., 2003 and Lachos and Bolfarine, 2007). Thus, we need
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appropriate distributions to fit and simulate these skewed or heavy-tailed data. Can-
didate distributions at our disposal for fitting and simulating these data are not very
abundant in the literature. In this article, we propose a new family of distributions
that combine skewness with heavy tails. Moreover, this distribution is attractive
because it has a stochastic representation that allows easy implementation of the
EM-algorithm and it also facilitates the study of many of its properties. Our pro-
posal generalizes recent results found mainly in Lange and Sinsheimer (1993) (see
also Andrews and Mallows, 1974).

A simpler departure from the normal distribution which allows defining the uni-
variate skew-normal distribution with probability density function (pdf) given by

f(y) = 2φ(y|μ, σ2)Φ1

(
λ(y − μ)

σ

)
, y ∈ R. (1)

was proposed by Azzalini (1985), where φ(.|μ, σ2) stands for the probability density
function (pdf) of the normal distribution with mean μ and variance σ2, Φ1(.) repre-
sents the cumulative distribution function (cdf) of the standard normal distribution.
It is well known that asymmetry range for this distribution is (−0.995, 0.995). An
extension to the multivariate setting was proposed by Arellano–Valle, Bolfarine and
Lachos (2005) (see also Azzalini and Dalla–Valle, 1996). When λ = 0, the skew
normal distribution reduces to the normal distribution (y ∼ N(μ, σ2)). A random
variable y with pdf as in (1), will be denoted by SN(μ, σ2, λ). Its marginal stochastic
representation (Henze, 1986), which can be used to derive several of its properties,
is given by

y
d
= μ + σ(δ|T0| + (1 − δ2)1/2T1), with δ =

λ√
1 + λ2

, (2)

where |T0| denotes the absolute value of T0, T0 ∼ N1(0, 1) and T1 ∼ N(0, 1) are inde-

pendent, and “
d
= ” means “distributed as”. From (2) it follows that the expectation

and variance of y are given, respectively, by

E[Y ] = μ +

√
2

π
σδ, (3)

V ar[Y ] = σ2(1 − 2

π
δ2). (4)

Reasoning as Azzalini (1985) and Azzalini and Capitanio (2003), it is natural to con-
struct univariate and multivariate distributions that combine skewness with heavy
tails. For instance, one can define skew-t distributions (Sahu, Dey and Branco,
2003), skew-Cauchy distributions (Arnold and Beaver, 2000), skew-slash distribu-
tions (Wang and Genton, 2006), skew-slash-t distributions (Tan and Peng, 2006),
skew-elliptical distributions (Azzalini and Capitanio, 1999; Branco and Dey, 2001;
Sahu, Dey and Branco, 2003; Genton and Loperfido, 2005). Differently from the
ideas above, in this article, we define a new family of asymmetric univariate distri-
butions generated by the normal kernel (as the skewing function), using otherwise
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symmetric distributions of the class of scale mixture of normal distributions (An-
drews and Mallows, 1974; Lange and Sinsheimer, 1993). We study some of its
probabilistic and inferential properties and discuss applications to real data. One
interesting and simplifying aspect of the family defined is that the implementation
of the EM algorithm is facilitated by the fact that the E-step is exactly as in the nor-
mal/independent (NI) family of models proposed in Lange and Sinsheimer (1993).
Besides, the M-step involves closed form expressions facilitating the implementation
of the algorithm. Furthermore, we also concluded that the information matrix has
a common part for all elements in the family, which makes, apart from the ordinary
skew normal, the family having nonsingular information matrix.

The paper is organized as follows. In Section 2, for the sake of completeness, we
give a brief sketch of the scale mixture of normal (SMN) distributions . In Section 3,
the skew scale mixture of normal distribution (SSMN) are defined by extending the
SMN class. Properties like moments, linear transformation and stochastic represen-
tation of the proposed distributions are also discussed. In Section 4, an EM-type
algorithm which presents advantages over the direct maximization approach is pre-
sented, especially in terms of robustness with respect to starting values. Section 5
reports applications to simulated and real data sets, indicating the usefulness of the
proposed methodology. Concluding remarks are given in Section 6.

2 Scale mixture of normal distributions

The symmetrical class of SMN distributions has attracted attention in the last few
years, particularly due to the fact that they include distributions such as the Student-
t, the slash, the power exponential, the contaminated normal, among others. All of
these distributions have heavier tails than the normal ones. We say that a random
variable Y has a SMN distribution with location parameter μ ∈ R and a positive
definite scale parameter σ2 if its density function assumes the form

f(y) =

∫ ∞

0

φ(y|μ, κ(u)σ2)dH(u), (5)

where H(.;ν) is a cdf of a positive random variable U indexed by the parameter
vector ν. For a random variable with a pdf as in (5), we shall use the notation
Y ∼ SMN(μ, σ2; H). Moreover, when μ = 0 and σ2 = 1, we denote y ∼ SMN(H).
Its stochastic representation is given by

Y = μ + κ1/2(U)Z, (6)

where Z ∼ N(0, σ2) and U is a positive random variable with cdf H independent of
Z. Some examples of SMN distributions are described subsequently (see Lange and
Sinsheimer, 1993). For this family, the distributional properties of the Mahalanobis
distance

d =
(y − μ)2

σ2
,

are described, because they are extremely useful in testing goodness of fit and de-
tecting the presence of outliers.
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2.1 Examples of SMN distributions

• The Generalized t-Student distribution with ν > 0 degrees of freedom, Y ∼
Gt(μ, σ2; ν, γ).
The use of the t-distribution as an alternative to the normal distribution has
frequently been suggested in the literature. For instance, Little (1988) and
Lange, Little and Taylor (1989) use the Student-t distribution for robust mod-
eling. Y has a density function given by

f(y) =
1

σ
√

γπ

Γ((ν + 1)/2)

Γ(ν
2
)

(
1 +

d

γ

)−( ν+1
2

)

. (7)

In this case, κ(U) = 1/U and U ∼ Gamma(ν/2, γ/2), with density

h(u; ν, γ) =
(γ/2)ν/2

Γ(ν/2)
uν/2−1e−γu/2, (8)

with finite reciprocal moments E[U−m] =
(γ/2)mΓ(ν/2 − m)

Γ(ν/2)
, for m < ν/2.

Lange and Sinsheimer (1993) shown that, for ν = γ, the Mahalanobis distance
d has F -distribution. In this case, a simple algebraic manipulation lead to

ν

γ
d =

ν

γ

(y − μ)2

σ2
∼ F1, ν .

• The slash distribution, Y ∼ SL(μ, σ2; ν), with a shape parameter ν > 0.
This distribution presents heavier tails than those of the normal distribution
and it includes the normal case when ν ↑ ∞. Its pdf is given by

f(y) =
ν√
2πσ

∫ 1

0

uν−1/2e−ud/2du, (9)

with d = (y − μ)2/σ2. Here we have that κ(U) = 1/U and U with density

h(u; ν) = νuν−1
I(0,1)(u), (10)

with reciprocal moments E[U−m] =
ν

ν − m
, for m < ν, and the Mahalanobis

distance has cdf

Pr(d ≤ r) = Pr(χ2 ≤ r) − 2νΓ(ν + 1/2)

rν
√

π
Pr(χ2

2ν+1 ≤ r).

• The contaminated normal distribution, Y ∼ CN(μ, σ2; ν, γ), 0 ≤ ν ≤ 1, 0 <
γ ≤ 1 (Little, 1988).

This distribution may also be applied for modeling symmetric data with outly-
ing observations. The parameter ν represents the percentage of outliers, while
γ may be interpreted as a scale factor. Its pdf is given by

f(y) = νφ(y|μ, σ2/γ) + (1 − ν)φ(y|μ, σ2). (11)
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In this case κ(U) = 1/U and the probability density function h(u;ν) given by

h(u;ν) = νI(u=γ) + (1 − ν)I(u=1), ν = (ν, γ)�, (12)

where the notation I(A) is the indicator function of the set A. Clearly, E[U−m] =
ν/γm + 1 − ν, and

Pr(d ≤ r) = νPr(χ2 ≤ γr) + (1 − ν)Pr(χ2 ≤ r).

• The power-exponential distribution, Y ∼ PE(μ, σ2; ν), with a shape parameter
0 < ν ≤ 1.

Its pdf is given by

f(y) =
ν

2
1
2ν σΓ( 1

2ν
)
e−dν/2, (13)

with d = (y − μ)2/σ2. When ν = 1, the density (13) collapses to the normal
density. Here U has positive stable density with SP (u|ν) (Branco and Dey,
2001).

Form Lange and Sinsheimer (1993), the Mahalanobis distance has cdf given
by

Pr(d ≤ r) =
r1/2G( 1

2ν
, rν/2)

Γ( 1
2ν

)2
1
2ν

,

where G(β, s) =
∫ s

0
uβ−1e−udu is the incomplete gamma function.

3 Skew scale mixture of normal distributions

In this section, we define the univariate SSMN distributions generalizing the SSM
family and study some of its properties. We have also shown that these distributions
are invariant under linear transformations.

Definition 1. A random variable Y follows a distribution between the SSMN class
with location parameter μ ∈ R, scale factor σ2 and skewness parameter λ ∈ R, if its
pdf is given by

f(y) = 2

∫ +∞

0

φ(y|μ, σ2κ(u))Φ1(λ
y − μ

σ
)dH(u), (14)

where U is a positive random variable with cdf H(u;ν). For a random variable with
pdf as in (14), we use the notation y ∼ SSMN(μ, σ2, λ; H). If μ = 0 and σ2 = 1
we refer to it as a standard SSMN distribution and we denote it by SSMN(λ; H).

Clearly, from (14), when λ = 0 we get the corresponding SMN distribution
defined in (5). For a random variable with pdf as in (14), we write the Mahalanobis
distance as

dλ =
(y − μ)2

σ2
.
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In Definition 1, note that the cdf H(u;ν) is indexed by the parameter vector
ν. Hence, if we suppose that ν∞ is such that ν ↑ ν∞ and that H(u;ν) converges
weakly to the distribution function H∞(u) = H(u;ν∞) of the unit point mass at
1, then the density function in (14) converges to the density function of a random
variable having a skew-normal distribution. The proof of this result is similar to
that of Lange and Sinsheimer (1993) for the SMN case.

For a SSMN random variable, the stochastic representation given below can be
used to quickly simulate pseudo realizations of y and also to study many of its
properties.

Proposition 1. Let Y ∼ SSMN(μ, σ2, λ; H). Then its stochastic representation is
given by

Y |U = u ∼ SN(μ, σ2κ(u), λ
√

κ(u))

U ∼ H(u;ν). (15)

Proof. From (14), the (joint) distribution of (Y, U) is given by

g(y, u) = 2φ(y|μ, σ2κ(u))Φ1(λ(y − μ)/σ)fU(u).

Provided g(y, u) = f(y|u)fU(u), then

g(y|u) = 2φ(y|μ, σ2κ(u))Φ1

(
λ

(y − μ)

σ

)
= 2φ(y|μ, σ2κ(u))Φ1

(
λ
√

κ(u)
(y − μ)

σ
√

κ(u)

)
,

and hence Y |U = u ∼ SN(μ, σ2κ(u), λ
√

κ(u)).

Remark 1. In other words, to generate a skew-normal independent distribution, we
proceed in two steps, that is, we generate first from the distribution of U and next
from the conditional distribution Y |U using, for instance, the stochastic representa-
tion given in (2).

In the next proposition, we derive a general expression for the moment generating
function (mgf) of a SSMN random variable.

Proposition 2. Let Y ∼ SSMN(μ, σ2, λ; H). Then

MY (t) = E[etY ] =

∫ ∞

0

2etμ+ t2

2
κ(u)σ2

Φ1

(
σλκ(u)√
1 + λ2κ(u)

t

)
dH(u), t ∈ R. (16)

Proof. From Proposition 1, we have that y|U = u ∼ SN(μ, σ2κ(u), λ
√

κ(u)). More-
over, from well known properties of conditional expectation, it follows that MY (t) =

EU [E[etY |U ]]. From Gupta and Huang (2002), MZ(z) = 2 exp ( z2

2
)Φ1

(
λz√
1+λ2

)
,

where Z ∼ SN(λ). So, provided Ma+bY (t) = eatMY (bt), we obtain

MY |U=u(t) = 2etμ+ t2

2
κ(u)σ2

Φ1

(
σλκ(u)√
1 + λ2κ(u)

t

)
.
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In the following proposition we present the mean and the variance of a SSMN
random variable.

Proposition 3. Suppose that Y ∼ SSMN(μ, σ2, λ; H). Then,
a)

E[Y ] = μ + bσλEU

[
κ(U)√

1 + λ2κ(U)

]
,

b)

V ar[Y ] = σ2

(
EU [κ(U)] − b2λ2E2

U

[
κ(U)√

1 + λ2κ(U)

])
,

where b =
√

2
π
.

Remark 2. If κ(U) = 1, then E[Y ] = μ + bσδ and V ar[Y ] = σ2(1 − b2δ2), are the
same values of a skew-normal random variable, as in (4).

Another important property of the SSMN class is presented next.

Proposition 4. If Y ∼ SSMN(μ, σ2, λ; H), then for any even function τ , the
distribution of τ(Y −μ) does not depend on λ and has the same distribution as that
of τ(X−μ), where X ∼ SMN(μ, σ2; H). In a particular case, (Y −μ)2 and (X−μ)2

are identically distributed.

Proof. Let fY (y − μ|0, σ2; H) be the SMN density, as in (5), then

Mτ(Y −μ)(t) =

∫
R

2eτ(y−μ)tfY (y − μ|0, σ2; H)Φ1

(
λ

(y − μ)

σ

)
dy

=

∫
R+

2eτ(x)tfY (x|0, σ2; H)Φ1

(
λ

x

σ

)
dx +∫

R−
2eτ(x)tfY (x|0, σ2; H)

(
1 − Φ1

(
−λ

x

σ

))
dx

=

∫
R+

2eτ(x)tfY (x|0, σ2; H)
(
Φ1

(
λ

x

σ

)
+ 1 − Φ1

(
λ

x

σ

))
dx

=

∫
R

eτ(x)tfY (x|0, σ2; H)dx

= Mτ(X)(t),

where X ∼ SMN(0, σ2; H).

As a byproduct of Proposition 4, we have the following interesting result.

Corollary 1. Let Y ∼ SSMN(μ, σ2, λ; H). Then the quadratic form

dλ =
(Y − μ)2

σ2

has the same distribution as d =
(X − μ)2

σ2
, where X ∼ SMN(μ, σ2; H).

7



The result of Corollary 1 is interesting because it allows us to do model checking
in practice (see Section 5). On the other hand, Corollary 1 jointly with the result
found, for instance, in Lange and Sinsheimer (1993, Section 2) allows us to obtain
the mth moment of dλ.

Corollary 2. Let Y ∼ SSMN(μ, σ2, λ; H). Then for any m > 0

E[dm
λ ] =

2mΓ(m + 1/2)√
π

E[κ(U)m].

Proof. The pdf of Y is given by f(y) =
∫∞

0
φ(y|μ, σ2κ(u))du. Thus,

f(y|u) = φ(y|μ, σ2κ(u))

=
κ(u)−1/2

√
2πσ

e
−

dλ

2κ(u)

Consider the random variable Z =
dλ

κ(U)
=

(Y − μ)2

σ2κ(U)
. The pdf of Z|U has density

χ2
1. Provided U and dλ are independent, then E[dm

λ ] =
2mΓ(m + 1/2)√

π
E[κm(U)].

In the next proposition we shall show that an SSMN random variable is invariant
under linear transformations. This result is summarized in the following proposition:

Proposition 5. Let Y ∼ SSMN(μ, σ2, λ; H). Then for any fixed value b ∈ R,

V = a + bY ∼ SSMN(a + bμ, b2σ2, sign(b)λ; H). (17)

Proof. The proof follows directly from Proposition 2, since Ma+by(t) = eatMY (bt).

By using (17), when a = 0 and b = −1, we have the following additional property
of an SSMN random variable.

Corollary 3. Let Y ∼ SSMN(μ, σ2, λ; H). Then, −Y ∼ SSMN(−μ, σ2,−λ; H).

3.1 Examples of SSMN distributions

Some examples of SSMN distributions, include

• The Skew Generalized Student-t distribution with ν > 0 degrees of freedom,
denoted Y ∼ SGt(μ, σ2, λ; ν, γ). Considering U ∼ Gamma(ν/2, γ/2), κ(U) =
1/U , Y has the density function:

f(y) = 2
1

σ
√

γπ

Γ((ν + 1)/2)

Γ(ν
2
)

(
1 +

d

γ

)−( ν+1
2

)

Φ1

(
λ

(y − μ)

σ

)
. (18)

When γ = ν, we have a skew-t normal distribution (Gómez, Venegas and
Bolfarine, 2007) where it has been shown that it can present a much wider
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asymmetry range than the one presented by the ordinary skew normal distri-
bution (Azzalini, 1985).

Another particular case of the skew generalized t distribution is the skew-
Cauchy normal distribution, that follows when ν = γ = 1. Also, when ν ↑
∞, we get the skew-normal distribution as the limiting case. The mean and
variance of Y ∼ SGt(μ, σ2, λ; ν, γ) are given by

E[Y ] = μ + bσλ(γ/2)1/2Γ((ν − 1)/2)

Γ(ν/2)
EV

[
(V + λ2)−1/2

]
, (19)

V ar[Y ] = σ2

[
γ

ν − 2
− b2λ2γ

2

(
Γ((ν − 1)/2)

Γ(ν/2)

)2

E2
V

[
(V + λ2)−1/2

]]
,(20)

where b =
√

2
π

and V ∼ Gamma(ν−1
2

, γ
2
). The expected values are computed

numerically.

• The skew-slash distribution, with shape parameter ν > 0, denoted SSL(μ, σ2, λ; ν).
With h(u; ν) as in (10) and κ(U) = 1/U , we have

f(y) = 2νΦ1

(
λ

y − μ

σ

)∫ 1

0

uν−1φ

(
y|μ,

σ2

u

)
du, y ∈ R. (21)

The skew-slash distribution reduces to the skew-normal distribution when ν ↑
∞. The mean and variance are given by

E[Y ] = μ +
bσλν

ν − 1/2
EV

[
(V + λ2)−1/2

]
, (22)

V ar[Y ] = σ2

(
ν

ν − 1
− b2λ2ν2

(ν − 1/2)2
E2

V

[
(V + λ2)−1/2

])
, (23)

where V ∼ Beta(1, ν − 1/2).

• The skew-contaminated normal distribution, denoted SCN(μ, σ2, λ; ν, γ), 0 ≤
ν ≤ 1, 0 < γ ≤ 1. Taking h(u; ν) as in (12) it follows, straightforwardly, that

f(y) = 2

{
νφ

(
y|μ,

σ2

γ

)
Φ1

(
λ

y − μ

σ

)
+(1 − ν)φ(y|μ, σ2)Φ1

(
λ

y − μ

σ

)}
. (24)

The skew-contaminated normal distribution reduces to the skew-normal dis-
tribution when γ = 1. Hence, the mean and the variance are given by

E[Y ] = μ + bσλ

(
ν

(γ(γ + λ2))1/2
+

1 − γ

(1 + λ2)1/2

)
, and

V ar[Y ] = σ2

[
ν

γ
+ 1 − ν − b2λ2

(
ν

(γ(γ + λ2))1/2
+

1 − γ

(1 + λ2)1/2

)2
]

.
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• The skew power-exponential distribution, Y ∼ SPE(μ, σ2, λ; ν), with a shape
parameter 0 < ν ≤ 1.
Its pdf is given by

f(y) = 2
ν

2
1
2ν σΓ( 1

2ν
)
e−dν/2Φ1

(
λ

y − μ

σ

)
. (25)

with d = (y−μ)2

σ2 . The skew power-exponential distribution reduces to the
skew-normal distribution when ν = 1. In this case we have not explicit form
to κ(u).

In Figure 1, we plotted the density of the standard SN(3) distribution to-
gether with the standard densities of the distributions SGt(3; 2, 2), SSL(3; 0.5),
SNC(3; 0.9, 0.1) and SEP (3; 0.5). They are re-scaled so that they have the same
value at the origin. Note that the five densities are positively skewed, and that
the skew contaminated-normal, skew power-exponential, skew-slash, and the skew-t
distributions have much heavier tails than the skew-normal distribution. Note that
all they represent extremes situations, at least in the symmetric case, for instance,
the Slash with ν = 0.5 does not has finite first moment.

In what follows, we propose using the EM-algorithm to obtain the ML estimate of
the parameter vector θ. We note that it is complicated to implement this approach
without identifying a stochastic representation. The proposed methodology for the
class of models we are dealing with does not exist in the literature. One special
feature, however, is that the E-step is as in Lange and Sinsheimer (1993). Moreover,
studies related to local influence for incomplete data (Zhu and Lee, 2001) can be
easily extended from these results which will be reported elsewhere.

4 SSMN regression models and the EM-algorithm

Suppose that we have observations on m independent individuals, denoted
Y1, . . . , Ym, where Yi ∼ SSMN(μi, σ

2, λ; H), i = 1, . . . , m. Associated with indi-
vidual i we assume a known p × 1 covariate vector xi, which we use to specify the
linear predictor μi = x�

i β, where β is a p-dimensional vector of unknown regression
coefficients. Hence, relating the two sets of variables we consider

yi = β0 +
∑p

k=1 xikβk + εi, i = 1, · · · , m,
= x�

i β + εi, εi ∼ SSMN(0, σ2, λ; H).
(26)

Thus, according by expression (38) in Appendix, the observed-data log-likelihood
function of θ = (β�, σ2, λ)� is given by

�(θ) =
m∑

i=1

log

[
2

∫ +∞

0

∫ +∞

0

φ(yi|x�
i β, σ2κ(ui))φ(ti|λ(yi − x�

i β), σ2)h(ui; ν)dtidui

]
.

(27)
It is not a simple task to find the ML estimate of the parameter vector θ by

directly maximizing the log-likelihood function. Thus, we prefer to implement the
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Figure 1: Density curves of the univariate skew-normal SN(3), skew-t SGt(3; 2, 2),
skew-slash SSL(3; 0.5), skew-contaminated SNC(3; 0.9, 0.1) and skew-power exponential
SEP (3; 0.5) normal distributions.
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EM-algorithm.

The EM-algorithm is a popular iterative algorithm for ML estimation for models
with incomplete data. More specifically, let y denote the observed data and s
denote the missing data. The complete data yc = (y, s) is y augmented with
s. We denote by �c(θ|yc), θ ∈ Θ, the complete-data log-likelihood function and

by Q(θ|θ̂) = E[�c(θ|yc)|y, θ̂], the expected complete-data log-likelihood function.
Each iteration of the EM-algorithm involves two steps; an E-step and an M-step,
defined as:

• E-step: Compute Q(θ|θ(r)) as a function of θ;

• M-step: Find θ(r+1) such that Q(θ(r+1)|θ(r)) = maxθ∈Θ Q(θ|θ(r)).
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Notice that, by using (2) and (15), the set-up defined above can be written as

Yi|ti, ui,
ind∼ N

(
x�

i β + σλ
κ(ui)√

1 + λ2κ(ui)
ti, σ

2κ(ui)

(
1 − λ2 κ(ui)

1 + λ2κ(ui)

))
,

ui
ind∼ h(ui;ν) (28)

ti
iid∼ HN1(0, 1) i = 1, . . . , m,

all independent, where HN1(0, 1) denotes the univariate standard half-normal dis-
tribution (see |T0| in equation (2) or Johnson, Kotz and Balakrishnan, 1994). We
assume that the parameter vector ν is known. In applications the optimum value
of ν can be choosing by using the profile likelihood and the Schwarz Information
Criterion (see Lange, Little and Taylor, 1989).

Let y = (y1, . . . , ym)�, u = (u1, . . . , um)� and t = (t1, . . . , tm)� and treating u
and t as missing data, it follows that the complete log-likelihood function associated
with yc = (y�,u�, t�)� is given by

�c(θ|yc) ∝ −m log σ2 − 1

2σ2

m∑
i=1

(yi − x�
i β)2

κ(ui)
− 1

2σ2

m∑
i=1

[ti − λ(yi − x�
i β)]2

= −m log σ2 − 1

2σ2
t2�1m +

λ

σ2
t�(y − xβ)

− 1

2σ2
(y − xβ)�

(
D(κ) + λ2

Im

)
(y − xβ) (29)

where 1m(m × 1) is a vector of 1’s, Im is the identity matrix of order m, x� =
(x1 . . . ,xm) is a matrix of dimension p × m and D(κ) = Diag(κ(u1), . . . , κ(um)).

Letting t̂i = E[ti|θ = θ̂,yi], t̂2i = E[t2i |θ = θ̂,yi] and κ̂i = E[κ−1(ui)|θ = θ̂,yi]
we obtain, using the moments of the truncated normal distribution, that

t̂i = λ̂η̂i + σ̂WΦ1

(
λ̂η̂i

σ̂

)
and t̂2i = λ̂2η̂2

i + σ̂2 + λ̂σ̂η̂iWΦ1

(
λ̂η̂i

σ̂

)
, (30)

where WΦ1(u) = φ1(u)/Φ1(u) and η̂i = (yi − x�
i β̂), i = 1, . . . , m. For the specific

distributions discussed here, κ̂i are given by equations (34)-(37).

It follows, after some simple algebra, that the expectation with respect to t, u
conditional on y, of the complete log-likelihood function, has the form

Q(θ|θ̂) = E[�c(θ|yc)|y, θ̂]

= −m log σ2 − 1

2σ2
t̂2�1m +

λ

σ2
t̂�(y − xβ)

− 1

2σ2
(y − xβ)�

(
D(κ̂) + λ2

Im

)
(y − xβ) (31)

where κ̂ = [κ̂1, . . . , κ̂m]�. Thus, we have the following EM-algorithm:

E-step: Given θ = θ̂, compute for i = 1, . . . , m, t̂i, t̂2i using (30) and k̂i using
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(34)-(37), for instance.

M-step: Update θ̂ by maximizing Q(θ|θ̂) over θ, which leads to the following closed
form expressions

β̂ =

[
x� (D(κ̂) + λ2

Im

)
x

]−1

x�
[
D(κ̂)y − λ(̂t − λy)

]
, (32)

σ̂2 =
1

2m

[
Q

�k(β) + t̂2
�
1m − 2λt̂�(y − xβ) + λ2Q(β)

]
,

λ̂ =
t̂�(y − xβ)

Q(β)
,

where Q(β) = (y − xβ)�(y − xβ), Q
�k(β) = (y − xβ)�D(κ̂)(y − xβ).

4.1 Conditional distributions for the EM algorithm

In this section we compute the conditional distribution ui|yi for the distributions
present in Section 3, which are used with the EM-algorithm. Before, we give an
important result.

Proposition 6. (An invariance result) If Yi ∼ SSMN(μ, σ2, λ; H), i = 1, . . . , m,
then

f(ui|Yi = yi) ∝ h(ui; ν)φ(yi|μ, σ2κ(ui)). (33)

Proof. In fact, from (38) we have that,

f(yi, ui, ti) = 2φ(yi|μ, σ2κ(ui))φ(ti|λyi − μ

σ
, 1)h(ui; ν)I(ti>0)

= f(ui)f(yi|ui)f(ti|yi).

Then,

f(ui|yi) ∝ f(ui)f(yi|ui)

= h(ui; ν)φ(yi|μ, σ2κ(ui)).

which concludes the proof.

From Proposition 6 it follows that, under the more general SSMN distribution
considered here, the conditional distribution ui|yi reduces to considering the corres-
ponding SMN model. This peculiarity tremendously simplify the EM algorithm
implementation. Hence, for the discussed distributions, we have the following re-
sults:

• The generalized skew-t case. If Yi ∼ SGt(μ, σ2, λ; ν, γ), i = 1, . . . , m, then, from
(8) jointly with Proposition 6, we have that

f(ui|yi) =
(γ/2)ν/2

Γ(ν/2)
u

ν/2−1
i e−γui/2 u

1/2
i√
2πσ

e−uidi/2

ui|yi ∼ Gamma(
ν + 1

2
,
γ + di

2
),

13



di = dλi = (yi − μ)2/σ2. So, E[Uα
i |yi] =

Γ
(

ν+1
2

+ α
)

Γ
(

ν+1
2

) (
γ+di

2

)α and then

k̂i =
ν + 1

γ + di

. (34)

• The skew-slash case. If Yi ∼ SSL(μ, σ2, λ; ν), i = 1, . . . , m, we obtain

f(ui|yi) = νuν−1
i I(0,1)(u)

u
1/2
i√
2πσ

e−uidi/2

ui|yi ∼ Gamma(ν + 1/2, di/2)I(0,1)(ui).

Thus, E(Uα
i |yi) =

Γ (ν + 1/2 + α)

Γ(ν + 1/2)(di/2)α

P1(ν + α + 1/2, di/2)

P1(ν + 1/2, di/2)
and

k̂i =
(2ν + 1)

di

P1(ν + 3/2, di/2)

P1(ν + 1/2, di/2)
, (35)

where Px(a, b) denotes the cdf of the Gamma(a, b) distribution evaluated at x.

• The skew-contaminated normal case. If Yi ∼ SNC(μ, σ2, λ; ν, γ), i = 1, . . . , m, we
have that

f(ui|yi) = νpi1(ui=γ) + (1 − ν)pi1(ui=1),

with pi =
u

1/2
i exp{−diui

2
}

νγ1/2 exp{−diγ
2
} + (1 − ν) exp{−di

2
} .

Moreover, E(Uα
i |yi) =

1 − ν + νγα+1/2 exp {(1 − γ)di/2}
1 − ν + νγ1/2 exp {(1 − γ)di/2} and

k̂i =
1 − ν + νγ3/2 exp {(1 − γ)di/2}
1 − ν + νγ1/2 exp {(1 − γ)di/2} . (36)

• The skew power-exponential case. In this case we have the following proposition:

Proposition 7. If Yi ∼ SPE(μ, σ2, λ; ν), i = 1, . . . , m, then

k̂i = E[κ−1(Ui)|yi] = νdν−1
i , (37)

with di = (yi−μ)2

σ2 .

Proof. We omitted the index i to facilitate the notation. Being Y ∼ SMN(μ, σ2; ν),
we have that

fY (y) =

∫ +∞

0

φ(y|μ, σ2κ(u))fU(u)du

and f(U,Y )(u, y) = φ(y|μ, σ2κ(u))fU(u). As V = κ−1(U), κ(U) = 1/V , then

f(V,y)(v, y) = f(U,Y )(u, y)|J | ∝ φ(y|μ, σ2/v)fU(κ−1(1/v)),

14



where J is the Jacobian of the transformation g(u, y) = (V, y). So,

f(V |y)(v|y) =
φ(y|μ, σ2/v)fU(k−1(1/v))

f(y)

= fU(κ−1(1/v))
2

1
2ν σΓ( 1

2ν
)

ν
edν/2 v1/2

√
2πσ

e
−

(y − u)2

2σ2
v

∝ exp

{
1

2
[−dv + dν ] + c(v, ν)

}
,

where d = (y−u)2

σ2 . Hence, κ−1(U)|Y belong to exponential family, with θ = −d,
b(θ) = −dν = −(−θ)ν and φ = 1/2. Thus, E[k−1(u)|y] = b′(θ) = νdν−1.

5 The observed information matrix

Let Y be a random variable following a SSMN distribution as in (14). Hence, for
an observed sample y1, . . . , ym, the log-likelihood function is of the form �(θ) =
m∑

i=1

�i(θ), with

�i(θ) = log 2 + �1i
(θ) + log[Φ1(�2i

(θ))], θ = (β�, σ2, λ)�,

where �1(θ) is the log-likelihood function of the corresponding symmetric SMN dis-

tribution and �2i
(θ) = λ

yi − x�
i β

σ
. Then, the first derivative of �i(θ) is given by

∂�i(θ)

∂ψ
=

∂�1i
(θ)

∂ψ
+ WΦ(l2i

(θ))
∂�2i

(θ)

∂ψ
, ψ = β, σ2, λ.

The second derivative is given by

∂2�i(θ)

∂γ∂ψ� =
∂2�1i

(θ)

∂γ∂ψ� + WΦ(�2i
(θ))

∂2�2i
(θ)

∂γ∂ψ� + W
(1)
Φ (�2i

(θ))
∂�2i

(θ)

∂γ

∂�2i
(θ)

∂ψ� ,

where W
(1)
Φ (x) = −WΦ(x)(x + WΦ(x)) is the derivative of WΦ(x).

Thus, the observed information matrix for θ can be written as

I(θ) = I1(θ) + I2(θ),

Iκ(θ) =

⎛⎝ Ik

ββ Ik

σ2β Ik

λβ
Ik
σ2σ2 Ik

λσ2

Ik
λλ

⎞⎠ ,

for k = 1, 2, γ,ψ = β, σ2, λ, and

I1

γψ� =
m∑

i=1

∂2�1i
(θ)

∂γ∂ψ� ,

I2

γψ� =

m∑
i=1

[
WΦ(�2i

(θ))
∂2�2i

(θ)

∂γ∂ψ� + W
(1)
Φ (�2i

(θ))
∂�2i

(θ)

∂γ

∂�2i
(θ)

∂ψ�

]
.
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For all distributions in the SMN class, the elements of I2(θ) are common and are
given by

I2

ββ = −λ2

σ2
x�D

(
W

(1)
Φ

[
λ

(y − xβ)

σ

])
x

I2

σ2β = − λ

2σ3
x�WΦ

[
λ

(y − xβ)

σ

]
− λ2

2σ4
x�D

(
W

(1)
Φ

[
λ

(y − xβ)

σ

])
(y − xβ)

I2

λβ =
1

σ
x�WΦ

[
λ

(y − xβ)

σ

]
+

λ

σ2
x�D

(
W

(1)
Φ

[
λ

(y − xβ)

σ

])
(y − xβ)

I2
σ2σ2 = − 3λ

4σ5
(y − xβ)�WΦ

[
λ

(y − xβ)

σ

]
− λ2

4σ6
Qw(β)

I2
λσ2 =

1

2σ3
(y − xβ)�WΦ

[
λ

(y − xβ)

σ

]
+

λ

2σ4
Qw(β)

I2
λλ = − 1

σ2
Qw(β)

where Qw(β) = (y−xβ)�D
(
W

(1)
Φ

[
λ

(y−xβ)

σ

])
(y−xβ). Notice that being WΦ(x) =

φ(x)/Φ(x), with φ(.) and Φ(.) the density and the cumulative functions of the stan-

dard normal distribution, then −1 ≤ W
(1)
Φ (x) ≤ 0. The fact that this matrix is

constant for all families in the class, it makes the information matrix nonsingular
for nonbormnal situations. As shown in Piesey (2000) this certainly is a problem
with the ordinary skew normal distribution.

The matrix I1(θ) can be calculated for each SMN distribution considered, as
follows

• The Student-t distribution

I1

ββ = −ν + 1

γσ2
x�
(

2

γσ2
D2(V)D2(y − xβ) − D(V)

)
x

I1

σ2β = −ν + 1

γσ4
x�D(y − xβ)

(
1

γσ2
D2(V)D(y − xβ)(y − xβ) −V

)
I1
σ2σ2 = − m

2σ4
+

ν + 1

γσ6
QV(β) − ν + 1

2γ2σ8
(y − xβ)�D3(y − xβ)D(V)V

I1
λτ = 0, τ = β, σ2, λ,

where QV(β) = (y−xβ)�D(V)(y−xβ) and V = (V1, · · · , Vn)
�, Vi =

(
1 + di

γ

)−1

, di =

(yi−x�
i β)2

σ2 . As noted in Gómez, Venegas and Bolfarine (2007), the information ma-
trix for the skew skew-t normal model is not singular for finite degrees of freedom
when λ = 0. This certainly is a problem with the skew-normal and skew-t distribu-
tions (Pewsey, 2000).
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• The contaminated normal distribution

I1

ββ =
γ + 1

σ2
x�x

I1

σ2β =
γ + 1

σ4
x�(y − xβ)

I1
σ2σ2 = −m

σ4
+

γ + 1

σ6
(y − xβ)�(y − xβ)

I1
λτ = 0, τ = β, σ2, λ.

• The power-exponential distribution

I1

ββ =
ν(2ν − 1)

σ2ν
x�D[(y − xβ)2ν−2]x

I1

σ2β =
ν2

σ2(ν+1)
x�[(y − xβ)2ν−1]

I1
σ2σ2 = − m

2σ4
+

ν(ν + 1)

2σ2(ν+2)
[(y − xβ)ν ]�[(y − xβ)ν ]

I1
λτ = 0, τ = β, σ2, λ.

• The slash distribution

I1

ββ = −(2ν + 1)x�D[(y − xβ)−2]D[P1(ν + 1/2,d/2)−1] ×[
(2ν + 3)D[P1(ν + 5/2,d/2)] − D[P1(ν + 3/2,d/2)]

−(2ν + 1)D[P1(ν + 3/2,d/2)2]D[P1(ν + 1/2,d/2)−1]
]
x

I1

σ2β = −(2ν + 1)

2σ2
x�D[(y − xβ)−1]D[P1(ν + 1/2,d/2)−1] ×[

(2ν + 3)P1(ν + 5/2,d/2) − 2P1(ν + 3/2,d/2)

−(2ν + 1)D[P1(ν + 3/2,d/2)2]P1(ν + 1/2,d/2)−1
]

I1
σ2σ2 = − m

2σ4
− (2ν + 1)

4σ4
(P1(ν + 1/2,d/2)−1)� ×[

(2ν + 3)P1(ν + 5/2,d/2) − 4P1(ν + 3/2,d/2)

−(2ν + 1)D[(P1(ν + 3/2,d/2)2)]P1(ν + 1/2,d/2)−1
]

I1
λτ = 0, τ = β, σ2, λ.

Asymptotic confidence intervals and test on the ML estimators can be obtained
using this matrix, that is, if J = −I denotes the observed information matrix for
the marginal log-likelihood �(θ) of the SSMN regression model, then asymptotic
confidence intervals and hypotheses tests for the parameter θ are obtained assuming
that the MLE θ has approximately a Np+3(θ,J

−1) distribution. In practice, J is

usually unknown and has to be replaced by the MLE Ĵ, that is, the matrix Ĵ
evaluated at the MLE θ̂.

6 Applications

In this section, we present two applications. The first one illustrates the use of the
distributions SN , SGt, SSL, SNC and SEP in simulation studies, whereas the
other one involves the statistical analysis of a real data set.
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6.1 Simulation study

SNI distributions can be used in simulation studies as a challenging family for devel-
oping statistical procedures in asymmetric situations. As an illustration, we perform
a small scale simulation study to study the behavior of two location estimators,
the sample mean and the sample median, under four different standard univari-
ate settings. We consider a standard skew-normal SN(3) distribution, a skew-
t SGt(3; 2, 2) distribution, a skew-slash SSL(3; 0.5) distribution , a skew power-
exponential SEP (3; 0.5) distribution and a skew-contaminated normal SNC(3; 0.9, 0.1)
distribution. The location mean of all the asymmetric distributions is adjusted to
zero, so that all four distributions are comparable. Thus, this setting represents four
distributions with the same mean, but with different tail behaviors and skewness.
We simulate 500 samples of size n = 100 from each of these five distributions. For
each sample, we compute the sample means and the sample median and depict the
box-plot for each distribution in Figure 2. In the left panel, we observe that all
boxplots of the estimated means are centered around zero but have larger variabil-
ity for the heavy tailed distributions (skew-t and skew-slash). In the right panel,
we see the boxplots of the estimated medians has a slightly larger variability than
the boxplots for the estimated means for the skew-normal, skew-slash and skew-
contaminated normal, but has a much smaller variability for the the skew-t and
skew power-exponential distributions.

This indicates that the median is a robust estimator of location at asymmetric
light tailed distributions. On the other hand, the median estimator becomes biased
as soon as unexpected skewness and heavier tails arise in the underlying distribution.

6.2 Australian athletes data set revisited

In this section we consider a likelihood analysis of a part of the data set collected
on several biomedical variables by the Australian Institute of Sports (AIS data set)
on a number of their athletes. A subset of the data set was previously analyzed in
Azzalini and Capitanio (2003). We consider a subset of the data set considering a
linear regression model relating variables SSF and bfat. We define the model

SSFi = α + βbfati + ei,

i = 1, . . . , 202, where bfati is the body fat percentage of the i-th individual in the

sample, SSFi is the sum of skin folds and ei
iid∼ SSMN(0, σ2, λ; H). Arellano–Valle

et al. (2005) fitted a skew-normal measurement error model to these data and noted
a stronger relationship between the variables and right skewness.

The univariate skew-normal, skew-t-normal, skew-slash, skew-contaminated and
skew-exponential power normal distributions are applied to fit the data. Resulting
parameter estimates are given in Table 1. The estimated standard errors were cal-
culated using the observed information matrix present is Section 5. The Schwarz in-
formation criterion (or equivalently the log-likelihood) was used for choosing among
some values of ν and γ as recommended by Fernández and Steel (1999). Note that
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Figure 2: Boxplots of the sample mean (left panel) and sample median (right panel)
based on 500 samples of sizes n=100 from the five standardized distributions: SN(3);
SGt(3; 2, 2); SNC(3; 0.5, 0.5); SSL(3; 1), and SEP (3; 0.5). The respective means are
adjusted to zero.
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using the log-likelihood values shown on the right of the Table 1 we see that the con-
taminated skew-normal fits the data better than the other four distributions. This
came as a surprise to us because other authors found the skew-normal as presenting
good fit which, obviously, is not our main conclusion. The normal skew-model is
certainly (well) surpassed the the skew-contaminated model.

Table 1: MLEs of the five models fitted on the AIS data set.

Distr. β̂0 β̂1 σ̂2 λ̂ ν γ l(θ̂)
SNC -0.37(1.35) 4.77(0.10) 65.40(11.42) 0.69(0.30) 0.15 0.2 -720.83
SGt -2.02(1.88) 4.78(0.14) 90.59(27.01) 1.07(0.58) 7.88 7.88 -721.97
SEP -4.60(1.58) 4.86(0.14) 129.88(29.82) 1.55(0.31) 0.95 - -723.18
SN -5.08(1.57) 4.88(0.14) 143.97(32.76) 1.64(0.61) - - -723.27
SSL -5.02(1.58) 4.88(0.14) 134.25(30.72) 1.58(0.59) 15.67 - -723.33

Replacing the ML estimates of θ in the Mahalanobis distance di =
(yi−x�

i β)2

σ2 ,
we present Q-Q plots and envelopes in Figure 3 (lines represent the 5th percentile,
the mean, and the 95th percentile of 100 simulated points for each observation). It
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seems to us that the plots in Figure (3) provide even stronger evidence (than the
log-likelihood criteria), that the skew-contaminated normal distribution provides a
better fit to the data set than others SSMN distributions.

7 Final Conclusion

In this work we have defined a new family of asymmetric models by extending the
symmetric class of scale mixture of normal distributions . Our proposal generalized
results found in Azzalini (1985) and Andrews and Mallows (1973). An important
characteristic of the results obtained is that closed form expressions were derived
for the iterative estimation processes. This was a consequence of the fact that
the proposed distributions posses a stochastic representation that can be used to
represent them hierarchically. We believe that the approaches proposed here can
also be used to study other asymmetric models. The assessment of influence of data
and model assumption on the result of any statistical analysis is a key aspect yet to
be studied. Work is in progress addressing specifically local influence and residual
analysis.
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Appendix

Let Y be a distribution between the SSMN class with location parameter μ ∈ R,
scale factor σ2 and skewness parameter λ ∈ R, if its pdf is given by

f(y) = 2

∫ +∞

0

φ(y|μ, σ2κ(u))Φ1(λ
y − μ

σ
)dH(u),

where U is a positive random variable with cdf H(u;ν). Thus, we have that

f(y) = 2

∫ +∞

0

φ(y|μ, σ2κ(u))Φ1(λ(y − μ)/σ)dH(u),

= 2

∫ +∞

0

φ(y|μ, σ2κ(u))h(u; ν)du

∫ λ y−μ
σ

−∞
φ(t|0, 1)dt

= 2

∫ +∞

0

∫ 0

−∞
φ(y|μ, σ2κ(u))φ(t| − λ

y − μ

σ
, 1)h(u; ν)dtdu

= 2

∫ +∞

0

∫ +∞

0

φ(y|μ, σ2κ(u))φ(t|λ(y − μ), σ2)h(u; ν)dtdu (38)

since ∫ 0

−∞
φ(t| − λ

y − μ

σ
, 1) = P (Z ≤ 0), Z ∼ N(−λ

y − μ

σ
, 1)

= P (−Z ≥ 0)

= P (T ≥ 0), T ∼ N(λ
y − μ

σ
, 1)

=

∫ +∞

0

φ(t|λy − μ

σ
, 1)

=

∫ +∞

0

φ(t|λ(y − μ), σ2).
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Figure 3: AIS data set. Q-Q plots and simulated envelopes: (a) Skew-normal model (b)
Skew-t normal model (c) Skew-contaminated normal (d) Skew-slash model, (e) Skew-power
exponential model and (f) profile likelihood for the skew-contaminated normal model.
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