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Preface

The material of this book was taught in the discipline Topics on Functional
Analysis of the Graduate Program of IMECC-UNICAMP during the first
semester of 2005.

The results of Chapter 9 are new and extend the Existence and Approxi-
mations Theorems for convolution equations presented by C.P. Gupta in his
PHD dissertation at University of Rochester in 1968 (see [5]). Of course, the
theorems of this chapter, as well as those in Gupta’s dissertation, are the
infinite dimensional versions of well known results proved by B. Malgrange
(see [9]).

In order to get the above results we wrote Chapter 8, where we intro-
duced and proved theorems on quasi-nuclear holomorphic mappings between
Banach spaces.

Chapter 8, with new results and extensions of the nuclear mappings con-
sidered before by Gupta (see [5]) and Matos (see [12]), is essential for the
construction of the quasi-nuclear mappings.

In Chapter 5 we considered (p, m(s; q))-summing mappings, first studied
in Matos [14]. The new features in this chapter are the introduction of the
exponential type (p, m(s; ¢))-summing mappings and the division results for
them. These division theorems play an important role in Chapter 9.

In Chapters 4 and 6 we consider linear and non-linear (m(s; p), ¢)-summing
mappings. Soares in [20] considered holomorphic, multilinear and polyno-
mial mixing summing mappings, special cases of the mappings considered in
Chapter 6. The results of this Chapter 6 are new. It would be nice if someone
could find for these mappings similar results to those proved in Chapters 9,8
and 5.

The results of Chapters 1,2 and 3 are all known and they are there in
order to motivate and prove results used in the others chapters.

Since the length of the new material proved here forbids the publication



of it in some journal, we opted to publish this book, in a limited edition, in
order to make it accessible to the interested researchers of the area.

I want to thank Vinicius Vieira Favaro for the careful reading of the first
version of this book and also for pointing out several mistakes and misprints
of that version.

Campinas, April 19, 2006



Chapter 1

SEQUENCES IN BANACH
SPACES

1.1 SUMMABLE SEQUENCES

We denote by K either the field R of the real numbers or the field C of the
complex numbers. In this chapter, unless otherwise is explicitly stated, E
and I are Banach spaces over K. The set of all natural numbers {1,2,...} is
denoted by N and NU {0} is indicated by Ny.

We denote by ¢ (E) the vector space of all bounded sequences of ele-
ments of E. When F = K, we write (o, = {»(K). If we consider the norm

I Mo = (2n)nZ € boo(E) — [[(@n)nZallee = sup [|za]| € R,

it is easy to prove that ({o(F), || - |lc) is @ Banach space.

o0

The vector subspace of (. (F) formed by the sequences (x,),,
that x,, # 0 for only a finite number of natural numbers n, is denoted by
coo(F) and it is not closed. The closure of cy(E) in o (F) is the vector
space ¢o(E) formed by all sequences (z,)%°, that converge to 0. The vector
subspace ¢(E) of £ (F) of the convergent sequences is closed. It is clear that
coo(E) C co(E) C c(F) C loo(E). We write cgo = coo(K), co = ¢p(K) and
¢ = c(K).
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1.1.1 Definition If p €]0,+o0], a sequence (x,)%,, of elements of E, is
said to be absolutely p-summable if

)l = (znmnnp> < ioo.

When p =1, it is said that (x,)22, is absolutely summable.

We denote by ¢,(E) the vector space of all absolutely p-summable se-
quences of elements of E. For p > 1, || . ||, is a norm and makes (,(E) a
Banach space. For 0 <p <1, || . ||, is a p-norm and makes ¢,(F) a complete
metrizable topological vector space. From now on, each time we write £,(E),
we are considering the (p-)norm || . ||, on it.

Holder’s Inequality has applications in the Theory of Functional Analysis.
Among these applications we find the Minkowski’s inequality. This inequality
allows us to prove that || . ||, is a norm on ¢,(E) for p € [1,4o00[. In order
to give the proof of the Holder’s Inequality we need the following

1.1.2 Lemma If X €]0,1[ and a,b € [0, +o00], then a*b'™* < aX+b(1 — ).

Proof - The result is clear for the cases a = 0,b = 0 and a = b. Hence we
consider 0 < a < b and use the Mean Value Theorem in order to write

A —at= = (1= \)(b—a)c?,
for some ¢ €]a, b[. Since ¢ < a™, we get
B —alr < (1= N)(b—a)a?
Now, if we multiply both sides of this inequality by a*, we have our result. O

Notation - We say that r,r" € [1,+00] are conjugate if % + % =1.

1.1.3 Theorem (Holder’s Inequality) For a normed space (E,| . ||),
meN, x;,y; €E, j=1,...m andr €]1,+o0],

1
> llsllllysl < (Z H%H’") (ZH%H’”) :
j=1 j=1 j=1

Proof: If t = 2, then 1—¢ = L. We consider a = (¢;)" e b = (d;)" such that

S =

10



1
7

1
. (Z uka) gyl and 4, (Z HykW) — g1l
k=1 k=1

By Lemma 1.1.2 we have

1 r 1 r’ :
cjd; < ;(cj) +—(d;)", j=1,...m.

By adding these inequalities we get

m
> sl
j=1

1 1 =
r
1
o

(i o) (i )

(iumr)#o and (iuyku"’) 40
k=1 k=1

It is easy to see that the result follows from this. If

1 1
’V‘/

(Zuxku’”) 0 o (Zuykw’) o,
k=1 k=1

we have z, = 0 for k = 1,....mor y = 0 for £ = 1,...,m. Thus our
inequality is still true since, in this case, both sides are equal to zero. O

;D

when

We note that, in the previous proof, it would be enough to consider the
case £ = K and, after that, apply the inequality to the numbers ||z¢]|, ||yl
k=1,2,...,m. The same remark is true for the proof of the next inequality.

The following result is easily proved

1.1.4 Proposition Ifm € N and (E,|| . ||) is a normed space then

>l ly; )l < (Z H%‘H) sup ||ykll,
j=1 j=1 k=1,..m

forx;y; € E, 5 =1,...,m.

1.1.5. Holder’s Inequality For a normed space (E,| . ||), if m € N,
1ﬁayi€‘E;j::]W'“>ﬂ% ﬁ]%q<ﬂ0,+oo]and33=:%%—é.

s s D52 e < 1 Cg) 7 ol (Y5030 g -
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Proof - If p > r, we use 1.1.3, with ||z;||, ||y;||, r and 7’ replaced respectively
by N7, ;™ Prand 4. If p = r, we use 1.1.4, since we have ¢ = +00. O

1.1.6 Hoélder’s Inequality For Sequences For a normed space (E, || . ||),
(7;)521 € bp(E) and (y;)52, € £4(E),

1511y 10520 1 < 1 Ce)52 el (W) s
when r,p, q €]0,400] and L = % -+ 5

Proof - It is enough to use 1.1.5 and pass to the limit for m tending to co. O

1.1.7 Proposition Ifp > r > 0, then (,(E) C {,(FE), for each normed
space E. Moreover

1Cz5)5 1y < [1Cz5)52 [l
for every (z;)%2, € (,(E).

Proof - If (z;)52, € (.(E), with |[(z;)32,], = 1, we have [[z;]] < 1 and

|z ||P < ||lz;]|", for every j € N. Hence
0 [e'e]
Dol < flallm =1
Jj=1 j=1

and we can write ||(z;)72,[l, < 1. If 0 # |[(z;)52,]l» # 1, we consider y; =
zj/[|(;)324 for every j € N. Hence [|(y;)52,|l- = 1 and, by the first part of
this proof, we have [[(y;)32,|l, < 1. This implies

()52l < [1Cz5)52 -
If 0 = [[(z;)%2,[l», we have ; = 0 for all j € N and the above inequality
remains true. O

Now we can use 1.1.6 and 1.1.7 in order to write the following result.

1.1.8 Theorem For a normed space (E, || . ||), (2;)32, € £,(E) and (y;)52, €
EQ(12)7

ICllz 1Ty D52l < 1) lloll (03) 521l

when r, p, ¢ €]0, +00] and % < %—I—% )

12



1.1.9 Minkowski’s Inequality If (E,|| . ||) is a normed space over K and
p € [1,+oo[, then

1 1 1

e e] p o) P 00 P

(ZII%#%II”) < (ZII%II”) +(Z||yjll”) :
Jj=1 Jj=1 Jj=1

Jor (xj);')ilv (yj)]o'il S EP(E)'

Proof - The case p = 1 follows from the inequalities ||z; +y;|| < |lz;]| + [|y;]]
for j € N.
We consider now the case p > 1. We write

o0 o0 (oo} 1
Sl 4+ yill? < S0 Nlillllzy + P+ Nyl + wyllP
=1 j=1 j=1

Now we apply Holder’s Inequality to each sum in the second member of the
above inequality and note that p = (p — 1)p’. We obtain

/

1 1
o0 [ee] p [ee] p [ee] P
ol 4 yylP < (ZH%’Hp) + (ZH?Jij) (Z ||-’13j+yj||p> :
=1 =1 =1 =1

Now the inequality of our statement follows. O

This result shows that the triangle inequality holds for the norm || .
on ¢,(E), when p € [1,+oc[. If p €]0, 1[, we know that

[l + yill? < (sl + s lDP < s 17+ s 1P,
for every j € N. Hence

YoMy il <D gl + D7 Nyl
j=1 j=1 j=1

for all (2;)52,, (v;)52, € £,(E). This shows that || . ||, is a p-norm on /,(E)
when 0 < p < 1.

I

It is easy to show that cgo(F) is dense in ¢,(E) for the topology defined
by || . I, for each p €]0, +o0].

1.1.10 Example - The topological dual of ¢,(E): If (E,| . ||) is a
normed space over K, there is an isometric isomorphism between (¢1(E))’

and oo (E').
For each k € N we consider the mapping [ from FE into ¢;(F) given by

13



Ii(x) = (0,...,0,2,0....), x in the k-th position. It is clear that I is linear
and |[Ix(x)||; = ||z|| for every x € E. We define the mapping:

1:Te€e (fl(E))/ — (T o ]k’)zozl S KOO(E,)
It is easily proved that I is well defined, linear and continuous with
IH(T)loc = sup{|[T o I||; k € N} < ||T| (VT € ((i(E))").
Thus [|I|| < 1. Now we define a mapping J from (. (E’) into (¢1(E))" by

J(S)(x) = f:o S,(1,).

for every S = (S;)52, € loo(E') and x = (24)52, € ¢1(E). This mapping is lin-
ear, well defined and continuous, with ||J|| < 1 since |J(S)(z)] < ||S|lsoll]|1-
We note that Jol and IoJ are respectively the identity mappings on (¢1(E))’
and on (. (E). Thus

1Sl = 1 (J(S)llse < 1T < NSl (VS € e (E)).

Hence J (and consequently ) is an isometry.

We note that, in the case F = K, we have [;(\) = A ¢ for each A in K.
Hence, for each T' € (¢1)', we have T' o I3(\) = A T'(ex) for all A € K and we
can identify 7o [}, € K’ to T'(ex) € K. Now we can identify (¢1)" to ¢ by the
isometric isomorphism I defined by I(T) = (T'(ex))3,, for each T € (¢1)'.

1.1.11 Example - The topological dual of ¢y(E): ¢, is isometric iso-
morphic to (co)’ through the mapping J given by

J(y)(x) = f:cy

for each v = ()52, € co and y = (y;)32, € 1.

We note that J is well defined since |J(y)(x)| < ||#]|«]ly]l1. Hence ||J(y)]| <
|lyllx for each y in ¢;. Thus J is linear and continuous with [|J|| < 1.

For a given T in (¢p)" we consider «; in K such that |T'(e;)| = o;T(e;),
|aj| = 1, for every j in N. Therefore

ilmem - T (Z ajej)

14
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> aT(e;)

J=1

< |7 = I,

[e.o]

n
Z Q€
j=1




for every n € N. Thus (T(e;))52, is in £, and [|(T'(e;))52,[1 < [|[T|. This
shows that the mapping I from (co)" into ¢y, given by I(T) = (T'(e;))52,,
is linear and continuous with ||7]] < 1. We note that [ o J and J o I are,

respectively, the identity mappings on ¢; and on (¢g)’. Therefore we can write

Iyl = 1L @)L < [T <yl (Vy € &)
This shows that J (and consequently ) is an isometric isomorphism.
For a normed space (E, || . ||) over K, (co(E))" is isometrically isomorphic to
(L(E).
We consider the linear mapping
Iy:x e BE— Ix(z) = (0,...,0,2,0,...) € co(E),

where z is the k-th position in the sequence Ix(z). We are going to show
that for each T € (¢o(F))’, (T o I})32, € £1(E'). It is clear that T o [, € E'.
Hence, for a given € > 0, there is x; € E, ||g|| < 1, such that |1 o I;|| <
|T o I ()| + 55 For every ()32, € cp, we can write

> T o Iflew
k=1

© €
<D (T o I(we) | + ﬁlad
k=1

< > |T o L) [Jak] + el (an)iZylloo = .
k=1

For each natural number k there is (5 € K, |G| = 1, such that
T 0 (i)l law| =T o In(xk) By
Now we can write:
«= > T o In(wr)onBi|+ell (an)iillee < |17
k=1

< 1[Ik )iz llse + €l (k)72 lloo-
This shows that (|70 Ii||)32, € ¢1 and, of course, (T o I},)72, € ¢1(E"). Since
e is arbitrary, we have also [|(T" o )32, |l1 < ||T'|]. We can conclude that the
linear mapping

[:T € (co(E) — I(T) = (T o [,)>, € (y(E)

is continuous and ||| < 1. On the other hand, it is easy to verify that the

linear mapping

J:(SR)2, € L(E) — J(Se)2,) € (co(E)),

i I (Brawzy)

k=1

+ell(ar)iZillo

15



defined by
J((Sk)nzr) ((zr)iZy) ZSk (1) Y (wr)52; € co(E),

is well defined, continuous and ||J|| < 1. Since I o J = idy, gy and J o [ =
id(co(m)y, We have (co(E))" and 41 (E’) isometrically isomorphic.

1.1.12 Example - The topological dual of /,(E), p €]1,+oco[:  ({,) and
Ly are isometrically isomorphic through the mapping I defined by I(T) =
(T'(ej))32, for each T in (£,)".

For T € (¢,) and j € N, we consider a; € K, |a;| = 1, such that a;T(e;) =
|T(e;)|. Hence, for a natural number n and

n
2 =3 0| T(es)" ey,
j=1
we can write

Hz(")Hp =

> 1T (e)|® 1P
j=1

ﬁ;me] ]

T < T, = 1T

Z|T€] ] )

T ( n) )| = ZQJ|T ;)| _1T (ej)

7j=1

It follows that

< |17 (Vn €N)

ilmej)v

and

(T (e;)) 52l < IT°-
This shows that I is well defined, continuous and linear, with ||I|| < 1. Now
we define J from ¢, into (¢,)" by

+oo
) =Yy,
j=1

16



for y € {,; and x € ¢,. By Holder’s inequality we have |J(y)(x)| < ||ly||lz]],-
This gives J continuous linear and ||J|| < 1. Since [ o J and J o I are,
respectively, the identity mapping on ¢, and the identity mapping on (¢,)’,
we can write

19l = 1 @D < MW < Myl (Vy € £y).

Hence J and [ are isometric isomorphisms.

If (E,|| . ||) is @ normed space over K, ({,(E))" is isometrically isomorphic
to Ep/(E').

We consider the linear mapping J from ¢,/ (E’) into (¢,(E))" defined by
J((9))520)(5)521) = > _ Siz;),
=1

for (S;)%2, € ly(E') and (7;)%2, € (,(F). By Hélder’s inequality we can
write

[ J((5)720) ((2)520)] =

isj(%‘)

(e 9]
< 2 1S5l
j=1

S(ZHSJ'H”/ (ZH%H”) Z(ZIISjH”') 15) 721 -
j=1 j=1 j=1

This shows that .J is well defined, continuous and ||J|| < 1. Now we define the
linear mapping I, from E into ¢,(E), by considering I} (z) = (0,...,0,2,0,...),
with x placed in the k-th position. It is clear that T o I, € E’, for each
T € ((,(E)). We are going to show that (T o I)32, € {y(E'). For ¢ > 0,
there is 2, € E, ||zg|| < 1, such that ||T o I,|| < |T o I(zx)| + ¢/(2¥7"). For
each (ay)72, € ), we can write

o0 o0 6
ST o Illa] < X (1T 0 Te@n)l + e ) laad
ok/p
k=1 k=1
[oe) o0 6
<Y T o Ii(w)l|awl + D 55 o]
2k/p
k=1 k=1
< D2 T o Iy(wr)awfe| + el ()i [l = (%)
k=1

We use the Holder’s inequality and choose, for each natural number k, 3 € K,
|Bk| = 1, such that T o Iy(xg)oBr = |T o Ix(zk)ag|. Since

17



> T o Lu(z)anfre| = [T ((arBrez) ;)| < T (o) Il
k=1

we may conclude that

() < (TN + )l ()i llp-
By the first part of this example we obtain (||7" o Ix]|)52; € £,. Since € >0
is arbitrary, we have (7o I})72, € {y(E'), with [[(T o Ik)k:1||p < |IT||. We
just proved that the linear mapping I from (¢,(E))" into ¢, (E’), given by
I(T) = (T o I)32,, for each T € ({,(E))’, is well defined, continuous and

|7]] < 1. Since we have [ o J = idg gy and J o I = id,(p)y, we conclude
that ¢, (E’) and ({,(E))" are isometrically isomorphic.

1.2 WEAKLY ABSOLUTELY SUMMABLE
SEQUENCES

We use the duality notation < a’, 2z >= 2'(x), for 2’ € E' and x € E.

1.2.1 Definition For p €]0,+00|, a sequence (z,)5°,, of elements of E,
is said to be weakly absolutely p-summable if (< 2/, x, >)32, € £, for every
e Fl.

We denote by £;(E) the vector space of all weakly absolutely p-summable
sequences of elements of E. Since the set {x,;n € N} is weakly bounded in

E, it is bounded in E. Hence £;(E) C (o (£) for each p €]0,+oc0[. Also, it
is clear that (¥ (F) = (- (E).

1.2.2 Proposition [f0 < p < oo and (v,);2, € (;(E), then
1
lenllg = s (31< ' > ) < ox,
Proof - The linear mapping
Yo' e B —Yp(a)) = (< 2,z >)52, €4,

has a closed graph. Hence 1 is continuous on E’ and bounded on the unit
ball Bgy = {2’ € E'; ||2|| < 1}. Since

(@) 5 lwp = sup{[[¥ ()|l 2" € Ber},

18



the result is proved. O

1.2.3 Definition A subset D of Bg: is norming in E if, for every x € E,

Jall = sup | < 23> |.
x'eD
1.2.4 Remark For (z,);2, € £)(F) and 0 < p < co we note that

- 1
p
(E |<x';xn>]”> = sup
(An)

[ee)
Z)\n<x',xn>

n=1 zozlnplgl n=1
oo
/
= sup <$,Z)\nl‘n>.
[(An) 52yl <1 n=1

Hence, if D is a norming in F,
1

oo ; oo
sup (Z | < 2’52, > \p> = sup <a')Y Apn >

2/[<1 \n=1 I(An)2 1l <1 el
/| <1
e.) o0
= sup > Az, sup sup [< @', Y Az >
1(An)oZy Ml <1 |In=1 l(An)gz, Nl <1 a’eD n=1
1
o0 (o] 5
= sup sup <2,y A, >| = sup (Z | < 2'sx, > |p> .
€D [[(An)pLq Il <1 n=1 ¥'e€D \p=1

Therefore we have

o0
1) ey = sUD (Z < oy > |p) |

z’eD \ =1

D =

for every subset D of Bg that is norming in F.

The proof of next result is quite simple and we propose it as an exercise.

1.2.5 Proposition If p € [1,+o0[, then || . |, is a norm on £)(E) and
(G (E), || - |lwp) s a Banach space. If p €]0,1[, then || . |lw,p is a p-norm
on (3 (E) and (6;(E), || - ||lwp) is an F-space (i.e., a complete metrizable
topological vector space).

From now on, every time we consider E;;“(E), we suppose it endowed with
the (p-)norm || . ||w,- It is easy to prove that [[(,)0%||wp < [[(2n)524]]p, for

19



every (z,)52; € €p(E). Hence (,(E) C ¢;(E) and this inclusion is continuous.

1.2.6 Proposition If E is finite dimensional, then (,(E) = {;(E).

Proof - Since all finite dimensional topological vector spaces are isomorphic,

we may consider £ = K™ endowed with the (p-)norm || . ||,. If (z,)52, €
(E), tn = (Tp1, - - -, Tnm) and 7; denotes the j-th projection from K™ onto
K, we have
1 1 1
(0.0] E (o @] m p m [o.¢] P
(S eli) - (z 5 |xn,j|f°) - (Z 5 |xn,jrp)
n=1 n=1j =1 j=1n=1

- (i > rwj<xn>rp)p < 3wl < +oo.

j=1n=1
Hence, (x,)72, € (,(E). O

The conclusion of the above proposition is not true if F is infinite dimen-
sional. As an example, we consider (e,)2 ,, wheree,, = (0,...,0,1,0...) € ¢
(1 being the n-th term of the sequence). We have (e,)r; € ({(co), since

(co) = ¢1 and

oo o0
dMl<adien>]=>|zl]| < +oo,
n=1 n=1

for each o' = (x},...,2,...) € {;. We note that |le,|l« = 1, for every n

’Yn

natural. Thus, (e,)52; € ¢1(co).

We shall prove later an important result, due to A. Dvoretzky and C.A.
Rogers in the case p = 1, stating that for every infinite dimensional Banach
space I and for each p €]0, +-o0[ there is (z,)72, € £} (E) \ £,(E).

n=1

1.3 UNCONDITIONALLY SUMMABLE SE-
QUENCES

We recall:

A sequence (x,)°2, of elements of E is summable if the correspondent
series converges in E.
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It is well known that there are examples of summable sequences that are
not absolutely summable. In classical Analysis we learned a result proved
by Dirichlet in 1837: for sequence of real numbers, the concept of absolute
summability is equivalent to the notion of unconditional summability.

1.3.1 Definition A sequence (x,)?, in E is unconditionally summable if
(To(n))oy is summable in E for every permutation o on N.

We denote by (“(E) = (¥(E) the set of all unconditionally summable
sequences of elements of F. An easy application of the Cauchy Criteria for
convergence of series and Dirichlet’s Theorem show that ¢,(E) C (*(E). In
fact: if o is a permutation in N and ()52, € (1(E), we have (||zom)|)22, €
¢1. Thus, since

> To(r)
k=n

<3 Nzowll,
k=n

oo
the Cauchy Criteria implies the convergence of the series Z Tor(k)-
k=1
We know that a sequence in K" converges (for any of the norms on it) if,
and only if, it converges coordinatewise. Hence the Dirichlet’s Theorem is
true for sequences in any finite dimensional Banach space F. If E is infinite
dimensional this result is not true anymore as we see in the following example.

1.3.2 Example Let v denote the sequence (1, %, cee %, . ) € co. We con-

sider a bijection 7 from N onto itself. For a given € > 0, there is n. natural,
such that

1

n>n.=— — <Ee.

n
We have 1 = 7(j1),2 = 7(j2),...,ne = 7(jn.). Therefore,
i1
Z W(/{) eﬁ(k) —-v

k=1

Jj > max{ji,...Jn.} = < e.

e}

In order to see this it is enough to note that the first n. components of
o1
k; T Y
are all equal to zero and the other components have modulus < e. This
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shows that

n

. 1
A Dy et =

k=1

Thus, the sequence (%ek):l is unconditionally summable in ¢y. It is clear
that this sequence is not absolutely summable.

If F is infinite dimensional we may also have weakly absolutely summable
sequences that are not unconditionally summable. An important result of
Functional Analysis states that examples of this situation can only be given
in Banach spaces having a copy of ¢y. In other words: ¢*(F) = ¢“(FE) if, and
only if, £ does not have a copy of ¢y. See Theorem 8, page 45, in [2].

1.3.3 Example As we saw in the previous section, (e,)>, € ({(cy) and
it is not absolutely summable in ¢q. Since ||e,u|| = 1, for every k € N and
each permutation o of N, we cannot have (e,(x))72, converging to 0. Hence

(e)i & £(co).

1.3.4 Theorem For a sequence (x,)5, in E the following conditions are
equivalent:

(1) (2,)5% is unconditionally summable.

(2) For every € > 0, there is n(e) > 0 such that

S,

neJ

<€,

for every finite subset J of N satisfying min J > n(e).
(3) (@) € B(E) and Jim [[(z)2

w1 = 0.

Moreover, the sums of the sequences (xa(j));?‘;l, for each permutation o of N,
are equal, when (x,,)% is unconditionally summable.

Proof - (1) =>(2): We suppose that (z,)5, does not satisfy (2). Hence,
there is € > 0 and a sequence (J,,)5%°_; of finite subsets of N, such that

S,

HEJm

max J,, < min Jp, and > €,

for every m € N. If k,, denotes the number of the elements of .J,,, we can
consider a bijection ¢ from N onto itself in such a way that it maps the set
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{min J,,, (min J,,,) + 1,..., (min J,,) + (k,, — 1)} onto J,,, for every m € N.
Hence, we have

(min Jm )+ (km—1)

Y. o)

n=min Jy,

|

nEJm

> e,

for every m € N. This shows that (2,(,))pZ; is not summable, i.e. (z,)5; is
not unconditionally summable.

(2)==(3): We consider (z,)5°, satisfying condition (2). Hence, for each
e >0,

D n

neJ

<e,

for every finite subset J of N, such that minJ > n(e).

For each 2/ € Bp/, and for n,m € N, such that n > m > n(e), we consider
Jt={keNym <k <n,Re(< 2,25, >) > 0},
J ={keN;m <k <n,Re(< 2,z >) <0}

Hence, we have

> |Re(< 2,z >)| = |Re <a:’, > xk> + |Re <:U/, > $k>
k=m keJ+ keJ—
< Z Tl + Z Trll < 2¢.

keJ+ keJ—

With the same type of reasoning, we have

> Im(< 2,2y >)] < 2e.

k=m

This shows that
(k)i mllw < 4e,
for each m > n(e). Hence we have (3).

(3) = (1): We consider (z,)5>, € ¢(E) and limg_o || (2)0%k||wa1 = 0.
We fix a bijection ¢ from N onto itself. For each € > 0, there is m(e), such
that ||(zx)52,,]lwa1 < € for m > m(e). We have 1 = o(k(1)),...,m(e) =
o(k(m(e)). If n(e) = max{k(1),...,k(m(e))}, then, for n > n(c) and p € N,
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we have

n—+p n—+p

!
> Toy| = sup {2, D Tom)
k=n *'€Bpy k=n

0o
< sup Z | < I/,l’g(k) > | < ||<Ik)zozm(s)”w71 <e
T'€BR! p—n

[e.e]
Hence, Z Ty(k) 1S convergent.
k=1

Now we prove the last assertion of our theorem. If (z;)52, is unconditionally
summable, we denote

o0 o0
r=>x; and  xy =) T
=1 =1

Since we also have condition (2) satisfied, for a given € > 0, there is m(¢) € N
such that

<e, <e,

D n

neJ

<e€

n m
ZIJ’_$ Zl‘a(j)—%
i=1 j=1

for n,m > m(e) and J C N finite with min J > m(e). If we add and subtract
convenient terms we can write

m(e) m(e)

2 — 26|l <lz =3 ) + | D 25 = D (| + |22 Tos) — 2o -
j=1 ) j=1 )
Since we have 1 = 0(j1),...,m(e) = 0(Jm()), if m = max{ji,...,Jme}, we

have m > m(e) and we can write the above inequality in the form

Sz,

neJ

[ = x|l < e+ +e,

where J is a finite subset of N with min J > m(e). Hence we have
|z — 2z, < 3e,
for each ¢ > 0. Thus ¢ = x,. O

Condition (3) in 1.3.4 motivates the following definition.

1.3.5 Definition A sequence (,)%, of elements of E is unconditionally

p-summable, if (z,)52, is in £;)(E) and klim | (z0) o k]l wp = 0.
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We denote by £;(E) the vector space of all unconditionally p-summable
sequences of elements of E. It is easy to see that the (p-)norm || . ||,,, makes
this space complete. Every time we consider KZ(E), we shall consider the
(p-)norm ||. ||, on it.

We recall that every Banach space E is isometrically isomorphic to a
closed subspace of C(Bpg), where Bp is the compact topological space we
obtain when we consider on it the restriction of the weak star topology on
E’. This isomorphism is defined by A(z)(z') =< o',z >, for every z € E
and 2’ € Bpr. It is usual to call A(x) € C(Bpg) the evaluation mapping at x.

1.3.6 Theorem For a sequence (x;)32, in E, the following conditions are
equivalent

(1) (;)32, is unconditionally p-summable in E.
2) (|A(z;)( . )|P)2, is unconditionally summable in C(Bg).
J j=1

Proof - Since Bgr is a norming subset of Be(g,,), we have

1(25)521 o = I ACz;) CO)P)52]

Now the result is clear. O

w,l-

1.4 MIXED SUMMABLE SEQUENCES

In this section, if 0 < ¢ < s < +00, we consider s(q)’ satisfying
1 1 1

+-="
s(@) s g
In this case we say that s and s(q)" are g-conjugate. We also denote s(1) by
s’. In this case we note that s and s’ are conjugate in the usual sense.

1.4.1 Definition If 0 < g < s < 400, a sequence (x,)5°, of elements of
E is said to be mixed (s;q)-summable in E if x,, = 7,2°, for each n € N,
with (15,)5%; € lsqy and (22)22, € (¥(E).

n

We denote by £y,(s.q)(E) the vector space of all mixed (s;g)-summable
sequences of E. For (1;)22) € li(s,q)(E), We set

1()52 1 lm(siay == I0F [1(75)52 1 oy 11(25)52 s, (1)
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where the infimum is considered for all possible representations x; = T]atg

j € N, with (1), € Ly and (29, € C(E). On Lo (B). |- e
defined by (1), is a norm for ¢ > 1 and a ¢g-norm if 0 < ¢ < 1. In any case
(Uin(si) (), || - |lm(siq)) 18 @ complete metrizable topological vector space. The
proof of the preceding statements is left as an exercise. Theorem 1.4.2 should
be used for the proof in the case 0 < ¢ < s < +00.

It can be proved that
(fm(q;q)(E)a || . ||m(q;q)) - (&;U(E)v ” : ||w7q>
and
(Uingoos) (B)s || - Mlim(oosa)) = (La(E), || - lg)-
Prove the above statements as exercises.

The following result was proved by Maurey in [16].

1.4.2 Theorem For 0 < g < s < 400 and (z;)32, € ((E) the following
are equivalent:

(1) (z5)52, is m(s; q)-summable in E.
(2) If W(Bgr) denotes the set of all reqular probability measures defined on

the o-algebra of the Borel subsets of Bg:, when this set is endowed with the
restricted weak star topology of E',

((/B ]<x',x]->|8d,u(x/)>) e,
B j=1

for every € W(Bg).

In this case
1

ezl = s (1<, > panta)
g

In order to prove this theorem we need a result known as Ky Fan’s Lemma.
See [6]. Before we state and prove this Lemma we need the following defini-
tion.

1.4.3 Definition A collection F of real functions defined on a set K is
said to be concave if, forn €N, f1,..., fn € F and aq,...,a, > 0 such that
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iy =1, it is possible to find [ € F salisfying

f(x)zzn:ozjfj(x) Vo e K.

1.4.4 Ky Fan’s Lemma Let K be a compact conver subset of a Haus-
dorff topological vector space and let F be a concave collection of lower semi-
continuous convez real functions on K. If there is a real number p such that,
for every f € F there exists vy € K satisfying f(xy) < p, then there is
xg € K such that f(x¢) < p for every f € F.

Proof - Since f € F is lower semi-continuous on K, given € > 0, the set
B(f,e) = {v € K; f(x) < p+2)

is closed. If we show that the collection of all B(f,¢), with f € F and € > 0,
has the finite intersection property, then

N B(f.e) # ¢,

feF >0
because K is compact. Hence any xy in this intersection has the required
property.

We must prove that B(f1,e1) N...N B(fn,en) # ¢. We consider the convex
hull C' in R™ of all vectors of the form (fi(z),..., fu(z)), with z € K. We

also consider
D={(t,...,tn) €ER"t; <p+e;,j=1,...,n}.

If CND = ¢, the Hahn-Banach Separation Theorem implies the existence
of (aq,...,a,) € R" and o € R, such that |aq| + ...+ |a,| =1,

> ajt; < V(ty,...,ty) €D
j=1

and
Zozjtjza V(tl,...,tn)GC.
j=1

Since Ae; € D, for A < p, we have Ao; < o for A < p. If o; were strictly
negative, we would be able to find A < 0, A < p, in such a way that Aa; > a.
Thus a; > 0 and a3 + ... + o, = 1. Now we can use the fact that F is
concave to find f € F such that
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f@) 2 i)z a2 Y ajlo+e) > p

for every x € K. But this is a contradiction to our hypothesis. Therefore
C' N D # ¢. Now, for (t1,...,t,) € C'N D, we have

t]:Z)\kf](xk) ijl,...,n,
k=1

with A\q,..., A\, >0, such that \y +...+ \,, =1, and z¢,...,2,, € K. This
implies that x := \jzy + ... + A\, 2, € K. Since f; is convex, we have

ptei>t;= i Aefi(zk) = fi(@).
k=1

This says that © € B(f;,¢;), for j=1,...,n. O

Proof of 1.4.2 - First we show that (2) implies that

1\ 00
S = sup (/ | <’ x; > |sd,u(x/)> < +o0.
neW (Bgr) By j=1
=g

If this were not true, for every n € N, we would be able to find p, € W(Bg)

such that
1\ 00
(( | oI<aa > \Sdunu')) ) > 9%,
B
E o1 ,

If we consider y € W(Bpg) defined by
> 1
=D Gatin
n=1

since 2"y > p,, we obtain

1\ 0O
((/ r<x',xj>|8czu<a:'>)) >,
Bp/ =1 .

for every n € N. This is a contradiction to (2).

Now we want to show that (2) implies (1). If p = s/q¢ > 1, we see that
p' = s(q)'/q. We consider the following weakly compact convex subset of £,

28



{(ﬁj) 1€£paz€p < 51 SJZOJEN}

7=1

For ¢ > 0, p € W(Bg/) and m € N and (7;)%, satisfying (2), the function
feis(a;)m» defined on K by

fau(z] ),m 5; j= 1 Z fj +5 p/B |<.13/,37j > |sd,U,(SC/)7

E/

is continuous and convex. The collection F of all these functions is concave.
If we consider (;)52, € K defined by

1

“= </ | <l ;> Isdu(w'>> .
By

we have f. @) m((&)521) < S% By Ky Fan’s Lemma we can find (£7)2, €
K such that f((£9)%2,) < S? for every f € F. Hence, for every ¢ > 0,
2’ € Bg/, m € N, and the Dirac measure §(z’), we have

m

f£5 x])m<<§0)3 1) Z(&O +5) p| < ZE , Lj > | < Sq.

7j=1

If 2; # 0, then &} # 0, and we define 7; = |§?ﬁ, 29 = 17 ;. If oy = 0, we
define 7; = 0 and 29 = 0. Now we have:

> I <[> s
J=1 j=1

m
dYol<aa)> |
=1

for every m € N and 2’ € Bgr. Hence we have [[(75)52, [[s(qy [|(29)521 lw,s < S.
This shows that ()32, is mixed (s, p)-summable and (1) is true.

and

® =

1
) m 3 ) s )
= lim (Z(£?+e) < z; > y) < S7,

J=1

Now we suppose that (z;)32, € fy, Sq)(E) and we want to show that
(z;)32, satisfies (2). We consider z; = 7529, with (7;)72, € £y and (3)32, €
(¥ (E). For each € W(Bpg) we have

(</BE | <25 > lsdu(:c’)f)%

:1(1

]7
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1\ 0O
- ((/ | < ' ma) > |Sdu(x')> ‘ )
BE/ .
=14

Now we use Holder’s Inequality in order to dominate this expression by

1\ 00
1(75)524 [ scay ((/B |<x’,xg>|sdu(l“')> )
E! .
J=1

<) s )7 s

This shows that (7;)32, satisfies (2) and

S < (%’);’;1 ||m(8;q)7

s

as we wanted to prove. O

1.4.5 Proposition (1) If 0 < ¢ < 59 < s1 < +o00, then
(a) gm(Sl;q)(E) C fm(Sz;q)<E);

(b) ”(xj)?ilnm(sxq) < H(xj)?il”m(suq)f
for every (z;)32) € lin(sy;9)(E).

(2) If 0 < g < s < 400, then
(CL) gm(s,q)(E) C KZ(E);

(0) [1(z5)52 1 llw.g < 1(2)521 lm(sq),
for every (z;)32, € lin(sq) (E).

(3) If 0 < g < s < 400, then

(a) Uin(siq)(E) C Lsqy (E),
(0) l[(z5)721lls < [1(2)721 lmsia);
for every (x;)52) € lin(sq) (E).

Proof - (1) follows from 1.4.2 when +00 > s; > s > ¢q. The cases sy = ¢
and s; = +oo are trivial.

In order to prove (2) we consider x; = 7;27, for j € N, with (7;)52; € {4y
and (29)22, € (¥(E). Since (z;)2, € (¥(E) and
0< lm [(2)52 kg < H0 [1(7)52 0 lls(ay Jin 1 (@5)52 0 llws <0,

we have (r;)32, € (¢(E). We also have

1(25)52 1 lwg < 1520 lstay 11(25)52 s
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This shows that

1(25)521 lw.g < [1(25)521 lm(sia)-
Now we prove (3) For a sequence ()52, € lin(sq) (E) and for ¢ > 0 we
consider z; = 729, j € N, such that (7;)52, € lyqy, (29)52, € (¥(E),

1(7)52 sy < (L +)l(@5)52 [Imssg) and  [[(29)52 [Juw,s < 1.
Now [[(23)52 [luw,co = [ (23)524[loc < 1 and
1(25) 324 sty < 1752 lsay 1) 32 oo < (14 ) (@5) 321 lm(sia)-

Of course, this implies our result. O

1.4.6 Remark If 0 < g < +o0, we denote by £) . (E) the vector space

of all sequences (:z:])J_l of elements of £ of the form z; = zj J € N, with
(75)521 € co and (29)32, € £¢(E). This vector space is a complete metrizable
topological space under the norm (g-norm if 0 < ¢ < 1)

1(25)5% 1 Imngazgy = 10E 1(7)524 oo | (25)52 [luog

where the infimum is taken for all representations of ()32, of the form
x; =729, j €N, with (75)%2, € ¢o and (29)52, € £¥(E). Of course we have

éq(E) - gm(S;q)(E) - Em(q q)(E) - gm(q;q)(E)a
for 0 < ¢ < s < +o0.

Next result gives an interesting characterization of the elements of £} (£)
that has resemblance to the concept of mixed summing sequences.

1.4.7 Theorem If0 < g < 400, then
(EGE) N - Nlwa) = g (ED) N - gy -
Proof

(1) If (25)52y € €)1, (E) is of the form z; = 723, j € N, with (7;)52, € ¢
and (29)32, € £¥(E), we have

15w < 10755 ool (25) 521 g

In particular we have

1(@5)52mllwg < 10755 ool (25)524 llug-

Hence
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lim {|(27)72n]lw,g = 0.

Thus (7;)%2, € £;(£) and
12)521 g < 1252 [ongi0)-
(2) If (z)52, € €;(E), we consider
oy = Sup ()],
¢EBgy jzznil ’
and
> o),

j=n+1
for each n € N. We know that

lim o, = 0.

n—oo

We consider the non trivial case o, > 0 for each natural n. For ¢ > 0, there
is m € N such that

()% < min { (1)1 )1

for all n > m. We define p, = 1, if n < m, and p, = (0,)2, if n > m. We
have ()52 € o, |(Pn)S2lloc < lTand 1 > p; > po > ... > 0. We set
pu(®) = (0n(#))2 if n > m. Now we can write:

sup i (pn)_l [p(n)|?

¢€BE’n:1
m [e.e] o0
= sup Z pn) " B(n)|* + Z p) | Do o)t = D [o(x))|
¢€Bgr | n=1 n=m-+1 j=n+1 Jj=n+2

< sup S [BE)l + sp S (u() " (Pu(@) — pura(6)?)

¢€BE/ n=1 ¢€BE/ j=m+1

< (1(25)521 [luwg)* + sup i (0n(0)) ™ (Pn (@) + Prs1(0))(Pn(D) = pus1(9))

$EBps n=m+1

< (1) 2illwg)” + sup - > 2(pu(9) = pusi(9))
$EB gy n=m-+1
< (1(5)7Z 1 llw.q)* +2 Sup pm1(9) = (1(25)5721 [lwg) + 20m 41

GBE/
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< (L4 a) ()72 llwa)”-
Now we set p, = (A\,)4, for n € N. We have

sup Z\Qﬁ )7 )" < (L ) (1@)52lwg)”-

¢€BE/
This shows that ((\;)""z;)32, € £7'(E), with
()™ 25) 2 g < (14 €) e 1(2)521 llwg-

Since ()52, € cp and [[(A;)52,]|c < 1, we conclude that (z;)%2, € 60 sa(E)
and

L o)
1(@)5 1 gy < L+ )7 [1(2) 221 g
for each € > 0. Hence

152 gy < 1(27)520 g

and this completes our proof. O
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Chapter 2

REGULARLY SUMMING
MAPPINGS

2.1 REGULAR MAPPINGS

In this chapter, E, F indicate Banach spaces over K and A is a nonempty
open subset of E.

2.1.1 Definition For a real number s > 0, a mapping f from A into F' 1is
called s-regular at the point a € A, if there are M > 0 and 6 > 0, such that

1) The open ball Bs(a), of radius 6 and center a, is contained in A,
2) |If(a+x) = fla)||* < Mlz||, for every x € Bs(0).

It is said that [ is s-regular on A if f is s-reqular at each point of A. In the
case s = 1, it is said that f is regular on A. When s = 1 we do not write s
in the preceding notations.

We denote by Fi®%(A; F') the vector space of all mappings from A into
F that are s-regular at the point a of A. The vector space of all F-valued
s-regular mappings on A is indicated by Fi¢(A; F).

2.1.2 Examples 1. L(E;F) denotes the Banach space of all continuous
linear mappings from the Banach space F into the Banach space I under
the norm

1T = sup{|[T'(z)[;x € Bg} VT € L(E; F).
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Every continuous linear mapping 7" from FE into F' is regular on F, since
1T(a+ ) = T(a)l| = [|T(x)[| < 1 T]|[|] Ve e E.
Hence we have

L(E:F) C Frs(E; F) = F(E; F).

2. We denote by L(F, ..., E,; F) the vector space of all continuous n-linear
mappings from the cartesian product F; X ... x E, of the Banach spaces
E;, j =1,...,n into the Banach space F'. This is a Banach space under the
norm defined by

T = sup T (z1,...,2,)] VT € L(Ey,...,Ey F).

2;€Bp;,j=1,.n
If T e L(E,...,FE,; F) then it is clear that
T (21, .. sxn)|| < Tzl -- - 2] Ve, € E;j,j=1,...,n.
Since
ol Mzl < Gy, @)l
it follows that 7" is +-regular at the origin of (E x ... x E,, | . [|1).

We recall that a mapping P from E into F' is an n-homogeneous polynomial if
there is an n-linear mapping 7 from E™ into F such that P(z) = T'(x, ..., z),
for each z € E. In this case we write P = 7. On the other hand, for a given
n-homogeneous polynomial P from E into F, we may consider

. 1
P(xy,...,2,) = o

Y oer...enPlera + ...+ gpzn),
5i::|:1

This defines a symmetric n-linear mapping from E” into F, such that P = P.

We can see that
n

Pla+x)— P(a) = n)Pa”_kxk,

(@t o) - P@) =3 (}

where Pa"*zF = P(a,...,a,z,...,x), with a repeated n — k times and z
repeated k times. The correspondence P «— P stablishes an isomorphism
between the vector space of all n-homogeneous polynomials and the vector
space of all the symmetric n-linear mappings. Moreover, P is continuous if,
and only if, P is continuous. We denote by P("E; F) the vector space of
all continuous n-homogeneous polynomials from F into F. In this case the
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norm defined by
IPl| = sup [[P(z)| VP eP("E;F)

(<1
makes P("E; F') a Banach space. If P € P("E; F) then we have
[P@@) || < |P[lfl=]" V2 e £
This shows that P is %—regular at 0 € E. We can prove that
. . nm
[P < |Plf = sup [[P(z1,...,z0)|| < — [Pl
llz;lI<1 n.

We can show that the following binomial formula is true for each P €
P"E; F):

n

Pla+z)=> (Z) Pa™Fak,

k=0
Now we can write

IP(a+ )~ Pl < 3 () 1Pl el < (

for every ||z|| < 1. This shows that P is regular at each point of a € FE.

> (7) 171l ) el

k=1

3. We recall that a mapping f from an open subset A of E into F'is analytic
at the point a € A, if there are r > 0 and a sequence (P,)°; of continuous
n-homogeneous polynomials P,, such that B,.(a) C A and

+oo
fla+a) = fla) = Pu(z) (Vz € B.(0)).
n=1
In this case, due to a formula of Cauchy-Hadamard type, we know that there
are C' > 0 and ¢ > 0, such that ||P,|| < Cc", for every n natural. Thus, for
1
||| < 0 e have

+oo +oo
1f(a+2) = fl@)ll < X [1Pallll” < 3 Cctllz]* < Ce2fjz]l

This shows that f is regular at a.

4. If f : A — F is Fréchet differentiable at a € A , then f is regular at a.

The Fréchet differentiability of f at a € A means that there is a contin-
uous linear mapping df (a) from F into F', such that for every € > 0, we can

37



find § > 0 satisfying
If(at2) ~ fla) ~ df(@)(a)] _ _

0<|lz|| <d,a+z €A, = Tz <
x

Hence, by considering a smaller § if necessary, we have Bs(a) C A and
z € Bs(0) = ||f(a+2z) — f(a)|| < lldf (a)|[l|z]| + el|]].

This shows that f is regular at a. In particular, T € L(E,,...,Ey; F) is
regular at each point a = (aq,...,a,) of By X ... X E,.

5. If r > 1, the function f(z) = z'/" is r-regular on ]0, +oo[. In fact, for
a > 0, we consider 0 < p < a, |z| < p and use the Mean Value Theorem in
order to write

1

T
()| ol al,

‘(a+x)% —ar|

with ¢(x) in the interior of the interval with extremities a + x and a. Since

@) el |-
—c(x)r x —(a—p)r ,
r Tr P P
we can write
1 1 1 R L
@+ 2 —ar| <|2a=p)P!] o al,

for every |z| < p.

6. The function f(x) = x sin (i), for z # 0, f(0) = 0, is obviously regular
at 0. We observe that it is not differentiable at 0.

2.2 REGULARLY SUMMING MAPPINGS

In this section we consider mappings that send absolutely summable se-
quences into absolutely summable sequences.

2.2.1 Definition If p,q €]0,4+00], a mapping f from A into F is called
regularly (p,q)-summing at the point a € A if there is p > 0 such that
B,(a) C A and, for every sequence (1,)5°, € {,(E), with x; € B,(0), for
each j € N, it follows that (f(a + x;) — f(a))32, € L,(F). If f is regularly
(p, q)-summing at each point of A it is said that f is regularly (p, q)-summing
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on A. In the case p = q it is said that f is regularly p-summing (regularly
summing, if p=1) on A.

We consider a mapping f from A into F regularly (p, ¢)-summing at the
point a in A. If we take a sequence (z,,)72, € {,(E), with a+x; € A, for each
J € N then, for the p > 0 given by the above definition, there is n € N such
that ; € B,(0), for each j > n. It follows that (f(a+x;) — f(a))52, € 6,(F)
and, of course, (f(a+x;)— f(a));2, € £,(F). Thus we can state the following
result.

2.2.2 Proposition Let f be a mapping from A into F. If a € A, then f
is regularly (p, q)-summing at a if, and only if, for every sequence (x,)5, €
by(E), with a+x; € A, for each j € N, it follows that (f(a+x;)— f(a))52, €
l,(F).

We denote by F ) (A; I) the vector space of all the mappings from A
into F' that are regularly (p,q)-summing at the point a of A. The vector
space of all F-valued regularly (p, ¢)-summing mappings on A is denoted by
Floa (A F). When p = q we write F°(A; F') and we simplify the notation
in the case p = 1 by writing FJ*(A; F) = F°(A; F).

In view of Proposition 2.2.2 and the definitions involved we prove easily
the following result.

2.2.3 Proposition Let f be a mapping from A into F'. If a € A and f is
r-reqular at a then f is reqularly (pr;p)-summing at a, for each p > 0.

As a consequence of this result and the examples 2.1.2 we have

2.2.4 Examples 1. Every continuous linear mapping from E into F' is
regularly p-summing on F for every p > 0.

2. Every continuous n-homogeneous polynomial from E into F' is regularly
(p/n,p)-summing at 0 and regularly p-summing on E for every p > 0.

3. Every mapping f from A into F that is analytic at the point a € A is
regularly p-summing at a for each p > 0.

4. If the mapping f from A into F is Fréchet differentiable at the point a of
A, it is regularly p-summing at a.
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5. For r > 1 the function f(t) = t'/" is regularly (pr, p)-summing on ]0, +oo|.

Now we have the following interesting characterization result. See [13].

2.2.5 Theorem For p,q €]0,+o00|, a mapping f from A into F' is reqularly
(p, q)-summing at the point a of A if, and only if, f is E-regular at a.

Proof - One part of this result is Proposition 2.2.3.. Now we suppose that
f is regularly (p,q)-summing at the point a, but it is not %—regular at this
point. If we consider g(z) = f(a + x) — f(a), when z varies over A — a =

{y € E;y+a € A}, we see that g(0) = 0, g is regularly (p, ¢)-summing at

the point 0 and g is not E-regular at 0. Hence, with no loss of generality, we

b
may start by considering 0 € A, @ = 0 and f(a) = 0. We consider p > 0,
with B,(0) C A. For each j € N, we can find z; € E, such that [|z;] < 5

and || f(x;)||? > j|l=;||?. Since (z7)52, € l4(F), we have
—+o00
Yo NfE))P < +oo.
j=1

Thus
+oo +oo
>l < oM@l < +oo,
j=1 7=1

Remark: Every time we consider a sequence (k;)52, of natural numbers such
that

+oo
> Kylly;l|* < +o0,
=1
then, since f is regularly (p, ¢)-summing at 0, we have
+oo
>kl f ()P < +oo.
=1
In our case we have
00 00 +oo
;kjﬂﬁf’j”q < +o0 = lek’jﬂxj”q (S Zl ’fj||f($j)||p) < +o0.
J= J= J=

Now, applying the above remark, with jk; replacing k;, we have
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+oo +oo
> Jkjllzi|? < +oo = jkjllf(z)IIP < +oo.
j=1 j=1

Therefore we can write
+oo ) +oo
PRl | < D0 gkl f(a)|IP ) < oo,
j=1 j=1

+o00
whenever Y k;||z;]|? < +o0o. We choose
=1

b= || = {m e e <
= | 5| =supym e Nym < ——— 0,
T Ll 72l

for each j natural. Since we have
> | ] bl < X5
——— | |7]|T <) — < +oo,
j=1 ]Qij”q ’ j=1 32
we must get
1

72|

+0o0
7|
j=1

] ot < 400 ()

But

1 1 < [ 1 ] < 1
Fllglle = L2l ] — g2l

and, multiplying by j2||z;]|%,

1= 2y < [ ]fnxjnq <1 ()

72

. Now, if we

We recall that z; was chosen in such a way that j2||z;||? < p
J

take the limit in (xx), for j tending to oo, we have

lim | | g%l = 1,
2 [

an this contradicts (x). O

As we shall be able to see in other chapters, this result has consequences
in the theory of the absolutely (p, ¢)-summing mappings.
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2.2.6 Example It is not true that a regular mapping f at a point a is
locally Lipschitz at that point. We say that f, defined on A, with values in
F, is locally Lipschitz at a € A, if there are M > 0 and 6 > 0, such that
Bs(a) C A and

1f (@) = fy)l < M|z —y] Y,y € Bs(a).
We note that, if £ = R, we can see that, for every fixed x € Bg(a), we have
||f(T)_f|(y)|| SM \V/yEBQ(JJ)
r—YY 2

Therefore, if we also suppose that f is differentiable at each x # a, the above
inequalities show || f'(z)|| < M, for every = € Bg(a), x # a. The function f

of example 6 in 2.1.4 is regular at zero, differentiable at every point x # 0,
but we cannot have || f'(z)|| < M, for all z € B,.(0),x # 0, no matter which
value we choose for r > 0. Hence this function is not locally Lipschitz at 0.

2.2.7 Remark An examination of the proof of Theorem 2.2.5 shows that
its conclusion is valid when E is a complete r-normed space and F' is a
complete s-normed space.

We consider
Vila, A) = {(@))2, € G(E)ia+a; € AY) € N},

We can show that V,(a, A) is an open subset of ¢,(E) containing the origin.
In order to see this we consider (z;)32, € Vy(a, A). We know that

K ={a+uw;j € NpU{a}

is a compact subset of A. Hence it has distance p > 0 to the complement
of A. Now it is easy to see that the ball of center (7;)32, and radius p is
contained in V,(a, A).

It f e Fioop(A; F)) we set o0 (f)((25)52,) = (f(a+ ;) — f(a))52, for
every (7;)72, € £4(E) such that a +x; € A, for each j € N. Here we have, of
course, ¢ (f)((2;)521) € €,(F). This shows that ¢;7) (f) is a well defined
mapping from the open subset V,(a, A) of £,(E) into £,(F"). In the case p = ¢

we write ¢ (f) = ¥,5(f)

Now we can prove the following characterization theorem.
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2.2.8 Theorem If f is a mapping from A into F' and a € A the following
conditions are equivalent:

(1) f is regularly (p, q)-summing at a
(2) Y% (f) is a well defined mapping from the open subset Vy(a, A) of £,(E)

(p,q)

into {,(F) and it s E-regular at the origin.

(3) there are C'> 0 and 6 > 0 such that Bs(a) C A and

> Ifa+2) — Sl < 3 e

j=1
for everym € N and ||z;|| <0, j=1,2,...m;
(4) there are C' >0 and 6 > 0 such that Bs(a) C A and

dollfla+z) = fla)|P <CY )
j=1 j=1

for every ()22, € Ly(E), [[(z;)52lq < 9.

(5) [ is E-regular at a.

Proof - By 2.2.5 and 2.2.6 we know that (1) is equivalent to (5).

If f satisfies (5) we know that there are M > 0 and § > 0 such that Bs(a) C A
and

If(a+a) = fla)]* < M|z],

for every x € E, |[z]| < §. Hence if [|(z;)32,[|, < d, we have ||z;]| < 4, for all
7 € N. Hence we may write

S lfta+a,) — @I < MO e

=1 j=1
This shows that (5) implies (4) with C' = M1
If we assume (5) and M as above it is clear that we get (3) with C' = MY,
If assume either (3) or (4) and consider z; = z and x; = 0 for j > 2, it
follows that (5) is true.
If we assume (4) we have

q

(i I£(a +a5) - f(a)||p>p < (i ||xjuq) ,

j=1

Q=
S I=

for every (z;)52, € £,(E), |[(z;)52,]l; < 0. But we can rewrite this as
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rs,a o0 % 1 o0
[ () (2520117 < Call(25)524]lq
for every (z;)52, € £,(E), ||(z;)52,]lq < 0. Hence we have (2).
If we assume (2) we get (5) by considering sequences (x;)%2

521, with @ = @
and z; =0 for j > 2.0

2.3 UNIFORMLY REGULAR MAPPINGS

The following extension of the concept of regular mappings will give us in-
teresting results. See also [15]

2.3.1 Definition For s > 0, a mapping [ from A into F' is uniformly s-
regular on B C A if there are numbers M(B) > 0 and r(B) > 0, such that
B+ B,(p)(0) is a subset of A and

sup [|f(a +2) = fa)lI" < M(B)|lell, Vo€ B, [lz|| < r(B).

An uniformly 1-reqular mapping on B is said to be uniformly regular on B.

2.3.2 Example The function g, defined on R by g(z) = xsin%, if x#0,
and ¢(0) = 0, is regular on R, by the results of this chapter. If it were

uniformly regular on [—¢, +¢|, with € > 0, we would find r(¢) > 0 and
M(e) > 0, such that

o lglata) —gl@)] S M@, Vel <7(e)
This would imply

@l <ME@), Vi< Dazo
However ¢'(a) is not bounded when a # 0 varies in a neighborhood of 0.

2.3.3 Proposition If f defined on A, with values in F' is Fréchet differen-
tiable on A and the differential df : A — L(E; F) is locally bounded on A,
then f is uniformly reqular on each compact subset of A. In particular, every

mapping from A into F, analytic on A, is uniformly regular on the compact
subsets of A.

Proof - If K C A is compact, for each a € K, there is §(a) > 0, such that
Bsay(a) C A and
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sup |[|df ()| = M(a) < +oo.

[z—all<é(a)
We consider 2r(a) = d(a) when a € K. There are ay,...,a, € K, such that
Kcl Biay)(a;)-
j=1

We take the numbers 7(K) = min{r(a;);j = 1,...,n} > 0 and M(K) =
max{M(a;);j=1,...,n} > 0. For each a € K, there is j € {1,...,n}, such
that |la —a;|| < r(a;). Hence, if ||z[| < r(K), we have a +tx € Bj,,)(a;), for
every t € [0,1]. Thus

sup |[df (a + tx)|| < M(a;) < M(K).
tel0,1]

By the Mean Value Theorem, we have
[f(a+2z) = fla)ll < S ldf (@ + tx)[[[[x]] < M(K)]|].
€ )

This implies
sup || f(a +z) = f(a)|| < M(K)|[z]],

acK

for every ||z|| < r(K). O

We consider an extension of the concept of locally Lipschitz mapping.

2.3.4 Definition For s > 0, a mapping f : A — F is locally s-Lipschitz
at the point a € A if there are N(a) > 0 and 6(a) > 0, such that Bsq)(a) C A
and

1 () = FWII* < N(a)llz -yl Vi, y € Bia(a).

It is said that the mapping f is locally s-Lipschitz on A if f is locally s-
Lipschitz at each point of A.

Now we can prove the following characterization Theorem.

2.3.5 Theorem If f is a mapping from A into F, the following conditions
are equivalent:

(1) f is uniformly p-regular on each compact subset of A.

(2) Every a € A has a neighborhood where f is uniformly p-regular.

(3) f is locally p-Lipschitz on A.
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Proof
(1) = (2).

We suppose the existence of a € A such that f is not uniformly p-regular on
any of its neighborhoods. Hence, for each n € N, there is x,, € A, such that
|z, —al <% and ||f(x,)— f(a)||? > n||lz,—al. Since K = {a}U{z,;n € N}

is compact, lim,, ooz, = a and || f(a+ (2, —a) = f(a)||” = [| f (zn) = f(a)[|” >
n||z, — a||, for all n € N, it is clear that f cannot be uniformly p-regular on

K.
(2) = (3).

For a € A, since (2) is true, we have r(a) > 0, such that B,q(a) is a
neighborhood of a where f is uniformly p-regular. Hence, there are d(a) > 0
and M (a) > 0, such that B,(,(a) + Bs)(0) C A and

sup [|7(b+2) — FO° < M(a)]a] ¥z € B (0).

bEBT(a) (a)

If necessary, we can decrease the value of r(a) > 0, in such a way that
2r(a) < d(a). In this case we have

1f(w) = FWI” = Fy+ (w=y)) = FWI* < M(p)[lw -yl

Vw,y € By(a), because ||lw —y|| < ||lw —al| + ||a — y|| < 2r(a), when
w,y € By(a). This shows that f is locally p-Lipschitz at a.

(3) = (1).

Once a compact subset K of A is given, since (3) is true, for each a € K, we
can choose 2r(a) > 0, such that f is p-Lipschitz on Ba,(4)(a). Thus there is
M (a) > 0, in such a way that

1 (w) = F)llP < M(a)|lw -y Vw,y € Ba(a)(a)-

We can cover K with a finite number of balls B,(,,)(a;), a; € K,j =1,...,n,
Now we consider

r(K) =min{r(a;);j =1,...,n} and M(K) = max{M(a;);j=1,...,n}.

If be K, thereis j € {1,...,n}, such that ||b—q;|| < r(a;). If ||z] < r(K),
since b,b + x € By,(q,)(a;), we can write

1f(b+x) = fO)” < M(ay)|lx]| < M(K)l|].
This show that f is uniformly p-regular on K. O
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Now we extend the concept of regularly summing mapping.

2.3.6 Definition If p,q €]0,4+00], a mapping f : A — F is uniformly
regularly (p, q)-summing on the subset B of A if the distance from B to the
boundary of A s strictly positive and

d_sup||f(a+z;) = fla)||” < +oo,
j=1a€B

whenever (15)32, € ly(E), with x; in a fived neighborhood U of 0, for each
J € N. In the case p = q, it is said that f is uniformly regularly p-summing
on B. When p=q =1, it is said that f is uniformly regularly summing on
B.

Let f be an uniformly regularly (p, ¢)-summing on the subset B of E, thus
satisfying the conditions of the above definition. We suppose that (7;)32, €
l,(E), with z; such that B+ {z;} C A, for every j € N. There is j(U) € N,
such that z; € U for j > j(U). Therefore

o)

> sup|Ifa+ ;) — fla)|l’ < +oo.

j=j(U) B

and

> sup (o +2;) = f@)|P < +oc.

j:1a€

Now it is clear that the following result is true.

2.3.7 Proposition If p,q €]0,+o0[, a mapping f : A — F is uniformly
regularly (p,q)-summing on the subset B of A if, and only if, the distance
from B to the boundary of A is strictly positive and

> sup||f(a+ ;) = Fa)] < +oo,

jzlae

whenever ()52, € l,(E), with x; such that B+ {x;} C A, for each j € N.

2.3.8 Theorem Ifp,q €]0,+oc[, a mapping f from A into F is uniformly
reqularly (p; q)-summing on a subset B of A, with strictly positive distance
to the boundary of A, if , and only if, f is uniformly %-regular on B.
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Proof - Since one implication is trivial, we only have to prove the other. We
take r = p/q. We suppose that f is uniformly regularly (¢r, ¢)-summing on
B but it is not uniformly r-regular on B. We may consider p > 0 such that
B + B,(0) C A and the condition of definition is true with U = B,(0). For
each 7 € N we can find an z; € F such that

p g
]| < 7 and  sup 1f(a+z;) = f(@)[™ > jllz;]”.

Since (7;)32, € l4(E), we have

Zsup | fla+z;)— fla)]|" < +oo.
j= 1 a€EB

Thus,

ZJH%H" < ZSHP 1f(a+x;) — fla)||"" < +oc.

j=10€B

Remark: if (k )32, is a sequence of natural numbers such that

Z killysl|* < +oo,

j=1
then
“+o00
> kjsup|[f(a+y;) = fla)]" < +o0.
j=1 a€EB

In our case, for the sequence (z;)52, we have chosen above, we have

—+00 —+00 —+00

> sl < oo = 3 killasll? < 3 kysup | f(a+25) - f(@)| < +oo.

Jj=1 Jj=1 j=1 o€B

Now, if we apply the remark, with jk; replacing k;, we obtain

+o0 oo
2 ikille;|* < oo == jk;supllf(a+ ;) — f@)l|”” < +oo.
j=1 j=1 a€

Finally, we can write

ka ;| < ij’ sup | f(a+ ;) — fla)|[*" < +oo,

j=1 7=1 ac
+oo

whenever Y k;||z;]|? < +00. We choose
=1
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; [ 1 ] { € nom < ! }
= |—=——| :==sup<{m im < - ,
Ak A

for each j € N. Since we have

f:o[ 1 ]n <y
72|l 32

j=1 j=1
we get

zy i bl <

We have

1 1
i 1S = < -
A [JZijHq] 7251
and, after multiplication by j2||z;[%,

. 1 .
L= Pl < | | Pl <1
J

p

We note that x; was chosen in such a way that j2||z;||? < L. Now, if we

consider the limit in (xx), for j going to oo, we obtain

1
lim |———| j°[|la;]|? = 1.
[32H$qu] ’

Jj—00
This is a contradiction to (x). O

Now we have the following consequence of the previous results.
2.3.9 Corollary A mapping f from A into F is uniformly regularly (p,q)-

summing on the compact subsets of A if, and only if, f is locally -Lipschitz
on A.
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Chapter 3

ABSOLUTELY SUMMING
OPERATORS

In this chapter we consider the absolutely summing linear operators between
Banach spaces. We do not pretend to give a full exposition of the theory of
these operators, since we just give the essentials that motivate the study of
the non-linear absolutely summing mappings between Banach spaces, to be
presented in Chapter 5. For more information on the linear theory see [18],
[3] and [1]. In fact, in this chapter we study the linear (p, m(s;¢))-summing
operators between the Banach spaces E and F', that is, those linear operators
T such that (T'(z;))32, € £,(F) for each (2;)52; € L) (E).

3.1 (p,m(s;q)-SUMMING OPERATORS

We denote by L(E; F) the vector space of all linear mappings from the Banach
space E into the Banach space F. Of course we have L(F; F') C L(E; F).

3.1.1 Definition For 0 < q < s < 400 and p > q, a linear mapping T
from E into F is said to be (p,m(s;q))-summing on E if (T'(x;))52, € £,(F)
for each ()32 € l(siq)(E). When s = q < oo it is said that T is absolutely
(p, q)-summing on E. If s = 400 it is said that T is reqularly (p, q)-summing
on E (see Chapter 2).

We remark that if we had p < ¢ in the above definition, the only linear
mapping 1" satisfying the definition would be T" = 0. In fact, suppose that
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we could have a T' # 0 satisfying the definition with p < ¢. There would be
a € B, a # 0, such that T(a) # 0. Hence, for each (\;)52, € {;, we would
have (Xja)52) € £4(E) C l(sq)(E) and (A\;T(a))$2, € £,(F). But this would
imply (A;)52, € £,. Therefore we would have £, C ¢, with p < ¢. But this is
not true.

If T e L(E;F) and p > ¢, we have

(i HT(rxj)up)p < |7 (i ijup)p < |7 (i ijuq)

This shows that every continuous linear mapping from F into F' is regularly
(p, ¢)-summing on E. Hence, as we shall have opportunity to see later, the
non trivial cases for (p,m(s;q))-summing linear mappings can occur only
when s < oo.

q

Since ly(E) C li(sq)(E), every (p,m(s;q))-summing linear mapping is
regularly (p,q)-summing , hence %—regular on E. Hence the (p,m(s;q))-

summing linear mappings are continuous on E.

We denote by L m(s;q)) (£; F') the vector space of all (p, m(s; ¢))-summing
linear mappings from E into F. For T € L m(sq)(E; F') we consider the

mapping ¥ pm(siq)) (1) ((7;)52,) = (T(x5))52, for every (;)72) € lin(sq)(E).
Of course Yy man(T){(23)3%1) € by(F). This shows that sy (1) is
well defined linear mapping from £,,(s,¢)(E) into £,(F). In the case s = ¢ we
Write Ypm(g:q)) (1) = Vpg)(T). In this case 1), 4))(T') is a well defined linear
mapping from ¢;’(E) into £,(F).

Now we can prove the following characterization theorem.

3.1.2 Theorem If T is a linear mapping from E into F', then the following
conditions are equivalent:

(1) T is (p,m(s;q))-summing on E;

(2() 7)%6 mapping Yip.m(s;q) (1) is well defined and linear from Ly, (s,q)(E) into
0,(F);

(3) The mapping Vpm(sq)(T) is well defined, linear and continuous from
Uin(siq) (E) into £,(F);

(4) there is C' > 0 such that
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(T ()52 [l < ClH )71 s
foreverymeN, z; € E, j=1,2,...m;
(5) there is D > 0 such that

(T ()52l < DIl ()52 lmsia)
for every (1;)%2) € li(sig)(E).
In this case

|V pm(siq)(T)|| = inf{C : C satisfies (4)} = inf{D : D satisfies (5)}.

Proof - The closed graph theorem shows that (1) implies (3). In fact, if
(Tr,)721 € lm(siq(E) for every k € N, ((w5;)52;))ren converges to (z;)52,
i Cin(siq) (E), as well as (Yp,m(s:0)) (1) ((71,5)321)) Jren converges to (y;)32; in
(,(F), then we have (T'(xy ;))ren converging to y; in F' for every j € N. Since
T is continuous and (xy ;)32 converges to x; in £, it follows that y; = T'(z;)
for every j € N. Hence ¥ m(s;q)) (T)((7)521) = (y;)72,- This means that the
linear mapping ¥(pm(s;q)) (I') has a closed graph.

Of course (2) is a reformulation of (1) and (3) implies (2).

It is clear that (3) implies (5) with D = ||¢(p7m(s;q))(T)||. Since @D(p’m(s;q))(T)
is linear, (5) implies the continuity of 1 m(s:.q)) (1)

We have that (5) implies (4) with C'= D.

Of course we have (4) implying (5) by passing to the limit for m tending to
0o. In this case D =C. O

3.1.3 The natural topology on L, (s (£; F) If we set

1Tl p.m(sia) = ¥ @am(sian (Tl
= inf{C : C satisfies (4)} = inf{D : D satisfies (5)}

for every T' € L m(s)) (B3 F), then (L m(s) (B F); || - m(si) is a Ba-
nach space (complete p-normed space, if 0 < p < 1).

3.1.4 The ideal property for L, ,(s,q)(E; F) We consider the class £
of all continuous linear mappings between arbitrary Banach spaces and the
corresponding components L£(E; F'), for the Banach spaces E and F. The
subclass Lpm(siq)) of £ whose components are Ly, n(s;q)) (£; F'), for Banach
spaces F and F', has the ideal property:

53



T € Lopmsig)(E;F), S € LID;E) and R € L(F;G) then RoT oS €
Lpm(sq) (D3 G) with

150 T o Rllpm(siay < ISTIT ! oom(sian 1Bl

Notations - In the case s = ¢ < +00 we write L, m(q)) (£; F) = L (B F
and | gmaa) = | - lasay Also 2 (Bs F) = £35(E; F), £3°(E; F) =
LE(EF), |- Masga) = |- llasq and |- flass =1 - [las-

In the case s = g we can add three more equivalent conditions in Theorem
3.1.2.

3.1.5 Theorem If T is a linear mapping from E into F', then the following
conditions are equivalent:

(1) T is absolutely (p, q)-summing on E;
(2) Yipg)(T) is a well defined linear mapping from (7' (E) into £,(F);
(2°) Yip,q)(T) is a well defined linear mapping from £y (E) into £,(F);

(3) Yipg)(T) is a well defined linear continuous mapping from (;(E) into
6p(F);

(3°) Vg (T) is a well defined linear continuous mapping from €;(E) into
gp(F>:'

(4) there is C' > 0 such that
(T (23)) 7 lp < Cll(25)75 g
foreverym eN, x; € E, j=1,2,...m;
(5) there is D > 0 such that
(T ()52l < DIl ()5 g
for every (z;)32, € () (E).
(5°) there is D' > 0 such that
(T ()52l < DNl ()52 hw.g
for every (xj);-";l € ly(E).
In this case
|1V, (T)|| = inf{C : C satisfies (4)} = inf{D : D satisfies (5)}
= [|¥p.g)(T)]es () || = inf{D" : D" satisfies (5')}.
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Proof - By theorem 3.1.2 we need only to prove the equivalence of (2’), (3)
and (5’) to one of the other conditions. It is clear that (3’) implies (2’). By
an application of the closed graph theorem we have (1) implying (3’) and (27)
implying (3"). It is clear that (3') implies (5") with D" = ¢, (T)]ex(m)ll. Of
course (57) implies (4), with C'= D’ and we know that (4) implies (1). O

The absolutely p-summing linear mappings have a nice characterization
given by the Grothendieck-Pietsch Domination Theorem.

3.1.6 Theorem If 0 < p < 400 and K is a weak * norming subset of
B, a linear operator T’ from E into F 1is absolutely p-summing on E if and
only if there are C > 0 and p € W(K) such that

7@ <0 ([ | <a'a> Pau) )

for every x € E.
In this case

3=

Tasy = inf C
where the infimum is considered for all C' satisfying (*).

Proof - If we assume (*) we have

P

()5l < C (/KZI <z > |”dﬂ($’)) < Cll(5) i1 lwp
j=1

forevery meNandz; € £, j=1,...,m.

Now we assume that 7' is absolutely p-summing on E and consider C' =
|7 | as,p- We consider C'(K)" endowed with the weak * topology. Then W (K)
is a compact convex subset of this space. For every m € N and z; € F,
j=1,...,m, we define ®(ym on W(K) by

m

Dy, () = 3 (TGP = €7 [ | <oy > Padu(a)).

=1

This function is continuous and convex on W (K). We know that there is
x( € K such that

1
m P
1(25)5%1 lwp = (ZI < zp,7; > |”> :

=1
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If §(xf) denotes the Dirac measure centered at xj,, we have

m

Doy, (0(ah)) = S (T ()P = C7|| < 2, > )

j=1
Jj=1

= 1T ()il — CPll ()L I, < 0.

w,p —
We note that the family F of all such functions is concave. The Ky Fan
Lemma implies the existence of po € W(K) satisfying ®(19) < 0 for every

® € F. In particular we have ¢ (10) < 0 for each x € E. But this implies
(*). O

3.2 INCLUSION RESULTS

The following inclusion results are clear.

(1) If 0 < p1 < po it is known that £, (F) C £y, (F). Therefore Ly, m(s:iq))(E; F)
is contained in Ly, m(siq) (£ F).

(2) If 0 < q <51 < 55 < +00 it is known that lpye,.q)(E) C lysiq)(E).
Thus it follows that Ly m(sy:q)(E; F) C Lipm(saiq)) (L F).

Next inclusion theorem has a more involved proof.

3.2.1 Theorem ]f 0<pr <po, 0<n <q2, 1 <81, @2 < 89, 81 < S,

1 1 1 1 1 1
— << -
S1 S2 q1 q2 y4! b2

then
E(phm(sutn))(E; F) - £(172,771(52;(12))(E; F)
and

”TH(:Dz,m(SWD)) < ”TH(Pl,m(Slm))’
Jor each T € E(th(slm))(E; F)

Proof - We consider

1 1 1 1 1 1 1 1 1 1
-=——— - =———<— and -=—-——.
S S1 S2 q q1 q2 q1 p 1 P2
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We have s5(q)" < s1(q). We also have p < s. For m € N, z; = Az,
=1,....m,and S € L, m(s1:00)) (E; F) we have

1 S(@)) i llpr < NS @rimesiian 1) sy @y 1 (0525) 7 s,
< NS ramtsiian 1) 71 lsaaay 1) T2 s (25) 71 oo

< NSl @ misran 1)t lsaaoy )T ol (25) 72 s
for any choice os oy, ..., a,, € K. This implies

105 (@)t llpe < IS @rsmsusann 1) lsa (o 12571 llw,se-
Of course this proves our theorem. 0O

In the case that s; = g;, for j = 1,2 this result gives the corollary.

3.2.2 Corollary If 0<p1 <p2, 0<q1 <@, ¢; <pj, j=1,2 and

1 1 1 1
- < ==

@1 42 P D2
then

Ly (B F) C

(p1,91)

E; F)

(Pz qz)(
and

||T|‘a87(p2,q2) < HTHGS,(PMH)’

for each T € L{; (B F).

(p1,q1)

An interesting inclusion result that will be used later is the following.

3.2.3 Theorem For 0 < p < s it follows that Ly m(sp)) (E; F) C LP(E; F)
and

[Slas,s < HS”(nm(&p))
for all S € Lpm(sp)) (E; F).

Proof - If m € Nand zq,...,x,, € E we have

m m 1
Zy%mﬂ%W”ZZNﬂMWWMWSWW7mmW%V%Lﬂww>
Jj= j=

1
< ”SH (p,m(s:p) ||(|aj|p)T:1||§(p)’||(xj);n:1||€u,p

< 181G msim 1 €)1 st 1 ()51 1
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for all g, ..., a, € K. This means that
IS @)l < ST g (@) 72015 -
But this implies that
105 ()7 lls < (15T s [1(25) 721 o -

Hence S is absolutely s-summing and our result is proved. O

3.3 FACTORIZATION THEOREMS

We study several interesting results obtained from the Grothendieck-Pietsch
Domination Theorem 3.1.6.

If K is a compact Hausdorff space, we know that K may be considered
as a norming set in C'(K) since it is identified to A(K) C Bck)y, through
the isometry A given by A(x)(f) = f(z), for all x € K and f € C(K). If J,
denotes the natural inclusion from C'(K) into £,(K; u), for some p € W(K),
we have

00 = 151 < ([ 1@ Pduta))”

for every f € C(K). Theorem 3.1.6 implies that .J, is absolutely p-summing
on C(K) and ||Jp||asp < 1. Since for the constant function 1 on K we have
|,(1)]| = 1, it follows that ||J,|asp = 1. Now we can write

3.3.1 Example If K is a compact Hausdorft space, 1 < p < +o00 and J,
denotes the natural inclusion from C'(K) into £,(K; u), for some p € W(K),
then J, is absolutely p-summing on C(K) and ||.J,]as, = 1.

3.3.2 Notation If K C B is a norming set for F', we denote by (. (K)
the Banach space of all bounded functions on K under the norm of the
supremum on K. We denote an element f of (o (K) by (fu)wek, that is, by
describing the values of f at all 2’ € K. It is clear that the (o (K) valued
linear mapping ir defined on F by ip(z) = (< 2',2 >)yeck is an isometry.
We also note that ip(x) € C(K) if K is a weak * compact norming subset of
Bpr. In this case we see that ip is linear isometry from F' into C(K).

We recall the definition of an injective Banach space.
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3.3.3 Definition A Banach space G is injective or has the metric ex-
tension property if, for every subspace Fy of a Banach space F and every
S € L(Fy; G), it is possible to find a linear extension T € L(F;G) of S, such
that ||T| = [|S]].

If K C B is a norming set for F' we can use the Hahn-Banach extension
theorem in order to prove that ¢, (K) has the metric extension property.

Now we are ready to prove the following factorization theorem.

3.3.4 Pietsch Factorization Theorem I[f1 < p < +oo and T is linear
mapping from E into F, then the following conditions are equivalent:

(1) T is absolutely p-summing on E;

(2) there are a compact Hausdorff space K, a measure ji € W(K), and linear
mappings A € L(E;C(K)), T € LIL,(K;p);loo(Brr)) such that ip o T =
TodJ,oA.

In this case
1T [|as.p = nf [ T][|All
where the infimum is considered for all such factorizations.

Proof - (1) = (2)
By 3.1.6 there is p € W(Bpg/) such that

T < Ty ([, 1<% > )

for every x € . We consider A = ig with K = Bg/. Then we define S on
Jyoig(E) by S(J,(ig(x))) = T(z) for every x € E. By the above inequality,
S is continuous from the vector subspace J,o0ig(FE) of L,(Bg, i) into F. Also

S| < ||T]]asp- Hence we have an extension T' € L(L,(Bgr, j1); loo(Brr)) of

ipoS. Of course ||T|| = ||S|| < ITlus,p- Therefore we have ipoT = T'o.J,0ip.

E/

Since ||T||asp = ||iFoT||a57p (because ||~(T(a:j))§,”:1||p = ||(ili(T($j)))§n:1||p)7 we
have || Tlaep < [T 0y 0 igllasy < ITH|pllaspllizll = [T]|. It follows that
IT|| = [|T|as, and we have

I lasp > inf I T || AJ,

where the infimum is considered for all possible factorizations.

(2) = (1)
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If we consider one factorization as described in (2), since J, is absolutely
p-summing it follows that ipoT =T o Jpo A is absolutely p-summing. Hence
T'is absolutely p-summing (because ||(T'(z;))72, [, = [|(ir(T(z;))) L |lp) and
we have

1T las.p = llir © Tllasp < I Tl pllaspllAll = 1T A].-
Hence
T ||asp < inf || T][[| Al

where the infimum is considered for all possible factorizations. O

3.3.5 Remarks (1) If in theorem 3.3.4 E = C(K), we consider A as the
identity mapping. Since J,(C(K)) is dense in L,(Bgr, jt), the mapping S (in
the proof of the implication (1) = (2)) can be naturally extended as to a
linear mapping T from L,(Bg, p) into F.

(2) If in theorem 3.3.4 F' has the metric extension property, the linear map-
ping S (in the proof of (1) = (2)) can be naturally extended to a continuous
linear mapping 7" from L£,(Bgr, 1) into F.

(3) If in theorem 3.3.4 p = 2, the mapping S (in the proof of (1) = (2)) can
be naturally extended as a continuous linear mapping from the closed vector
subspace Jy 0ig(E) of Lo(Bpg/, p) into F. Since Lo(Bgr, p) is Hilbert space,
by using orthogonal projection, we can extend this mapping as a continuous
linear mapping 1" from Lo(Bgr, jt) into F.

(4) In the proof of (1) = (2) in theorem 3.3.4 it is clear that the mapping
S can be naturally extended as a continuous linear mapping from the closed
vector subspace X = J, 0ig(E) of L,(Bg, ) into F.

These remarks show that the following results are true.

3.3.6 Theorem If1 < p < 400, K is a compact Hausdorff space and
T is linear mapping from C(K) into F, then the following conditions are
equivalent:

(1) T is absolutely p-summing on C'(K);
(2) there are p € W(K) and T € L(L,(K;p); F) such that T =T o J,,.

In this case
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HTHas,p = inf HTH;

where the infimum is considered for all such factorizations.

3.3.7 Theorem If1 < p < 400, F has the metric extension property
and T is linear mapping from E into F', then the following conditions are
equivalent:

(1) T is absolutely p-summing on E;
(2) there are a compact Hausdorff space K, a measure p € W(K), and linear

mappings A € L(E;C(K)), T € L(L,(K; u); F) such that T =T o J, 0 A.
In this case
1T las.p = inf |7 [| Al

where the infimum is considered for all such factorizations.

3.3.8 Theorem If T s linear mapping from E into F', then the following
conditions are equivalent:

(1) T is absolutely 2-summing on E;

(2) there are a compact Hausdorff space K, a measure i € W(K), and linear
mappings A € L(E;C(K)), T € L(L,(K;p); F) such that T =T o Jy0 A.

In this case
|7 ||asp = inf [|T)]]| Al

where the infimum is considered for all such factorizations.

3.3.9 Theorem If1 < p < 400 and T is linear mapping from E into F,
then the following conditions are equivalent:

(1) T is absolutely p-summing on E;
(2) there are a compact Hausdorff space K, a measure p € W(K), a closed
vector subspace X of L,(K;u) and linear mappings A € L(E;C(K)), T €

L(X;F) such that T =T o J,0 A.
In this case
| llasp = inf [T Al

where the infimum is considered for all such factorizations.
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3.4 A THEOREM DUE TO DVORETZKY
AND ROGERS

In this section we prove a few results that will lead to the proof of the
Dvoretzky-Rogers Theorem.

3.4.1 Definition A linear mapping T from E into F is completely con-
tinuous if, for every (x;)52, weakly convergent to 0 in E, (T(x;))32, is norm
convergent to 0 in F'.

We denote by L..(F;F) the vector space of all completely continuous
linear mappings from E into F'. This is a closed subspace of L(F; F'). Hence
L..(FE;F) is a Banach space when we consider on it the restricted natural
norm of L(FE; F). L. has the ideal property .

It is clear that a linear mapping 7" from E into F'is completely continuous
if and only if, for every (z;)2, weakly convergent to z € E, (T(r;))52, is
norm convergent to 7'(z) in F.

We recall the important

3.4.2 Eberlein-Smulian Theorem A subset of a Banach space is rela-
tively weakly compact if and only if it is relatively weakly sequentially compact.
In particular, a subset of a Banach space is weakly compact if and only if it
15 weakly sequentially compact.

A proof of this result can be found in [2].

As a consequence of this result, a linear mapping 7' from E into F is
completely continuous if, and only if, for each weakly compact subset K of
E, T(K) is norm compact in F'.

3.4.3 Definition A linear mapping T € L(F; F) is weakly compact (com-
pact) if T(Bg) is relatively weakly compact (compact) in F'.

We denote by L,.(E; F) (L.(E; F)) the vector space of all weakly com-
pact (compact) linear mappings from E into F. L,.(F;F) and L.(E;F)
are Banach spaces for the norm induced on them by the natural norm of
L(E; F). It is easy to prove that £,. and L. have the ideal property.
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Lee, Ly and L, have the injective property. This means that for a linear
isometric embedding i from F into Fy then T € L..(F;F) (respectively
T € Ly(E;F), T € LE;F))if, and only if, ioT € L..(E; Fy) (respectively
ioT € Loe(E;Fy),i0T € L(E; Fy),i0T € Loo(E; Fy)).

We have L.(E; F) C Lo.(E; F) and L.(F; F) C Ly(F; F), with proper

inclusions in general.

3.4.4 Theorem If0 < p < +oo every absolutely p-summing operator be-
tween Banach spaces is weakly compact and completely continuous.

Proof - Since L*(E; F) C L*(E; F), for 0 < ¢ < 1 < p, it is enough to
prove the result for 1 < p < 4o0.

First we prove that the natural mapping J, from C(K) into L£,(K,p) is
weakly compact and completely continuous. Since L£,(K, ) is reflexive,
bounded subsets are relatively weakly compact. Hence J, is weakly com-
pact. Now we consider a sequence (f,,)>, converging weakly to 0 in C'(K).
The Lebesgue’s Dominated Converge Theorem proves that (J,(f,))52, con-
verges to 0 in norm. Thus J, is completely continuous. Now the injective of
Las, Lee, Lo and the Pietsch Factorization Theorem imply our result. O

3.4.5 Proposition IfT € L..(F;G) and S € Ly(E;F), then T o S €
LAE; F)

Proof - If S € L,.(E;F), we have S(Bg) relatively weakly compact. In
order to prove that T'(S(Bg)) is relatively norm compact it is enough to use
fact that T is completely continuous and the Eberlein-Smulian Theorem. O

3.4.6 Corollary The composition of an absolutely p-summing operator
with an absolutely q-summing operator is a compact operator.

3.4.7 Dvoretzky-Rogers Theorem I[f0 < p < +oo, every infinite di-

mensional Banach space E is such that there is (v;)32, € (,(E) \ {,(E).

Proof - If F is an infinite dimensional Banach space and our thesis is false for
E we have idg is absolutely p-summing on E. Hence, since tdg o idg = tdg,
we have idg compact by 3.4.6. But this implies that F is finite dimensional,
a contradiction. O
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If ¢ €]0,+0c[, the Dvoretzky-Rogers Theorem implies that a Banach
space E is finite dimensional if, and only if, /;(E) = (' (E) = {,(E). Now
we can prove the following generalization of this result. This result will be
referred as the Dvoretzky-Rogers Theorem for Mixed Summable Sequences.

3.4.8 Theorem I[f0 < g < s < +o00, a Banach space E is finite dimen-
sional if, and only if, Ly, (s,q)(E) = Lq(E).

Proof - If E' is finite dimensional it is clear that (s (E) = {4(E), since
(2(B) = {,(B).

If £ is infinite dimensional we must show that £,,(s.q)(E) # {,(E). For s = ¢
this is the Dvoretzky-Rogers Theorem. Now we consider 0 < ¢ < s < +00.
We know that there is (29)32, € £¥(E) \ £,(E). We note that %q)/ = (2). If,

q
s(q)’

e > . we have

for every absolutely *1>-summable sequence of scalars ()32,

o
0
> lagllla5]|* < oo,

=1
then it follows that (||z9]|7)32, is absolutely s-summable. But this would
imply that ([|29]])32, € £s and (29)52, € (,(E), a contradiction. Thus there
is (a9)32, absolutely %q)l—summable, such that

o0
> laglflaf]|* = +oo.
j=1

We consider 3; = |oz?|1/q, for every j € N. Therefore (3;)52, € lyqy and
(ﬁjmg);ﬁl € ln(si)(E) \ {4(E). O

3.5 EXAMPLES

In this section we give some interesting examples of the operators studied in
this chapter.

We recall the following concepts.

3.5.1 Definition A Banach space E has the Orlicz property if idg is
absolutely (2, 1)-summing. ||idg|as,2,1) s called theOrlicz constant.

64



If (Q, 1) is a measure space,then the Banach spaces £,(€, i), with p €
[1,2], have the Orlicz property. See [18].

3.5.2 Definition For g > 2, a Banach space E has cotype q if there is a
constant C, such that

Y

da

1
Hmﬁmsq(g
forallmeN, z; € E, j=1,...,m.

In the above definition 7;(t), 7 = 1,...,m denote the Rademacher func-
tions. We now describe these functions. The closed interval [0, 1] is divided
into 2 intervals of equal length I, I, written in the order they appear from
de left to the right side. We consider the function r;, defined on [0, 1], given
by r1(t) = 1, for ¢ in the interior of Iy, r;(t) = —1, for ¢ in the interior of
I, and 7(t) = 1, if ¢ is one of the end-points of I;, j = 1,2. For k > 1,
we consider the functions rq,..., 7, as already defined and we are going to
construct the function r;4 as follows. Each interval .J, used in the definition
of 7y, is divided into 2 intervals of equal lengths J;, Jo, written in the order
they appear from de left to the right side. Now, we consider r;,; defined by
rr+1(t) = 1, if ¢ is in the interior of Jy, r441(t) = —1, if £ is in the interior of
Jo, and rj41(t) = 1, when ¢ is one of the end-points of J;, j = 1,2. We have

1
/0 T'j1 (t)rjé (t)dt - 5jl,j27

Where (5]'1’]‘2 = 1, lf jl = jQ, and (5]'173‘2 = 07 lf jl 7é jg.

i ri(t)z;

It can be proved that £,(€2, 1) has cotype ¢ = max{2, p} [1].

3.5.3 Proposition If E has cotype q, then idg is absolutely (q; 1)-summing
and, consequently, every continuous linear mapping from E into F is abso-
lutely (g; 1)-summing.

Proof - We have

Mng$@<[

m

> ri(t);

=1

m

> ri(t);

te[0,1] ||j=1

q q
dt) < O, sup
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= (C, sup sup

< Coll(2)illwa
t€[0,1] p€B gy

¢ (ZE Tj(f)%')

forallmeN, z; e £, j=1,...,m. O

In view of this proposition it is clear that a Banach space of cotype 2 has
the Orlicz Property. It is known that there are Banach spaces not of cotype
2 with the Orlicz Property . This is due to Talagrand [21].

The following result is important in order to give a number of important
results on absolutely summing linear operators. A proof of this result can be
seen in [3].

3.5.4 Grothendieck’s Inequality Let (a;;);—; be a matriz of scalars
such that

n
Z OéiJ‘tiSj

1,j=1

<1

for every choice of scalars (t;)i-,, (s;)j=; satisfying [t;| <1, |s;| < 1. Then
there is an universal constant Kg, called Grothendieck’s constant, such that
for any choice of vectors (z;)i-, and (y;)}—, in a Hilbert space,

n

> i, y)

< Kg max [z;]| max ly;]].
ij=1 i=1,...,n 7j=1,...,n

3.5.5 Grothendieck’s Theorem FEvery continuous linear operator T from
Uy into Uy is absolutely summing and ||T||as < Ka||T|-

Proof - As usual we consider the natural unit vector basis (e;)32, of £;. Now
we consider vectors

m

m

up =y o e; €T,
=

for some m, such that ||(u;)!|lw1 < 1. Now we consider scalars (s;)7, of
absolute value < 1 and 2/, € ¢} = (, defined by z/(e;) =s;if j=1,...,m
and 2/,(e;) = 0 for j > m. For any choice of scalars (¢;)I,, such that |¢t;| <1,
t=1,...,n, we have

m n
> oD qijtis;

j=14i=1

n
<> [t
=1

m
Z Q555
j=1

<3l )| < 1.
i=1
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Foreachi =1,...,n, we consider y; € {5 such that ||y;||2 = 1 and (T'(w;), y;) =
|7 (u;)||2. Now we apply 3.5.4 and obtain

Z 1T (ua)ll2 = Z ZZ%J (e5), 1) < Ke| T

=1 =1 j=1

Now we consider an arbitrary finite sequence (v;); in ¢, such that ||(v;); |lw1 <
1, with

%)
V; = Z ai,jej
=1

¢t =1,...,n. For each m € N, we consider u; as the projection of v; on ¢}
and obtain

pTO]m Ul = U; = Zal,jej

1 =1,...,n. From the previous argument we have
> T (projm(vi))llz = > IT(w)ll2 < Ke||T||
i=1 i=1

for all m. Since for m tending to oo we have ||T(proj,((v;))||2 converging to
|T(v;)||2 for each @ = 1,...,n, we obtain

ST ()|l < K| T
=1

This proves our theorem. 0O

3.5.6 Theorem (Lindenstrauss-Pelczynski) Fuvery continuous linear
operator T' from ¢y into £,, p € [1,2], is absolutely 2-summing and ||T||us2 <
Ke|TJ.

Proof - We consider the natural unit vector basis (e;)°, of ¢g and the natural
unit vector basis (f;)32, of £,. We write

T(e)) =) aijf
j=1

for every i € N. For each ¢’ € £}, ' = (v;)521, |¥'ll, = 1, and every choice
of scalars (t;)2,, (s;)72; of absolute value < 1, with hm,_m ; = 0, we can
write
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> oigyitis;| = U (Z T(tiez’)> < I7E)E e < NI (1)
ij=1 i=1
where y, = (s;5;)52, € £,. Now we consider z, = (1), € ¢f' C co,
k =1,...,n, for some m € N, such that [|(z)}_|lw2 < 1. In particular,

when we consider the first m unit vector basis of /1, the last inequality gives

m
Z lzra)® <1
=1

for K = 1,...n. Now we consider the vectors u; = (1;,...,2,,;) € (5,
i=1,...,m. Now, by (1) and the Grothendieck’s Inequality, we have

m
/
i=1

o0

>

j=1

oo m

=> (Z yﬁ“@j“z’a%‘) =3 > Yiaij(ui, z) < Ka||T||

9 j=1 \i=1 j=1i=1

where z; € {5 has norm 1 and satisfies

m m

/ /
Zyjai,jui = Zyjai,juia Zi s
i=1 2 i=1

for all j € N. Thus we can write

1
o || m 0o n m 2\ 2
| vl =Dy (Z (Zxk,iai,a') ) < K| ]|
j=1lli=1 j

2 =1 \k=1 \i=1
since this is true for all ¥ = (y})32,, [|¥/[l,y = 1, it follows that

1 o

" 2\ 2
(Z <Z xk,iai,j> ) S
k=1 \i=1 ,

Jj=1
and
p

o [ n /m 2\ 2\ ?
> (Z xk,iai,j> < K¢|T]|. (2)
7j=1 \k=1 \i=1
Now we consider

m p

Z Lk,ii,j

1=1

C]7k -

By the triangular inequality in 5/, we have
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[Slis]

j=1 j=1 \k=1 \i=1

50)) S B S (S Eee))

If in this inequality we take the power 1/p for all members and and use (2)
we have

< Kgl|T]| (3)

i)
v
hSAIN
0

We note that
T(xr) =YY Thicisfj,
j=1i=1
for all Kk =1,...n. Hence (3) implies
(T (k)R ll2 < Ke| T

If we consider (ug)p_; in ¢y such that ||(ug)p_llwe < 1, for each natural
number m we may consider z;, as the projection proj,(u) of ux on cj.
From the preceding argument we have

(T (projm(ur)))i=1lle < Ke|ITl,
for all m € N. It follows that

(T (k) )= [l < Kl T

This proves our theorem. O

3.5.7 Theorem FEvery continuous linear operator T' from co into £,, p €
12, 4+00], is absolutely (p,2)-summing and ||T||as,p.2) < Kal|T||.

Proof - From the proof of the preceding result, keeping the notations, we
have

S5 En))) chan o

=1 \k=1 \i=1
1
P)p

Now, if consider 2 < p < 400, we have

(s I\T(ark)Hi); - (Zf:

k=1 j=1

m
Z Q; Tk g

=1
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S =

From (4) it follows that

(T (2r)izillo = (Z (e Hp> < K¢|[T]|

If we consider (ug)p_; in ¢y such that ||(ug)p_;|lw2 < 1, for each natural
number m we may consider z; as the projection projm,(uy) of uy on cj.
From the preceding argument we have

(T (progm(ur)))k=illp < KealT1|,
for all m € N. It follows that
(T ((ur)) =i llp < Kall T
This proves our theorem. O

We now state a result of Schwartz [19] and Kwapien [7]. The proof is left
out.

3.5.8 Theorem If2 <p <r < +o0, every continuous linear operator from
co into £, is absolutely r-summing. There are however operators continuous
from ¢y into £, which are not absolutely p-summing.
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Chapter 4

MIXING LINEAR
OPERATORS

In this chapter we study the mixing operators. In fact we consider an ex-
tension of this concept and study the (m(s;q), p)-summing linear mappings
from the Banach space E into the Banach space F'. These are the operators
T, from E into F, such that (T'(z;))32; € li(sq) (F) for each (z;)%2, € £;(E).
For more information on mixing operators see [18].

4.1 (m(s;q),p)-SUMMING OPERATORS

We start this section by formalizing the concept of (m(s;q),p)- summing
operator.

4.1.1 Definition For 0 < ¢ < s < 400 and p < g a continuous lin-
ear mapping T from E into F is said to be (m(s;q),p)-summing on E if
(T'(5))521 € Lin(sig)(F') for each (x;)52, € £)(E). When p = q this mapping
is said to be (s;q)-mixing.

We observe that every S € L(E; F) is (m(q; q), p)-summing on E. In fact,
if (z;)%2, € £ (E) we have ((¢ o S)(z;))32, € £, C ¢, for each ¢ € F'. Thus
(S(x))32y € L7 (F) = lim(giq) (F), for every (x;)32, € £;)(E), as we wanted to
prove.

Ifbe F,b#0and (A\;)52; € loo, we can consider (A;0)52,. If (A\;0)52, €
Uin(siq) (F7) we have
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((/B ]<x’,)\jb>\sd,u(:c')>s) =
F! =1

for every u € W(Bps) by 1.4.2 of Chapter 1. We note that

([ 1<a'xb>Pdut)) =it ([ 1<ab> Fduta))”
BF BF
If we consider y = 6,/, with ¥ € Bps such that | < b,y > | = ||b]|, it follows

that (A\;0)52, € £(F ) and (A2, € 4y

Now we are ready to show that, if in the above definition, we consider p >
q, then we must have T'= 0. If we had T" # 0 satisfying definition 4.1.1 with
p > q there would be a € E such that T'(a) # 0. For ();)32, € £, we would
have (A\ja)32, € £(F). This would imply that (A\;7(a))32; € u(sq) (F) and,
as we saw above, ();)32; € £;. Thus this would show that ¢, C ¢, with p > ¢,
a wrong inclusion.

We denote by L(m(sq),p) (£; F') the vector space of all (m(s; g), p)-summing
linear mappings from E 1nto F. In the case p = ¢ we denote this space
by LENEF). U T € Lunisgp(EF) we set Yonsgp(T)((25)52) =
(T(QJJ)) for every (z;)32, € 6“’( ). Of course 9, (s,q%p)(T)((:cJ) °,) €
Em(qu)(F). This shows that ©)(mn(sq)p) (1) is a well defined linear mapping
from £}/ into £y,(s;q)(F). In the case s = ¢ we have that 1 (m(gq) ) (T) is a well
defined linear mapping from £;’(E) into £;(F).

Now we can prove the following characterization theorem.

4.1.2 Theorem IfT € L(FE;F) the following conditions are equivalent:
(1) T is (m(s; q), p)-summing on F,
(2) Yim(si)p)(T) € LG (E); binsig) (F)),
(27) Yimisip) (1) € LUG(E); binsiq) (F))-
(3) Yim(sig)p) (T') € LIUG(E); linsiq) (F)),
(3°) Ym(sig) ) (T) € LUG(E); bn(sia) (F)),
(4) there is C' > 0 such that
(T ()70 s < Cll(5) 7w

foreverymeN, x; € E, j=1,2,...m,
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(5) there is D > 0 such that
(T (25)521 lmgsi) < DIN(5) 320 lwp
for every (z;)%2, € £;)(E).
In this case
|Vm(siq)p) (T)]| = inf{C : C satisfies (4)} = inf{D : D satisfies (5)}.

Proof - It is similar to those of theorems 3.1.2 and 3.1.5 in Chapter 3.

4.1.3 The natural topology on L (s, ) (E; F) If we set
1T m(siyp) = 1¥m(siq)p) (T) || = inf{C = C satisfies (4)}
= inf{D : D satisfies (5)}

for every T' € Lim(siq)p)(E; F), then (Lim(sig)p) (B3 F); || - Mlom(sia2)) Is @ Ba-
nach space (complete g-normed space, if 0 < ¢ < 1).

4.1.4 The ideal property for L, s, (E; F) The subclass L (s.q)p) Of
L whose components are L, (s;q)p) (£; F), for Banach spaces E and F', has
the ideal property.

Notations - As we saw before, in the case p = ¢ < +00 we write L (s;q),q) (£ F) =
E(Sq (E; F). In this case we set || . ||im(siq).0) = || - llm(sig)

4.1.5 Theorem An operator S € L(E;F) is (m(s;q), p)-summing if and
only there is 0 > 0 such that

{i (Z | < 4 S(z) > |)} < ol g s

k=1
for all finite families of elements xy,...,x, € E and ¥}, ...y, € F'.
In this case

1Sl m(s:q).p) = inf o

Proof - (1) First we consider S to be (m(s;q),p)-summing and consider
y/177y;L S F’. We define

="tk
P
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where

" 1
= Il (Z Hyzns)
h=1

and dy, is the Dirac measure at by, = y;./||yill, k = 1,...,n. Forzy,... 2, € E
by 1.4.2 of Chapter 1 we have

{i <é| < yh, S(z;) > )q};

equal to

q

{i (/BF | <y, S(z;) > !Sdu(y’)> 5 } (Wi )=l

i=1

< S ()i llmessa 1 (9r) iz s

Since S is (m(s; q), p)-summing we have

H(S(xi))?llnm(&q) < HSH(m(S;q)JD)H(xi)zriluw,p‘

If replace this in the above inequality we get

{i (321 < kst > I 1

q
} < 1Sl om(sia). 1) ol (W) iz [l

g

(2) The inequality

{i (il < Yy, S(wi) > |>} < o[ (@) [l (Wh 7= 1«

i=1 \k=1

for all finite families of elements z1,...,x,, € E and v, ...,y,, € F', implies
that

®
Q=

i=1

{i (/BF | <y, S(z;) > Isdu(y’)> } <oll(@)iZillwpy (%)

for all discrete probabilities u € W(Bpg/) and z1,...,x, € E. Since these
probabilities are dense in W (Bp) for the weak topology defined by C(Bg),
we have () for all u € W(Bg) and z1,..., 2, € E. By 1.4.2 of Chapter 1
we have

105 (@) (i) < ol (2a)iZa [l
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for all #1,...,2, € E. This shows that S is (m(s;q),p)-summing with
151l n(siaym =< o

(1) and (2) imply the final assertion of our theorem. O

4.1.6 Proposition IfT € Lyy(siqp) (£ F) and S € LI°(F; G) then SoT €
95 (E;G), with

(g:p)

||S © THas,(q,p) < ||S||as,s||T||(m(S;q)»p)'

Proof - The cases that are not trivial occur when p < q. We recall that

11 N 1
q s(@) s
For z1,...,x, € E and for ¢ > 0 we choose representations T'(x;) = 7y;,

1 =1,...,m such that

1)t 1@ s < (14 T @D s
<(1 +5)||T||(m(8;q);p)”(JZZ'WLIHW’?"
We know that

IS a))iZills < 1S Tlas,s 1 (%i)iZi [l s-

We also have
1CS(T'(@:)))iZallg = (7S (i) )iZillg < [1(7)721 siay 1 (S ()i -
Now we use the previous inequalities in order to have
1S (T (a))iZ llg < 1(7a)iZ llscay 1S N as.s Il (92)i2s [luw,s
< (L T onisa) o) 1S las,s | ()51 [[w -
This implies that S o T is absolutely (g, p)-summing and
15 0 Tlas i) < (1 + )T N m(sia).) 111 S llas,s-
Since ¢ > (0 was arbitrary we get
|5 o T||as7(q,p) < ||S||as,s||T||(m(8;q),p)

and our result is proved. OJ

4.1.7 Theorem If0 < g < s an operator S € L(E;F) is (s;q)-mizing
if and only if there is o > 0 such that for every v € W(Bg:) we can find
u € W(Bg:) satisfying

1)



</BF/ | <y, S(x) > \%iy(y’)) S <o </BE/ | <2,z > |qdu(:c’)> '
for every x € E. In this case

[5]lm(s:q) = inf o
Proof - If the condition is satisfied, we have

m

(z ([, 1< 50> |Sdu<y'>)s)
<o (i (/B J<ala > |qdu(x’)>q> q

J=1

1
q

<o (X [ I<ala > du)) < oll@)
j=1 By

for every v € W(Bp/), m € Nand z; € E, j = 1...,m. This implies that

15 (@ ) ilillm(sia) < oll(25) 7 llwg

for every m € Nand z; € E, j =1,...,m. Thus S is (s; ¢)-mixing on E and
1S]lim(siq) < 0

We note that Theorem 3.1.4, Chapter 3, is also true when we consider in its
statement E and F' complete s-normed and complete r-normed spaces. For
each v € W(Bp/)we consider the operator J, € L3(F; L (B, V) assigning
to y € F the function f, with j,(v') =< y,¥’ >. In this case ||J,||ass = 1.
Since we suppose that S is (s;¢)-mixing we have that J, o S is absolutely
g-summing by Proposition 4.1.4. Also ||J, 0 S||as,g < [|S]|m,(s:)- By Theorem
3.1.6 of Chapter 3 we can find u € W(Bg/) such that

s

([ 1<55@) > Pavts)) = 12,0500

< 1Sl (o ( /,

This result implies the following two propositions.

1

| <2’ x> |qdu(x')>

B/

forallz € F.O
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4.1.8 Proposition If0 <p <s <1 < 400, § € L}, (F;G) and T €
ey (B3 F) then SoT € L7} ) (E;G) and

150 Tllm,tp) < NSl ) 1T o )

The proof of this result can also be obtained directly from the definition
of mixing operators.

Next result is obtained by an application of 4.1.5.

4.1.9 Proposition If0 < p; < ps < s < 51 < +oo then L[, (E F) C
(51 pz)(E F) and

||T||m(82;p2) < ||T||m(51;p1)7
for every T € LT, \(E;F).

We are ready to prove the following important theorem.

4.1.10 Theorem Ifp>1 and s > p then L3, (E; F) C L{:,, (E; F) and
||T||m7(5;p) < ||T||as78(p)’
for all T € L, (E; F).

We need the following lemma.

s(p)’

4.1.11 Lemma If i is a probability measure on a compact Hausdorff space
K, Ifp>1ands > p, the canonical mapping Jypy from C(K) into
Ly (K, ) is (s;p)-mizing and || Jspy ||m,(sp) = 1-

Proof - In order to simplify our notations we write r = s(p)’. We consider
fi,- -y fm € C(K) and h € L,.(K; ) with norm < 1. We note that p/r +
p/s=1,r"/s+7r"/p=1and 1/r + 1/3 +1/p’ = 1. Then we have

| <h(£) > | < [ AL,
< (/. Ifilpdlt)T(/K ) ([ )

-/, |filpdu)i and g =7 (fy),

fort=1,...,m. We have

D
s

5 |lY du

1
7

Now we set
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Sl = [ Sl < 1,
i=1 Ki=1
and
Sl <hgi> "< [ SRR dp < ),
=1 i=1
Hence we have
O g [ [ P W TV [

This proves our result. O

Proof of 4.1.10 - By 3.3.4 of Chapter 3 we know that there are a com-
pact Hausdorff space K, a measure p € W(K), and linear mappings A €
L(E;C(K)), T € L(L,(K;p); loo(Bp)) such that ipoT = T'o.J, 0 A. Hence,
by Lemma 4.1.11 we have ir o T' € L}, (E; loo(Br)). It is easy to see that
this implies T" € L} ) (E; F). The relation ||T'[|;n (s;p) < |7 ]|as,s(p) also follows
from 3.3.4.of Chapter 3. O

As consequence of 4.1.10 and 4.1.6 we can state the following result.

4.1.12 Theorem Ifp > 1, 1/r+1/s = 1/p, T € L%(E;F) and S €
LP(F;G), then SoT € L3(E;G) and

HS © THas,p < HSHas,SHT”as,r-

4.2 COMPOSITION RESULTS

The proof of the following result follows direct from the definitions of the
involved summing operators.

4.2.1 Proposition For 0 < ¢ < s < 400, ¢ > r andp > q, if S €
Lim(syr) (B F) and T € Lpn(siq))(F; G), then T o S € LE \(E;G) and

1T 0 Sllas,p.r) < 1Tl m(sian 1S (misia).m -
4.2.2 Theorem Forl<s<+400,0<qg<s<+400,q>7randp>q, if
S € L(E;F) is such that T o S € L{; 1 (E;G) for every T' € Lym(sqg)) (F; G)

and each Banach space G, then S € Lim(sq) (L F). Moreover ||S|| (m(s:q)r)
15 equal to
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sup {ITo SHas,(p,r); T e ‘C(pm(S;q))(F; G), ||T||(p,m(5;q)) <1}

G Banach space

Proof - From the Theory of Operator Ideals (see 7.2 in[18]) we have
¢ = sup {170 Sllas,pr); T € Lipm(sian (F5 G, 1T | pam(sian < 1}

G Banach space
finite. For (by)j—; C F" we define T' € L(F;17) = Lpm(sig)) (F317) by
T(y) = (< b,y >)i1-

For z; = \jy;, e = 1,...,m, we have

() )" ]

(Z|<bk,y1>|))
k=1

Ms

- || z 1||s(q

=1

m n l
1O ey (zz 4] < b0/ bl 2 > |s)

1=1 k=1

n m l
1O oy (ZZ 1411 < b/ onl i > |S)

k=1 1=1

< D) oy 11 COr )z s Il ()i s
Hence

1
(Z ||T<zi>||z) IO .
1=1
Since p > ¢, we have
(i Hp> < a2l This shows that

1Tl pimsian < N (0r)i=1ls-
For (z;)jL, C E, we have

(i ( | < S b > |)) _ (i ||Tos<xj>||z)q
j=1 \k=1 J=1

< 1T 0 Sllas @) | (23) 7 lwr < ClIOR) g1 lls ]l (25) 52 o -
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By Theorem 4.1.3 it follows that S € L{(,,) (E£:F) and [|S|[(m(sq)r) < C-
By 4.2.1 we have||S||(m(sq)r) = C. O

If we combine Proposition 4.2.1 and Theorem 4.2.2 we have the following
characterization of (m(s;q),r)-summing linear mappings.

4.2.3 Theorem Forl<s<+4o00,0<qg<s<+4o0,gq>randp>gq, a
mapping S € L(E; F) is in Lim(s.q)m(E; F) if and only if To S € L'(pr)(E; G)
for every T € Lpm(s:q)(F; Q) cmd each Banach space G.

Now we consider some special cases. By Theorem 3.2.3 of Chapter 3 and
Theorem 4.2.2 of this Chapter 4 we can state the following result.

4.2.4 Theorem Forl < s < 400, 0 <p < s <+ andp > r, if
S € L(E; F) is such that T o S € L (E;G) for every T € LF(F,G) and
each Banach space G, then S € Ln(sp)r)(E; F). Moreover

||SH(m(S;p),r) = . sup T SHas,(p,r);T € LY(F;G), HTHas,s <1}

Banach space

Proof - If we apply Theorem 4.2.2 with p = ¢ and consider L, (s;p)) (E; F) C
L% (E; F) by Theorem 3.2.3 of Chapter 3 we have the first part of our result.
Now we consider

D= sup {708 ]aspriT € L2(F; G),||T lass < 1.

G Banach space

D is finite by the Theory of Operator Ideals (see 7.2 in [18]). In the proof of
4.2.2 we obtained

T pomsiony < 1(Ok)izls:
for (by)j_y C F' and T € L(F; ) L (pim(siq)) (F; 17) defined by
T(y) = (< br,y >)izs-
Hence by Theorem 3.2.3 of Chapter 3 we have
HTHas,s < H(bk)Z:le.
For (z;)jL, C E, we have

(i (i| < 1,5(2)) > |)) - (f: 170 s<xj>uf;)p

k=1 j=1

< IT 0 Slas,pry 1(25) 71 [lwr < DI bk )iz [lsl1(25) 721 [l
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By Theorem 4.1.3 it follows that S € L (s (£; F) and ||S]|(m(sip)r) < D.
By Proposition 4.1.4 we have ||S||gn(sp)r) = D- O

Now we use 4.2.4 and 4.1.4 in order to state the following result.

4.2.5 Theorem Forl<s<+00,0<p<s<+o00 andp >r, a mapping
S € LB} F) is in Lonesp)n (B F) if and only if T o S € Ly (E;G) for
every T € L2(F;G) and each Banach space G.

An special case of this theorem is obtained for r = p.

4.2.6 Theorem For1l < s < 400 and 0 < p < s < 400, a mapping
S € L(E;F) is in Eg;p)(E; F) if and only if T o S € L3*(E;G) for every
T € L%(F;G) and each Banach space G.

As an application of Theorem 4.2.3 we can show that there are there are
linear (p, m(s; ¢))-summing mappings that are not absolutely (p, ¢)-summing.

4.2.7 Remarks (1) We consider s > 2, s > ¢. Let E be infinite dimen-
sional. If we had L m(s,0)) (E; G) = L3*(E; G) for all Banach spaces G, then
we can apply 4.2.3 with £ = F', S = idg, in order to have idg (s;¢)-mixing.
But, by 20.1.17 of [18], this would imply that F is finite dimensional, a con-
tradiction. Hence there is an infinite dimensional Banach space G such that
Liamsa) (B; G) # L2(E; G).

(2) We also know that (7} ) (¢2) = £;({2) for 0 < ¢ < s <2 (see Pietsch [14],

22.3.5). Hence L m(s) ( G) = L{ ,(l2; G), for all Banach spaces G, if
0<qg<s<2andp>gq.

(3) It is proved in [18], 22.3.5, that an L,-space E is such that ({5 \(E) =
(J(E)if0<g<2and 1 <p<2 Hence E () (B G) = L, (E G), for
all Banach spaces G,if0 <¢<2,1<p<2andr >gq.

(4) An Ly-space E is such that (7 (E) = ((E) if 2 <p < s and 0 < ¢ <
s < 2. See [18], 22.3.5. Hence Ly m(s:q)) (£} G) L (E;G), for all Banach
spaces G, if 2<p< s, 0<qg<s<2andr>gq.

(5) It is also proved in [18], 22.3.5 that, for 0 < ¢ < s < 2 the identity
mapping on £y is not (s; ¢)-mixing. Hence, with the same argument as in (1)

above we can say that there is an infinite dimensional Banach space G such
that L(gm(siq)) (lsr; G) # L3 (Ly; G), when 0 < ¢ < s < 2.
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Chapter 5

(p,m(s; q))-SUMMING
MAPPINGS

In this chapter we study mappings that send sequences of /p,(q)(E) (or
(4(E)) into sequences of £,(F) in a way that is described in section 5.1.
Many of the results of this chapter appeared in [13] and in [14].

5.1 THE NOTION OF GENERAL (p,m(s;q))-
SUMMING MAPPINGS

In this chapter A is a non empty open subset of a Banach space F and F' is
another Banach space.

The Dvoretzky-Rogers Theorem for Mixed Summable Sequences proved
in Chapter 3 state that, for 0 < ¢ < s < 400, a Banach space E is finite
dimensional if, and only if, £;,,(s;q)(E) = 4(£). The well-known Dvoretzky-
Rogers Theorem is obtained from this result when we consider s = ¢q. Since in
the proof of the Dvoretzky-Rogers Theorem for Mixed Summable Sequences
we used the Dvoretzky-Rogers Theorem, we can say that both theorems are
equivalent.

If s < 400, the Dvoretzky-Rogers Theorem for Mixed Summable Se-
quences shows that, for an infinite dimensional Banach space E, the identity
mapping on E is not (g, m(s; q))-summing. In Chapter 3 we started the study
of the linear (p,m(s;q))-summing mappings between Banach spaces. Now
we study the non-linear (p, m(s;q))-summing mappings. In this chapter we
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have to separate the definitions of (p, m(q; ¢)-summing mappings and that of
absolutely (p, ¢)-summing mappings. The reason for this distinction will be
made clear in Remark 5.1.10.

5.1.1 Definition (1) If 0 < ¢ < s < 400, a mapping f defined on an open
subset A of E, with values in a Banach space F, is said to be (p,m(s;q))-
summing at the point a € A if (f(a + ;) — f(a))52, € £,(F), whenever
(27)521 € lin(ssq)(E) with a +x; € A, x; in a neighborhood U of 0 in E, for
each j € N. It is said that f is (p,m(s;q))-summing on A if it is (p, m(s;q))-
summing at each point a € A.

(2) If 0 < q < +oo, the mapping f is is said to be absolutely (p, q)-summing
at the point a € A if (f(a + x;) — f(a))2, € (,(F), whenever (x;)52, €

E?n(q;q)(E) = ly(E) (1.4.7, Chapter 1) with a +x; € A, z; in a neighborhood
U of 0in E, for each j € N. It is said that f is absolutely (p,q)-summing

on A if it is absolutely (p,q)-summing at each point a € A.

If (7;)22) € lin(sig)(E), with 0 < ¢ < s < +00, we know that we can write

lim [|(25)72,[lm(s:g) = 0-

For ()32, € £, 4.0 (E) = €4(E), with 0 < ¢ < 400, we also have

lim ()72, [[w.g = 0.

For 0 < g < s < +o0, if f is (p,m(s;q))-summing at the point a € A, U is
as in definition 5.1.1 (1), § > 0, with Bs(0) C U, and (75)32; € lin(sq)(E)
there is n € N such that [[(2;)32,[lm(sq < 9. Hence (f(a + z;) — f(a))32, €
p(F). Consequently we have (f(a + x;) — f(a))52, € £,(F). Also, if f is
absolutely (p, ¢))-summing at the point @ € A, U is as in definition 5.1.1
(2), 0 > 0, with Bs(0) C U, and (z;)%2, € {;(E) there is n € N such that
()5 llw,g < 0. Thus (f(a+ z;) — f(a))2, € £,(F). Therefore we have
(fla+5) — F(@)2y € L(F)

These remarks allow us to prove the following result.

5.1.2 Theorem (1) For 0 < q < s < +o00, a mapping f from A into F is
(p, m(s; q))-summing at the point a € A, if, and only if, for each (r;)%2, €
Uin(siq)(E), with a + x; € A for each j € N, it follows that (f(a + x;) —
fla))iz, € 6,(F).
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(2) A mapping f from A into F is absolutely (p,q)-summing at the point
a € A, if, and only if, for each ()52, € 0 sq)( ) =5 (E), witha+x; € A
for each j € N, it follows that (f(a + ;) — f( )i, € L,(F).

Since (Cn(gig) (E); || - [lm(gi)) = (65 (E), || - |lw,g), We cannot prove a version
of 5.1.2.(1) for 0 < s = ¢ < 400 using the same argument as that one made
above. For instance, (e;)52; € ({’(co), but [[(€;)>nllw1 = 1, for every n € N.

We denote by F¢, .. (A; F) the vector space of all the mappings from
A into F that are (p,m(s;q))-summing at the point a of A. The vector
space of all F-valued (p,m(s;q))—summing mappings on A is indicated by
Fipm(sig) (A; F). We also write respectively FF”(A F) and ¢ (A; F) in
order to indicate the vector space of all mappings from A into F' that are
absolutely (p, ¢)-summing at a and the vector space of all F-valued absolutely
(p; ¢)summing mappings on A. In this last case, and we simplify the notations
by writing p where it should appear (p,p). Also, we omit p when p = 1.

We note that, for 0 < ¢ < s < +oo, every [ € F(, 5.0 (A; F') can be
extended to E if we consider f = f on A and f =0 on A°= E\ A. In this

case f € Flpm(s:qy (B3 F). Of course the mapping
fer; (A F) — fe F

is linear and injective. Hence in a natural way we may consider FG
FG ))(E F) through this mapping.

y (B F)

pmsq pmsq

(p.m(s;9))
pm(s;q

Since Esq)(E) C Ly(E) = £),4q(E), every absolutely (p,q)-summing
mapping at a is (p, m(s; ¢))-summing at a.

We note that, for a € A, the set A —a = {b—a;b € A} is open in £
and 0 € A — a. It is easy to check that, if f,(z) := f(a + z) — f(a) for
r € A — a, then f is (p, m(s;q))-summing (absolutely (p, ¢)-summing) at a,
if, and only if, f, is (p, m(s;¢))-summing (absolutely (p,q)-summing) at 0.
If f is linear, we have f = f,, for every a € E. In this case, we can say
that f is (p, m(s;q))-summing on E (absolutely (p,q)-summing) when it is
(p, m(s; q))-summing (absolutely (p, ¢)-summing) at some point of E. This
result is not true for nonlinear mappings as we see in the following example.

5.1.3 Example If F is infinite dimensional we consider ' € E’, 2’ # 0 and
define the 2-homogeneous polynomial from E into E by P(x) =< 2/, > x
for each z € E. We take a in kernel of 2". If (z;)32, € ¢;(E) we know that
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there is M > 0 such that ||z;|| < M, for each j € N. We also have
I(P(a+ ;) = P(a))ilillg = I(< 2,25 > (a+ ;)32 I
< (M + lalDll(< 2,25 >)324lq < 400
This shows that P is absolutely ¢g-summing at each point of the kernel of z’.
Hence P is (¢, m(s;q))-summing at the same points. If b ¢ Ker(z'),
Py=<a2',.>b+<2',b>idg+ P.

Since P and < 2/,. > b are (¢, m(s;q))-summing at 0, it follows that P, is
(g, m(s;q))-summing at 0, if, and only if, idg is (g, m(s; ¢))-summing at 0.
But, since F is infinite dimensional, idg cannot be (g, m(s; q))-summing at
0, for s < 400. Hence, P is not (g, m(s;q))-summing at b. We can say that
P is not (g, m(s;q))-summing on any non empty open subset of E.

We prove now a result that will be used later for the proof of a nice char-
acterization of (p, m(s; q))-summing mappings and absolutely (p, ¢)-summing
mappings at a.

For a point a of A and 0 < ¢ < s < 400 we consider:
Vin(sig).a(a) = {(2)72) € lin(siq)(E);a + x; € A, for each j € N}.
We also consider

Vigala) = {(x;)52, € 0O (E)= li(E);a+x; € A, for each j € N}.

m(q;q)

5.1.4 Proposition The sets Vi (s,q),4(a) and V, 4 a(a) are neighborhoods
of 0 in (bn(sg), | -+ Nmsig) and in (6,05 | - @) = EGE) - )

respectively.

Proof - We consider r > 0 such that the open ball B,(a) of center a and
radius 7 is contained in A.

(i) Case ¢ < +o0.
It H(%)?’QHMS;@ <r (”(%);}iﬂ
1(z5)5721 [0 < [1(25)521 [lw.g = I1(25) 72 lmga) < 1(25)521 [lm(sig) < 7

Hence, for every j € N,

wq < 7), by 5.1.2 we have

;|| <7
It follows that a+x; € B.(a) C A, for every j € N, and ()52, € Vin(sig),a(a)
((z)521 € Vigala)).
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(ii) Case ¢ = +o0.

We have s = 400 and £y,(00,00) (E) = loo(E). Hence, (7;)%2, € (o(F), with
()51 lloo < 7, implies ||x;]] < r, for each j € N. Therefore a 4 z; € A, for
each j € N, and ()52 € Vin(ooe0),a(a). O

If fis a (p,m(s;q))-summing mapping at a from A into F we have a
MAapping Vg p.m(s;q) (f) defined on the interior Vi, (s;q),4(a) of Viysq),a(a ) with

values in £,(F), given by Yo pm(s:q) (f)((2;)521) = (fa +25) = f(a))7Z

5.1.5 Theorem If f is a (p,m(s;q))-summing mapping at a from A into
F, then Yapm(siq) (f) is reqularly (p, q)-summing at 0.

Proof - We consider X; = (z;;)72, € Vm(s;qom( ), J €N, and (X;)%, €
Eq(gm(suz)(E))-

(1) Case 0 < ¢ < s < +00.
We have

q

e}

q s s
(||Xj||m(s;q)) = sup Z (/B | < ZL‘/,ZEM > | dﬂ($/)>
E/

HEW (Bgr) k=1

as well as
q
00 q 00 . 5
=3 (W) =3 sup 32 ([ <> Pl <-boe
j=1 =1k B) k=1 \’ B/

Hence (:EM)(]-,;C)GNW € Em(s;q)(E), since

sup > Y </B | <o’ zjp > |sd,u(ac’)> < (%) < Fo0.

HEW (Bpr) j=1 k=1

»

Since f is (p, m(s; ¢))-summing at a, we have

Z||¢apmsq |p_ Z ||f CL—}-I’]k) (a)||p<—}-oo.

7,k=1

This means that (Vapm(sig) (f)(X5))521 € £p(lp(E)). Therefore, ¥ pm(sq)(f)
is regularly (p, ¢)-summing at 0.

(2) Case ¢ < 400 and s = +00.
q
We have (|| X;llmeein)) = (1X;lly)? and

> (X)) = lljull* < +oo.
j=1

7.k
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Since f is (p;m(oco;q))-summing at a and (z;x)(kyenxn € lm(ooiq) (), We
have

2 apmeesa (NI = 22 1f(a+zs) = fl@)]” < +oc.

J=1 J,k=1

This means that (wa7p7m(oo;q)(f)(Xj))§il € Lp(Ly(E)). Therefore, Vg p m(coiq) (f)
is regularly (p, ¢)-summing at 0.

(3) Case ¢ = s = +00

We have £, (si00) (£) = loo(E). Hence (X;)2) € loo(loo(E)) and (2 1) (jk)enxn
is in {o(F). Since f is (p; m(o0; 00))-summing at a, we have

> apim(oeice) (XN = > I1f(a+z50) — f@)|IP < +oo.

j=1 jk=1

This means that (Y,pm(coi00) (f)(X5))521 € Lp(6p(E)). Thus ¥4 pm(co,00) (f) 8
regularly (p; co)-summing at 0.

(4) Case s = q < +00.

We have £y, g:) (E) = E}]”(E). Hence (Xj)?il € éq(ﬁj}”(E)) and (%) k)enxy €
(7 (E). Since f is (p;m(q; q))-summing at a, we have

Y N apmiaa (XD = D Ifla+ap) — fla)|F < +oo.
j=1 Gk=1

This means that (Vapm(gq) (f)(X;5))52; € Lp(€p(E)). Therefore, 1y pm(gq) (f)
is regularly (p, ¢)-summing at 0. O

If f is an absolutely (p, ¢)-summing mapping at a from A into F we have
a mapping 1, ,(f) defined on the interior V,, 4 a(a) of Vi, 4 4(a), with values

in €,(F), given by vapq(f)((25)521) = (f(a + ;) — f(a))52,-

5.1.6 Theorem If f is an absolutely (p, q)-summing mapping at a from A
into F', then 1, q(f) is reqularly (p, q)-summing at 0.

Proof - If (X;)52, € £,(¢y(E)). We have:
sup Y | <2 i > 7<) ([ X wg)? < oo
*'€Bpr j k=1 j=1

This shows that the sequence ()55, belongs to £;(E). Moreover, we have
zjr+a € A, forall j,k € N. For each € > 0, there is jy € N, such that
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> (X llwg)” < -

J>Jjo
On the other hand, since X, ..., X}, € (7(E), there is a natural number kg
such that

Do ™

£ . ,
@) kskolwg)” < 57 (Vj=1,....jo)
2Jo
. . . . q
If J = {(j,k) € NxN;j < jo,k < ko}, we obtain (||(;x)gmesllug) < e
Thus (7;1)$%—; s in G(E). Since f is absolutely (p,q)-summing (that is

(p, m(s; q))-summing) at the point a, we have

+00
Y (Wapa XD = D2 fla+a,) — fla)]P < +oo,
Jj=1 (j,k)ENXN

and this finishes our proof. O

5.1.7 Corollary (1) If f is a (p, m(s;q))-summing mapping at a from A
into F', then there are M > 0 and 6 > 0 such that

(I(f(a+25) = Fa)jLillp)” < M| ()7 lm(sia))?

forallmeN, x; € B, j=1,...,m, witha+z; € A and ||(2;)72; |lm(s;q) < 9.
(2) If f is an absolutely (p, q)-summing mapping at a from A into F, then
there are M > 0 and 6 > 0 such that

(S (a+z5) = f@)ilallp)” < MO (25) 52 [lusg)*
forallmeN, x; € B, j=1,...,m, witha+x; € A and ||(2;)72;[lw,q < 9.

Proof - This follows from 5.1.5, 5.1.6 and the fact that a mapping is regularly
(p; ¢)summing at a if and only if it it is E-regular at a. O

5.1.8 Theorem Ifa € E, f is a mapping defined on a neighborhood of a
with values in F' and 0 < q < s < 400, then the following conditions are
equivalent.

(1) f is (p,m(s;q))-summing at a.

(2) Yapm(sig)(f) s a well defined mapping from Vm(s;;%A(a) into L,(F), for
some open neighborhood A of a in E.

(3) There are M > 0 and 6 > 0, such that
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Z_: 1f(a+ ;) = fla)[[” < MO(25) 5= lm(sa))?

fO'I" each n € N7 x] € E; .] = 17 ceey 1 with H(‘TJ>§L=1“T”»(57‘1) < 0.
(4) There are M >0 and 6 > 0, such that
2@+ ;) = f@)” < M([(2)5 i)
j=1
fOT Zj € E; j = 1727 R/ with H(‘TJ>;<;1HW(57‘1) <0.

(5) Yapm(sig)(f) s a well defined mapping from Vm(s;qo)ﬂ(a) into L,(F), for
some open neighborhood A of a in E, that is reqularly (p, q)-summing at 0.

These conditions are implied by (6) and (7) below. If p < gq, (6) and (7)
are equivalent to the above conditions.

(6) there are D >0 and 1 > 6 > 0, such that
1(f(a+ ;) = f(a)iLll, < DII(2;)71 lmsq
forallz; € E, j=1,...,m, such that a+x; € A and ||(x )j gy < 0
(7) there are D >0 and 1 > 6 > 0,
1(f(a+ ;) = fla)iZilly < DIl(x)51 lm(sa)
forallx; € E, j €N, such that a +x; € A and ||(2;)52;[|m(siq) < 0-

Proof - We note that (2) is a reformulation of (1). It is clear that (5)
implies (2). We have that (5) implies (4) since 1q pm(s;q) (f) is p/g-regular at
0. If we assume (4) we have that 1, m(s:q)(f) is p/g-regular if we show that
wapm Sq)(f) 1S Well deﬁned on Vm(s i), B(;(a)( ) If (x])ool iS in Vm(sq Bg(a)( )
we consider z; = 7;23, j € N, with [|(75)52, [lsqy |l (z )J 1||w8 < 400. We can
find m € N, such that [|(2;)72,, [[m(sq) < ||(T])j,m|| @ 1(25)52mllws < 0. By
(4) we have

> ate) = 1@ = 3 If(ata) - F@P+ 3 f(ata) - f@)l?

m—1
< > Ifla+z)) = f@)| + M < +o0.

This shows that 1qpm(siq) (f)((25)32,) is defined. The equivalence of (4) and

(3) is easy to prove. Theorem 5.1.5 shows that (1) implies (5). In order to
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prove that (3) and (4) imply (6) and (7) respectively, it is enough to note
that we can take 0 < § < 1. It is clear that (6) and (7) imply (2) by reasoning
as it was done in the proof that (4) implies (2). O

In an analogous way we can prove the following theorem.

5.1.9 Theorem Ifa € E, f is a mapping defined on a neighborhood of a
with values in F' and 0 < ¢ < p < 400, then the following conditions are
equivalent.

(1) f is absolutely (p, q)-summing at a.

(2) Yapq(f) is a well defined mapping from V;L,;(CL) into £,(F), for some open
neighborhood A of a in E.

(3) There are M > 0 and 6 > 0, such that
> Ifla+a;) = fa)ll” < M(|[(5)5= )
j=1

foreachn €N, z; € E, j=1,...,n, with ||(x;)}—;[lwg < 9.
(4) There are M >0 and 6 > 0, such that

i“f(a +;) = f@)P < MO()|(2) 721 lwa)?,

forz; € B, j=1,2,..., with ||(xj);?‘;1|]w,q < 0.

(5) Yapq(f) is a well defined mapping from Vq,;(a) into £,(F), for some open
neighborhood A of a in E, that is regularly (p, q)-summing at 0.

These conditions are implied by (6) and (7) below. If p < q, (6) and (7)
are equivalent to the above conditions.

(6) there are D >0 and 1 > § > 0, such that
1(f(a+25) = f@)ioll < D)5 llwg,
forallz; € E, j=1,...,m, such that a+z; € A and ||(2;)1L; ||lwq < 6;
(7) there are D >0 and 1 > 0 > 0,
1(f(a+25) = f@)iS e < D)5 llwas
forallx; € E, j €N, such that a +z; € A and ||(2)52;]|w,q < 0.
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5.1.10 Remarks (1) If s = g we have {,,(;,)(E) = ((E). In this case
we can not use the argument used in 5,1.8 in order to prove that (4) implies
(5). In fact, if (z;)52, € £;'(E), we do not have in general that ||(2;)32,,[|w.q
converges to 0 as n tends to co. We note however that 5.1.8 is true even in the
case s = ¢ when f is an homogeneous polynomial. In this case ¢qpm(gq)(f)
is also homogeneous and being well defined by (4) on a neighborhood of the
origin, it is well defined on [{(E) by homogeneity.

(2) When s = 400, 5.1.8 gives a result about regularly (p, ¢)-summing map-
pings at a point a of E. We proved this in Chapter 2.

5.2 EXAMPLES

The results of this section show that the existence of absolutely summing
mappings is not a rare phenomena.

5.2.1 Theorem If E has cotype q and f is an F'-valued mapping defined on
A, Fréchet-differentiable at a point a € A, then f is absolutely (g, 1)-summing
at a.

Proof - For a given ¢ = 1 there is § > 0 such that Bs(a) C A and
[f(a+x) = fla) = df (a)z]| < |||
for each x € Bs(0). This implies that
1f(a+2) = fa)l < lldf(a)z] + =]

for all z € B;s(0). Therefore,ifm € N,z; € E,j=1,...,mand ||(z;)}, w1 <
0, we have

1(f(a+25) = f(@)izllg < I(df (a)z;)7llg + 1[(25)70 g
< (ldf (@)llas,an) + Ca) (257 w1,

by 3.5.3 of Chapter 3 and the definition of cotype ¢. This proves our result.
O

The same kind of reasoning proves the following result

5.2.2 Theorem If E has the Orlicz Property and f is an F-valued mapping
defined on A, Fréchet-differentiable at a € A, then f is absolutely (2,1)-
summing at a.
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5.2.3 Theorem If f is a mapping defined on a open subset A of {1, with
values in o, such that d*f, its Fréchet differential of order 2, is locally
bounded on A, then f is absolutely summing on A.

Proof - We recall that, by the Taylor (inequality) Theorem, we can write
1
[f(a+x) = fla) = df(a)(x)]| < P 1 f (@ + ta)| |||,

when a+tx € A, for every t € [0, 1]. We consider § > 0, such that Bs(a) C A
and [|d*f|| is bounded by M on Bs(a). If ()32, € £}({1) and ||z;]| < 6, for
7 €N, we have

14
lef a+z;) = fla)l < Zde (@)l + 5 ZMIIII%H2

j=1 ] 1
By Grothendieck’s Theorem (see 3.5.5, Chapter 3), df (a) is absolutely sum-
ming. Since F = {1 has the Orlicz property, idg is absolutely (2, 1)-summing.
Hence (7;)52, € f2(¢1). Thus these results and the above inequality show that
(fla+m;) — f(a))i2, € £1(fs), as we wanted to prove. O

5.2.4 Corollary FEvery analytic mapping on an open subset A of {1, with
values in o, is absolutely summing on A.

5.2.5 Theorem Let f be a mapping defined on an open subset A of a
Banach space E with the Orlicz property, with values in F' and with Fréchet
differential of order 2 locally bounded on A. Then, if df(a) is absolutely
summing at the point a € A, f is absolutely summing at a.

Proof -By the Taylor (inequality) Theorem, we can write
1
If(a+ =) = fla) — df(a)(z)] < P 1 f (@ + t) |||,

when a +tx € A, for all t € [0,1]. We consider 6 > 0, such that Bs(a) C A
and ||d*f|| is bounded by M on Bs(a). If (2;)52, € I}(E) and ||z;]| < 4, for
J € N, we have

13
lefaﬂj !<ledf (@)l + 35 ZMIIII%H2

Jj=1 ]1

By our hypothesis, df(a) is absolutely summing. Since E has the Orlicz
property, idg is absolutely (2, 1)-summing and ()52, € f2(£). These results
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together with the above inequality show that (f(a + ;) — f(a))52, € (1(F),
as we wanted to prove. 0O

5.2.6 Corollary Let A be an open subset of a Banach space E with the
Orlicz property. Then:

(1)Each F-valued analytic mapping f on A with df (a) absolutely summing,
s absolutely summing at the point a € A.

(2) If n > 2, every continuous n-homogeneous polynomial from E into F is
absolutely summing at the origin.

5.2.7 Proposition If g is a linear absolutely (p, q)-summing mapping de-
fined on E, with values in F, and f is a regularly (s, p)-summing mapping
on an open subset B of F, with values in a Banach space G, then, f o g is
absolutely (s, q)-summing on the open subset A= g~1(B) of E.

Proof - Since g is absolutely (p, ¢)-summing, if a € A and (v;)32, € (4(E),
with a +x; € A, j € N, we have (g(a + x;) — g(a));2, € £,(F). Thus

(fogla+z;) = fogla))sz, = (flg(a) + (9(a+z;) — g(a)) — f(g(a)))j2,
is in /4(@G) since f is regularly (s, p)-summing at g(a). This shows that fog
is absolutely (s, ¢)-summing at the point a. O

5.2.8 Consequences (1) If f is an F-valued Fréchet differentiable map-
ping on A and F has the Orlicz property, then, f is absolutely (2, 1)-summing
on A. Therefore, analytic mappings from A into F' are absolutely (2,1)-
summing on A.

This follows from 5.2.7, since idg is absolutely (2, 1)-summing and f is
regularly 2-summing on A, by example 2.4.4 and 2.2.5 of Chapter 2.

(2) If p € [1,2], T is an {,-valued continuous linear mapping on ¢y and f is
an F-valued Fréchet differentiable mapping on an open subset B of [,, then,
foT is absolutely 2-summing on A = T~1(B). In particular, if f is analytic
on B, then f oT is absolutely 2-summing on A.

This follows from 5.2.7, since T' is absolutely 2-summing ([8]) and f is
regularly 2-summing by 2.4.4 and 2.2.5 of Chapter 2.

(3) If 2 < p <r < 400, T is a continuous linear mapping from ¢, into I,
and f is an F-valued Fréchet differentiable mapping on an open subset B of
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ly, then, foT is absolutely r-summing on A = T-!(B). In particular, if f is
analytic on B, then f oT is absolutely r-summing on A.

This follows from 5.2.7, since T' is absolutely r-summing ([7] and [19])
and f is regularly r-summing by 2.4.4 and 2.2.5 of Chapter 2.

5.2.9 Theorem For(0 < g < s < +oo, let f and g be mappings defined
on an open subset A of E, f with values in K and g with values in F, both
(p,m(s;q))-summing at a point a € A. Then h(z) = f(z)g(x), © € A, is
(p,m(s; q))-summing at a.

Proof - We consider first the case p > 1. By 1.8 we can find C' > 0 and
0 > 0 such that

[(fla+z;) — fla)52llh < Clli(z)52 s
and
[(g(a+ ;) — g(a)54 15 < Cll(25)52 (s

for all ||(2;)32; llm(siq) < 9. Since g is continuous at a, by decreasing the value
of ¢ if necessary, we may consider sup;qy [g(a + x;)| < 1. Hence we write

[(h(a + 25) = (@) llp < I((fla+2;5) = fla))gla + 2;))52lp + I((g(a +
;) — 9(a)) f(a)52 Iy

< OV (@)l + CVP L@@l
< G+ F@)) )5l

for all [|(z;)52; [lm(s:q) < 0. Hence h is (p,m(s; ¢))-summing at a, by 1.8. The
proof for the case 0 < p < 1 is similar by using the triangular inequality for
p-norms. [

With the same type of reasoning we have:

5.2.10 Theorem Let f and g be mappings defined on an open subset A of
E, f with values in K and g with values in F, both absolutely (p, q)-summing
ata € A. Then h(z) = f(z)g(x), x € A, is absolutely (p, q)-summing at a.

5.2.11 Theorem For (0 < q < s < 400, let h and g be mappings defined
on an open subset A of E, g with values in K and h with values in F. If both
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are (p, m(s;q))-summing at a point a € A, with g(a) # 0, and f is such that
h(z) = f(z)g(x), for allx € A, then f is (p,m(s;q))-summing at a.

Proof - We consider first the case p > 1. By 5.1.8 we can find C' > 0 and
6 > 0 such that
[(h(a + ;) — h(a)324[5 < Cll(25)52 s

and

I(g(a+ ;) = g(a))5Za 5 < Cll)5 sy
for all [|(z)52;|lm(s;qy < 0. Since g(a) # 0 and g is continuous at a, by

decreasing the value of ¢ if necessary, we may consider |g(a + x;)| > @.
Hence we write

[(h(a + ;) = h(a))j2 ],

> [((fla+ ;) = fla)gla+ )2l — | (gla+ ;) — g(a)) F(a),
and
1((f(a+z;) = f(a))gla+ ;)5 |,

< [[(hla + z;) = h(a))5% [l + [[((9(a + ;) — g(a)) f(a))52 [,

< OV ()3, |42+ CYP F@ll ) 1

m(s;q)

< CYP(1+ || f@) DIl ()3 120

m(s;q)

for all [[(2;)32:[[m(s;q) < 9. Hence we can write

9O Flat2) — F@)Ells < I((Flat2) — Fl@)gla+ 2l

2
< CVP(1+ || f(@)D )2 12

and

I(f(a+25) = f(@)iSllp < WC””( + 1 @D s)3 g

for all [[(7;)32; |lm(s:q) < 9. Hence f is (p,m(s;¢))-summing at a, by 5.1.8.
The proof for the case 0 < p < 1 is similar by using the triangular inequality
for p-norms. O

With a similar reasoning we have

5.2.12 Theorem Let h and g be mappings defined on an open subset A of
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E, h with values in F' and g with values in K. If both are absolutely (p,q)-
summing at a point a € A, with g(a) # 0 and f is such that h(z) = f(x)g(z),
for all x € A, then f is absolutely (p,q)-summing at a.

5.3 (p,m(s;q))-SUMMING HOMOGENEOUS
POLYNOMIALS AND HOLOMORPHIC
MAPPINGS

We start this section with the study of a nice characterization of the (p, m(s; q))-
summing homogeneous polynomials.

5.3.1 Theorem Ifm € N and P is an m-homogeneous polynomial from E
into F', the following conditions are equivalent

(1) P is (p,m(s;q))-summing at 0.
(2) Yo pm(siq)(P) is a well defined mapping from lps.q)(E) into £,(F).
(3) There is M > 0, such that

(2: HP(%)HP) < M([[(25)j=1 lm(sia))™

foreachneN, z; € E, j=1,...,n.
(4) There is M > 0, such that

(i HP(%)H”) < M([[(2)7Z 1 lmsia)™

for all ()22 € li(siq)(E)-

(5) Yo pm(siq)(P) is a well defined mapping from Ly, (s;q)(E) into £,(F) that is
reqularly (p, q)-summing at 0.

(6) Yo pm(siq)(P) is a well defined mapping from lp,s.q)(E) into £,(F), con-
tinuous at 0.

Proof - If we assume (5), since 1, m(siq)(P) is an m-homogenous polyno-
mial from £,,(s;q) (&) into £,(F), it is continuous at 0, hence continuous on
Uin(s;q)(E). This gives (6). Now we have (6) equivalent to (4). Of course (4)
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and (3) are equivalent, (3) implies (2) and (2) implies (1). By 5.1.8, (1) im-
plies that 1 5 m(s;q) (P) is a well defined mapping from Vm(s;(;)yA(O) into £,(F),
for some open neighborhood A of 0 in F, and it is regularly (p, ¢)-summing at
0. Since P is m-homogeneous, we can show that 1g p (s;q) (F) is well defined
over {(sq)(E) (see Proposition 5.3.2). Thus (1) implies (5). O

We note that by 5.1.9 and 5.1.10 (1), when s = ¢, we can consider
condition (4) above equivalent to another one where we replace ()2, €

gm(q;q)<E) = f;”(E) by (xj);?il S ES(E)-

5.3.2 Proposition Let P be an m-homogeneous polynomial from E into
F, such that there are M > 0 and 6 > 0, satisfying

Y IP@HIP < MII(5)52 lmsia))*

=1
forz; e B, j=1,2,..., with ||(2;)32 lm(siq) < 9. Then

(i HP(%’)H”> < L([[(z5)521 lm(sia))™

for all (2)52, € lin(sigy(E). In this case L = MY?§5~™ This implies that
Vo.pm(siq) (P) 15 a continuous m-homogeneous polynomial from lp,s.q)(E) into
(,(F) and

1_m
[%0,p,m(si0) (P < MPsp™,
Proof - We note that the inequality in our hypothesis may be set in the form

Do NPEI” < MVP(|(25)3 1 lmgs)? < M67,

=1

forz; € B, j=1,2,..., with [[(2;)%2;[[m(sq < J. Hence

o ox;
(Z i (H(xj)jo'ile(s;q))

j=1
for all ()72, # 0 in (s, (E). Since P is m-homogeneous we can write:

P\ p L

(Z ||P(fcj)||”) < M52 (112532 lmgsia))™
j=1
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for all (7;)22) € li(sq)(E). O

If n € Nand A C E we denote by Py m(s:q)),4("E; F') the vector space of
all n-homogeneous polynomials from E into F that are (p, m(s; ¢q))-summing
on A. If either A = {0} or A = E this space is denoted respectively by
P(p,m(s;q))(nE; F) and 7T(p7m(s;q))(nE; F) If Pe 'P(me(S;q))@E; F), we denote
by || P|| (pm(s:q)) the infimum of all L > 0 satisfying the last inequality in 5.3.2.
This gives a (p-)norm on P, m(s:q)) (" E; F) and (P m(si) ("E; F), || - | om(sia)))
is a complete metrizable topological vector space. If s = ¢, we use the no-
tation P m(ge),A("E; F) = Pas,pg,a("E; F). This is the space of the n-
homogeneous polynomials from E into F' that are absolutely (p, ¢)-summing
on A. As above, we use the notations Pes (pq)("E; F) and 7es (pq)("E; F)
when A = {0} and A = FE, respectively. In this case the (p-)norm on
Py ("B F) = Pas (g ("E; F) is denoted by || . [las,(p.q)- When p = g,
we replace (p, q) by p in the last three notations and we say that the polyno-
mials of these spaces are absolutely p-summing on A, at 0 and on E, respec-
tively. If s = +o00 we write P m(ocig)),a("E; F) = Prpg,a("E; F). This is
the space of he n-homogeneous polynomials from FE into F' that are regularly
(p,q)-summing on A. As before, we use the notations P, q ("E; F) and
Ty pq) (" E; F) when A = {0} and A = E respectively. If p = ¢, we replace
(p;q) by p in the last two notations and we say that the elements of these
spaces are regularly p-summing at 0 and on £ respectively. When n =1 we
replace P by L in the preceding notations.

We observe that P, m(siq) ("E; F) = {0} if ¢ > np and 7 in(s:q) ("E; F) =
0 if ¢ > p. Therefore, in these cases we have non trivial spaces only when
q < np and g < p respectively.

5.3.3 Definition If E, F' are complex Banach spaces and a € E, a holo-
morphic mapping at a with values in F' is a mapping f from B,(a) C E into
F' such that there are 0 < r < p and continuous m-homogeneous polynomaials
P,, from E into F', m € N, such that

fla+a) = fla) = 3 Pufe).

with the convergence being uniform for x € B,.(0).

If f is a mapping as in 5.3.3 it is possible to prove that

1 fla+ Ax)
Pule) = 5 s " A
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whenever ¢ satisfies ||oz|| < r. In this case it is usual to write P, =
(m)~d" f(a).
Now we are ready to prove the following theorem. This result has some

connection with Nachbin’s concept of holomorphy type. We shall return to
this later.

5.3.4 Theorem A holomorphic mapping f at a point a € E with values in
F is (p, m(s; q))-summing at a if, and only if, (m!)"'d™ f(a) € Ppm(sgn("E; F)
for every m € N, and there are C' > 0 and ¢ > 0 such that

Im) = d™ f(@)l] p(siqy < C€™,
for all m € N.
Proof - (1) We consider that (m!)"'d™f(a) € Pm(sq) (" E; F) for every
m € N, and there are C' > 0 and ¢ > 0 such that

[m) = d™ f (@)l (s < Ce™,

for all m € N. If we take (7;)32; € lin(siq)(E), With [[(25)52 lm(sig) <0 <6 <

¢ ! we can write, for p > 1,

I(f(a+25) = f(@)iSllp < Z I((m) =™ f(a) ()31 1

m=1

< +00.
— 05

This shows that f is (p,m(s : ¢))-summing at a. In the case 0 < p < 1 we
can adapt this proof by using the triangular inequality for || . 7.

(2) Now we suppose that f is (p,m(s;q))-summing at a. Hence we can
suppose that there are C' > 0 and § > 0 such that

fla+a) = fla) = 3 —d" f(a)(x),

for z € Bs(0), and
1(f(a+ ;) = f(a)52 ) < CUI(5)52 s

for ||(x]);’ile (sig) < 0. For this (7;)22, and m € N we can write

1 fla+Az;) - f(a)
)(z;) A|1 dx

— || 2mi Amtl

00 p 00 p
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<3 sup [lf(a+ Azy) — F@IP < 32 [1f(a+ M) — F(@)?

j=11A=1 j=1
< C||(/\]I]);>i1||gm(s,q) = CH(xJ);)ilHZm(s,q)
Here |);| =1 for each j.
This implies that (m!)~'d™f(a) € Ppm(siq) ("E; F). By proposition 5.3.2 we
have
. 1\™
" f(a) < Colp (5) .

1
Hm!

(pm(s3q9))
This concludes our proof. O

With the same type of reasoning we can prove the following result.

5.3.5 Theorem A holomorphic mapping f at a point a € E with val-
ues in F is absolutely (p,q)-summing at a if, and only if, (m!)~'d™f(a) €
Pas.pg)("E; F) for every m € N, and there are C > 0 and ¢ > 0 such that

“(ml)ildmf(a)H(p,m(S;q)) < Cc™,
for all m € N.

5.3.6 Theorem Let0 < q < s < 400 and [ be a mapping defined on an
open subset A of E, with values in F', that is holomorphic at a point a € A.
Then the following conditions are equivalent:

(1) f is (p,m(s;q))-summing at a;

(2) Yapm(siq)(f) is a well defined mapping from Vm(s;;)ﬂ(a) into ,(F), for
some open neighborhood A of a in E and it is holomorphic at the origin.

Proof - Since we have Theorem 5.1.8, it is enough to prove that (1) implies
(2). By Theorem 5.3.4, we know that (m!)~'d™ f(a) € Pym(sq)("E; F) for
every m € N, and there are C' > 0 and ¢ > 0 such that

[(m!)1d™ f(@)]| pan(sigy < C™,

for all m € N. From previous results it follows that g m(s.q ((m.1) "' d™ f(a))
is an m-homogeneous continuous polynomial from £,,(sq) (£) into ,(F') and

190m(ss0) (m) 1™ f(a)) | = | (md) =1 d™ £ (@) ] pm(sray)-

First we suppose p > 1. we have
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8

[apmtoan (D))l = |(Z 7))

m=1

< 3 | (im @) 7| = 3 [emmisn (0n) 8" @) ()30

hE

< H(m!yldmf(a)u(p;m(&q)) H(%)] 1Hm(sq

3
I

8

< 32 Ofell) o)™ < € 3 (ep)™ < 4o

= m=1

for all [[(2;)52 lm(s:q) < p < ¢”'. This implies that

7vZ)WMn(S;tJ)(f)((xj)?il) = 2_:1 77/107p,m(5;q)((m!)_ldmf(a))((xj);’il)

1 Hence
1

uniformly on every closed ball of center 0 and radius p < ¢~
Va,pm(sig)(f) is holomorphic on the open ball of center 0 and radius ¢~
The case 0 < p < 1 is proved in a similar way by the using the triangular
inequality for p-norms. O

With similar reasoning we can prove:

5.3.7 Theorem Let f be a mapping defined on an open subset A of E,
with values in F', that is holomorphic at a point a € A. Then the following
conditions are equivalent:

(1) f is absolutely (p, q)-summing at a;

(2) Yapqg(f) is a well defined mapping from Vq#;(a) into L, (F), for some open
neighborhood A of a in E and it is holomorphic at the origin.

5.4 EXPONENCIAL TYPE FUNCTIONS

In this section we study results on multiplication and division of functions of
exponential type and their relations to (p, m(s;q))-summing functions.

5.4.1 Definition A holomorphic mapping on E with values on F (entire
mapping from E into F') is said to be of exponential type if there are C' > 0
and ¢ > 0 such that
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1 ()] < C exp(c|]]), Vo € E.

It is easy to see that the set of all entire mappings of exponential type
from F into F is a vector space Exp(E;F). It is also clear that f is of
exponential type if, and only if, f — f(0) is of exponential type.

5.4.2 Theorem If f is an entire mapping from E into F', the following
conditions are equivalent:

(1) f is of exponential type.
(2) There are D > 0 and d > 0 such that

|d™f(0)|| < Dd™, Vm € N.
(3)

lim sup ||d™ £ (0)||"/™ < +o0.

Proof
If we assume (2) we have
— 1 m - 1 m
1£@) = FO) = | 3 - d" ) @) < 3 |- dm o))
m=1 m: m=1 m:
> 1
<3 D" o] < Dexp(da]) Vo € .
m=1 :

This shows that f is of exponential type and (2) implies (1).
Now we want to prove that (1) implies (2). By the Cauchy integral formulas,
for ||z]| =1 and 0 < ¢, we have

4" 7 (0) ()| =| [ IO ] < ik s 0 ) < mic PR,

I\|=t

271 Jia|=t Al

Hence, we have

™ £(0)] = sup [d™ £(0) ()] < m!OeXf;ELCt)-

llzll=

for all £ > 0. We know that the function g,(t) = 22 assumes its minimum

tm

on |0, = oo at the point m/c and this minimum value is (ec/m)™. Thus

(ec)™

mm

ld" £(0)]] < miC
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Since
1 1/m
lim () =e.
m—oo \ m)!

lim sup |d™ f(0)]]™ < e.

We have

Hence, for ¢ > 0, there is D(g) > 0 such that
ld™ f(0)[| < D(e)(e +e)™, Vm €N

and (2) follows.
The equivalence between (2) and (3) is clear O

5.4.3 Theorem If f, g and h are entire mappings on E with values in C,
f(0) #0, h(z) = f(x)g(z) for all x € E, with f and h of ezponential type
on E, then g is of exponential type on E.

The proof of this result can be found in [5]. Tt is an easy consequence of the
corresponding Malgrange result for entire mappings of one complex variable.

We now examine some special subspaces of Exp (E; F).

5.4.4 Definition An entire mapping [ from E into F is said to be of
(p,m(s; q))-summing exponential type at a if d"f(a) € Ppmsign("E; F),
for all natural m, and there are C' > 0 and ¢ > 0, such that

[d™ f(a) lpm(sig)) < C™ Vm € N.
The vector space of all these mappings is denoted by Exp(pm(sig)),a(£; F).

Since [|[d™f(a)| < [|d™f(a)||pm(sq)s We see that EXpm(sqa(E; F) is a
vector subspace of Exp(E; F).

5.4.5 Definition An entire mapping f from E into F is said to be of
absolutely (p, q)-summing exponential type at a if d" f(a) € Pas (p.g)("E; F),
for all natural m, and there are C' > 0 and ¢ > 0, such that

d™ £ (@) |as.pg) < Ce™ Vm € N.

The vector space of all these mappings is denoted by Expqs (p.q).a(£; F).
Since ||d™ f(a)|| < ||d™ f(a)||as,(p.q)>, We see that Expas p.q).«(E; F) is a vector
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subspace of Exp(E; F).

The following results follows from the definitions involved and from the-
orems proved in section 3.

5.4.6 Theorem For(0 < g < s < +o00, an entire mapping from E into F' is
in EXp(pm(siq)).a(E; F) if, and only if Yo pm(sq) (f) is in EXp(Comsq)e); £ (F))-

5.4.7 Theorem An entire mapping f from E into F is in EXpas (p.q).0(£; F)
if, and only if, apq(f) is in Exp(ly(E); (,(F)).

5.4.8 Theorem For0 < s < q < 4o0, if f, g and h are entire mappings
on E with values in C, f(a) # 0, h(z) = f(x)g(z) for all x € E, with f and
h of (p,m(s; q))-summing exponential type at a € E, then g is of (p, m(s;q))-
summing exponential type at a € F.

Proof - By 5.4.3 we have g of exponential type. We note that

- k! h(a + Ax;) — h(a)
k N o= J
FhO)y) = 5 [ T

Sy (R O RS ()RR
A=1

27 Ak+1

k! (9(a + Az;) — g(a))f(a)
T /|)\ 1 Ak=1 o
k! / (f(a+ Az;) — f(a))g(a+ Axy)

IA=1

211

e A\ + f(a)d"g(a)(z;).

Thus we have

Koo — L (dmaey - B[ Ul An) — (et )
Fa0)a) = i (Fr@w) - 5 [ )

f(a) 270 plan
and
[d*9(0) ()] < Fla )||dk (@) ()] + \f( j] Sup g+ Aay)||d" f(a)(z;)].
For [[(2;)52) lm(s:q) < 1, we have ||z;]| < 1 for every j € N. Since g is of

exponential type, there are C' > 0 and v > 0 such that
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sup [g(a + Az;)| < Cexp(y).

[A|=1

Now, from the preceding inequalities, we have

ld"g(0)lls ,H (@) | o) + C exp(7)[1d" f(a)l| o (ss0)-

1 1
D) = T5(a) f(a)]

By our hypothesis, there are A > 0, B > 0, a« > 0 and 3 > 0 such that
ld" f(@) | pssan < Aa® and[|d"B(a)]] s < BB

for all £ € N. Hence we have
B Cexp(y)A

145 (0 N o (If( T @) )W“)’

for all £ € N. This shows our theorem. O

5.4.9 Theorem If f, g and h are entire mappings on E with values in
C, f(a) # 0, h(z) = f(x)g(z) for all x € E, with f and g of absolutely
summing (p, q)-summing exponential type at a € E, then g is of absolutely
(p, q)-summing exponential type at a € E.

5.5 (p;m(s1,q1),...,m(sy, q,))-SUMMING n-LINEAR
MAPPINGS

In this section Ey,..., E, and F' are Banach spaces over K. We consider
P, 85, q; €]0,+00], such that ¢; < s;, for j =1,...,n, and

1 1 1

- < —+.. 4 —.

p q1 dn

5.5.1. Definition - A multilinear mapping T from E; x ... x E, into
F s said to be (p;m(s1,q1), - - -, mM(8n, gn))-summing if (T'(x15,. .. Tnj))32, €
lp(F), for each (x1;)32, € bin(spqn)(Br), K =1,...,n.

We denote the vector space of all multilinear (p; m(s1,q1), ..., m(Sn, qn))-
summing mappings by Lp:m(s,,q1),..., m(smqn))(El, o B F).
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5.5.2. Proposition - If T' € Lipum(sq),...m(sngn))(Ers - - s Eni F), then T
is regularly (p; q)-summing at 0, with
1 1 1

=+
q q1 qn

Hence T 1s continuous on By x ... x E,

Proof - We consider on E; X ... x E, the norm

.....

If ((215,...,215))32, is absolutely g-summable it follows that (z4;)52, €
o (Ey) and Ly, (Ey) C lin(syq. (Er), for k= 1,... n. Hence (T'(7y;, ... 7,5))32, €
¢,(F) and our proposition is proved. O

T € Lipmsiq0),msman)) (E1s - -, By ), we have a well-defined n-linear
mapping Y(7T'), from lp(s, q1)(E1) X ... X Ln(s, g0y (En) into €,(F), given by

V() (21)32 05 - s (20)520) = (T(@14s 0005 T0g)) 34

It is easy to see that this mapping is separately continuous by using the Closed
Graph Theorem and the continuity of 7. Hence 1 m(s,q) (1) is continuous.
The following theorem is true

5.5.3. Theorem - IfT is n-linear from E1 x ... x E, into F, the following
conditions are equivalent:

(1) T e E(p;m(sl,ql) ..... m(sn,qn))(Elv s 7ETL7 F)?

(2) ¥(T) is a well-defined and it is a continuous n-linear mapping on the
product Co(s, q)(E1) X ... X Lo, g0) (En) with values in €,(F);

(3) There is C > 0 such that

(T (@1 203l < C TL@R5)50 lmsian)s
k=1

for all (z1;)32 € bin(spqe)(Bk), E=1,...,n;
(4) There is D > 0 such that

(T (21, - 2ng))ji o < D T 11 @k) 5 llmcsran
k=1

forallmeN, ap; € By, k=1,...,nand j=1,...,m.
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In this case we have

||¢0,p7m(s,Q) (T)H = i(%)f C= i(r41)f D.
Proof - As we observed above, (1) implies (2). It is clear that (2) implies
(1). By the characterization of continuous multilinear mapping we have the
equivalence of (2) and (3). Of course (3) implies (4). If we use of passage to
the limit, we prove easily that (4) implies (3). O

If consider || . [|gpm(s1,a1),m(5m,an)) OB Lpsm(s1,a1)rm(sman)) (B, - s Ens F)
defined by

||T||(p;m(81,q1) ..... m(Sn,qn)) — ||7v/}0,p,m(s,q)(T)||v

we have a (p-)norm that makes the space metrizable and complete.

For B, = FE, s = s and ¢4 = ¢q, k = 1,...,n, we use the notation
Lpim(sig)("E F) for Lipm(s,g),...m(s,g)(E, - .., E; F). The corresponding (p-)
norm is denoted by || . ||(pim(s,q)- It is not difficult to prove that a multilinear

mapping 7" from E™ into F'is (p; m(s, q))-summing according to the definition
of this section, if and only if, it is (p; m(s,¢))-summing at 0 according to
definition 1.1.

5.5.4. Proposition - (1) For T" in Lpm(sq)("E; F), it follows that T is
i Plpim(say) ("E; F) and

1Tl sy < T | pimisia))-
(2) If P € Poun(sigy)("E; F), then P € Lipm(sig)("E5 F) and , forp > 1,

. nm
HPH(p;m(S;q)) < HHP”(IJ;m(S;q))f

and, for0 <p <1,
~ n(p—l— n"
||P||(p;m(5;Q)) <2 v 1)H”PH(p;m(S;q))'

Proof - This follows from the characterization theorems 5.5.3, 5.3.1, the fact
that 1o,p,m(s,q) (1) is the associate polynomial to ¥y m(sq)(T) = ¢(T') and
Vo.pm(siq)(P) = ¥(P) is the associate multilinear mapping to 1g pm(s;q) (F)-
U

The proof of the following proposition follows easily from the involved
definitions.
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5.5.5. Proposition - For T in Lpm(sy:qr),...m(smign)) (E1 - Ens F), S €
L(F;G), Rj € L(Dj;E;), D; a Banach space, j = 1,...,n, it follows that
SoTo (Rl, ce ,Rn) 18 1N E(p,m(&;q1),...,m(sn;qn))(Db Ce ,Dn; F) and

(p,m(81;q1),---7m(sn;qn))”SH”T”(p7m(81;q1),---,m(sn;qn)) H ||RJ||
j=1

HSOTO(R17"'7RTL)’

5.5.6. Proposition - If0<qg <pr<r, k=1,....nand0 <t <s are
such that

1 1 1

S<—

s T T

1 1 1

S —

t D1 Pn
1 1 1 1 1 1
— o< —
D1 Pn t T Tn S

then
Ltmpriqn)seimpaian)) EL - Eny F) C Lism@riiqn)em(raign)) (B, - -, Eny F)
and
1Tl s.mriia)secmraian)) < NIl @miian)semaign))
for all T € Lumprign),..mmign) (B, -, Eny F).

Proof - We set 1/ag =1/t —1/s,1/8; =1/p; —1/r;, for j =1,...,n. Now
we consider v, > 0, z;, = Tjkl’?k c Ej,forj=1,...,nand k =1,...,m
We also take 1/ae=1/p; +...1/3,. It follows that ag < ov.We have:

GRIT s @) DRl = 1T e, 7P i) Dl

n

a/p
S ”TH(tvm(plﬂll)m pnﬂn H T]kak P 0 )Zl 1Hm pij])
& 185205k
o m
< ||T||(t,m(p1;q1),~- m(Pn3gn)) H (Tjn) e 1||pg D) BTG ! s 1||w,pJ
7 /8
(e}
< ”T||(t7m(p1;q1),~- m(Pn3qn)) H Tjk k= 1||pg (q5) H( J)k 1||67||( )k 1|

- ||T||(t7m(p1;q1)--- (Pn3an)) ||(7k k= 1||a H || Tjk k= 1||pg(qg H( )
7j=1
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< HTH(t,m(m;tn) ----- m(prign) )H(’Vk | H I1( Tjk k= 1HTJ(QJ)’||( ) e 1Hw e

7j=1
This implies
[l T (@ 1k, - -+, i) [)in e
< ||T||(t,m(p1;q1) ,,,,, m(Pr;qn)) || 'Yk k= 1||0c H || k 1||m (ry3q5)
< ||T||(t,m(p1;q1) ----- m(Pr;qn)) || 'Vk k= 1||a0 H || k 1||m (rysa5)-

Hence

n

(T (1, -5 Tok) e |l s < ||T||(t,m(p1 iq1)sem(Prign)) H jk k= 1Hm(7y )"

This proves our result. O

5.6 EXTRA RESULTS

5.6.1. Theorem - We suppose that for an f defined on A C E, with values
on F, there are M >0, § > 0 and (x},)5>, in {.(E) such that

00 1/r
Hf<a+as>—f<a>uSM(Zr<x,x;>V) |

k=1

for all ||x|| < §. Then f is absolutely r-summing at a and

o 1/r
(Z 1f(a+z;) - f(a)||r) < M[(@) Rz [l 1 (25) 72 s
j=1
for all (2332, € C4(E), with (2,3 s < .

Proof - We have

0o 1/r o oo 1/r
(Z 1f(a+ ;) — f(a)l\r) <M (ZZI <@, @) > I’”)

j=1 j=1k=1

o oo 1/r
=M (Z Do <wjal > |T) < MI[(23)eZa I [1(25) 72 o

k=1 j=1
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for all (z;)22, € G(E), with [|(2;)52;[|w, < 0.
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Chapter 6

(m(s;p), q)-SUMMING
MAPPINGS

6.1 THE NOTION OF (m(s;p), q)-SUMMING
MAPPINGS

In this chapter A is a non empty open subset of a Banach space F and F' is
another Banach space.

In Chapter 4 we started the study of the linear (m(s;q),p)-summing
mappings between Banach spaces. In this chapter we study the non-linear
(m(s;p), ¢)-summing mappings. Here we have to separate the definitions of
(m(q; q), p)-summing mappings and that of unconditionally (g, p)-summing
mappings. The reason for this distinction will be made clear later in this
chapter.

6.1.1 Definition (1) If0 < p < s < 400, a mapping f defined on an open
subset A of E, with values in a Banach space F, is said to be (m(s;p),q)-
summing at the point a € A if (f(a+x;) — f(a))32; € lim(syp) (F), whenever
(z7)52, € l3(E) with a+x; € A, x; in a neighborhood U of 0 in E, for each
Jj € N. [t is said that f is (m(s;p),q)-summing on A if it is (m(s;p),q)-
summing at each point a € A. The (m(s;p), p)-summing mappings are also
called (s; p)-mixing mappings.

(2) If 0 < g < 400, the mapping f is is said to be unconditionally (p,q)-
summing at the point a € A if (f(a+z;)— f(a))32, € Ly(F) =€, (1.4-7,
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Chapter 1), whenever ()52, € (;(E), with a+x; € A, x; in a neighborhood
U of 0in E, for each j € N. It is said that f is unconditionally (p,q)-
summing on A if it is unconditionally (p,q)-summing at each point a € A.

For (z;)52, € €;(E), with 0 < g < 400, we have

lim ()72, [[wg = 0.

For 0 < ¢ << s < 4o0, if f is (m(s;p);q)-summing at the point a € A,
U is as in definition 1.1 (1), 6 > 0, with Bs(0) C U, and (z;)52, € (4(E)
there is n € N such that [|(2;)52, |lwy < 0. Hence (f(a + ;) — f(a))52,, €
C(sipy(F'). Consequently we have (f(a + ;) — f(a))32y € lin(syp) (F). Also, if
f is unconditionally (p, ¢)-summing at the point a € A, U is as in definition
1.1 (2), > 0, with Bs(0) C U, and ()32, € {;(F) there is n € N such that
[(25)3lwq < 9. Thus (f(a + z;) — f(a)2, € £,(F). Therefore we have

(fla+ ;) = fla))jZ, € G(F).

These remarks allow us to prove the following result.

6.1.2 Theorem (1) For 0 < p < s < 400, a mapping [ from A into
F is is (m(s;p),q)-summing at the point a € A, if, and only if, for each
(z;)32, € ly(E), with a+x; € A for each j € N, it follows that (f(a + x;) —
F(@)521 € bansp) (F).-

(2) A mapping f from A into F is unconditionally (p,q)-summing at the
point a € A, if, and only if, for each (v;)32, € {;(E), with a+x; € A for
each j € N, it follows that (f(a+ x;) — f(a))32, € ((F).

We denote by F(am(s;p),q)<A; F') the vector space of all the mappings from
A into F' that are (m(s;p),q)-summing at the point a of A. The vector
space of all F-valued (m(s;p),¢)-summing mappings on A is indicated by
Fim(spya) (A; F). We also write respectively F( " I(A; F) and 7 (A; F) in
order to indicate the vector space of all mappings from A into F' that are
unconditionally (p,g)-summing at a and the vector space of all F-valued
unconditionally (p; ¢)-summing mappings on A. In this later case, we simplify
the notations by writing p where it should appear (p,p). Also, we omit p

when p = 1.

We note that, for 0 < ¢ < s < +00, every [ € F(j,(sp).q (4 F) can be
extended to E if we consider f = f on A and f =0 on A°= E\ A. In this

114



case f € f(”‘m(s;p%q)(E; F). Of course the mapping
f € :F(am(sﬂ’),fﬁ <A’ F> - f = f(am(s;p),q)(E; F)

is linear and injective. Hence in a natural to consider Fflm(s;p),q)( A:F) C
]:((IM(S;p) (E; F) through this mapping.

Since £,(F) C l(syp)(F'), every absolutely (p, ¢)-summing mapping at a
is (m(s;p), ¢)-summing at a.

Q)

We note that, for a € A, the set A—a :={b—a;b € A} is open in F and
0 € A—a. It is easy to check that, if f,(z) := f(a+x) — f(a) for x € A—aq,
then f is (m(s;p), q)-summing (unconditionally (p, ¢)-summing) at a, if, and
only if, f, is (m(s;p),q)-summing (unconditionally (p, ¢)-summing) at 0. If
f is linear, we have f = f,, for every a € E. In this case, we can say that
f is (m(s;p), ¢)-summing on F (unconditionally (p,q)-summing) when it is
(m(s;p), q)-summing (unconditionally (p, ¢)-summing) at some point of E.
This does not happen in the nonlinear case. As we saw in example 5.1.3 of
Chapter 5, by considering E = /, the 2-homogeneous polynomial considered
in that example is absolutely g-summing at each a in the kernel of 2’. If b
is not in the kernel of 2/ and P were (s,q)-mixing at b, acting as in 1.3,
we would have idg (s,q)-mixing. But it is proved in [18] 22.3.5 that, for
0 < g < s < 2, the identity mapping on ¢y is not (s;¢)-mixing. Hence P
cannot be (s; ¢)-mixing at b.

As it was done in Chapter 5 we consider
Vigala) = {(z;)52, € ;(E);a+ x; € A, for each j € N}.
In Proposition 5.1.4 of Chapter 5 we proved that V,, , 4(a) is a neighborhood
of 0in (C4(E), [ - |lwq)-
If fis a (m(s;p),q)-summing mapping at a from A into F we have a
MAappPing Vg m(s;p),q(f) defined on the interior V,, 4 a(a) of V,, 4 a(a), with values

i Ln(sip) (F), given by Yo m(sp) o () ((2)520) = (fa + ;) = f(a))32y.

6.1.3 Theorem If +oo > s >p and f is a (m(s;p),q)-summing mapping
at a from A into F', then Vg m(sp)q(f) is regularly (s(p), q)-summing at 0.

Proof - For (X;)p2, € £,(¢;(F)), with X}, € Vu,q,OA(a), we can write Xj =
($k7j)§°;1. As we saw in the proof of Theorem 5.1.6, Chapter 5, we have
(%k,;) (k,jyenxn unconditionally g-summable in £. Hence we conclude that
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(fla+ ;) = f(a)) @ jenx is m(s; p)-summable in F, since f is (m(s;p), q)-
summing mapping at a. Now we can write

(f(a + flfk,j) - f(a))(k,j)eNxN = ()\k,jyk,j)(k,j)eNxN>

with (Ak;) @k, j)enxn absolutely s(p)’-summable and (yg ;) j)enxn Weakly ab-
solutely s-summable in F'. Now we have

1 1
i , s(p)” e , N\ s
(Z ||¢a,m<s;p>7q<f><xk>||:,Ef;2;p)) < (Z )2 0 () 22 152 )
k=1 k=1
1

1
o (s S (£ 50

kEN \ ¢p€Bps j=1 k=1 j=1

< H()\k,j)(k,j)ENXNHS(p)’H(yk,j)(k,j)eNXNHw,s < +00.

This proves our result. O

6.1.4 Theorem Let f be a mapping from A C E into F'. For +00 > s >p
and a € A, f is (m(s;p), q)-summing mapping at a if, and only if, there are
§ > 0 with Bs(a) C A and C > 0 such that

1(f(a+2) = F@)ZllPL ) < Cll)2 )19, (*)
for all ()32, € £2(E), with [|(2;)3 |lug < 6.

Proof - By the previous Theorem 6.1.3 and by Theorem 2.2.5 of Chapter 2
we have that (x) is satisfied.

Clearly (*) implies that f is (m(s;p), ¢)-summing mapping at a. O

6.1.5 Theorem Ifa € E and f is a mapping defined on a neighborhood of
a with values in F' and 0 < p < s < 400, then the following conditions are
equivalent.

(1) f is (m(s;p), q)-summing at a.

(2) Yam(sp).q(f) s a well defined mapping from Vu,q;l(a) into Ly (sp)(F), for
some open neighborhood A of a in E.

(3) There are M > 0 and 6 > 0, such that

I(flata) = F@)imi ) < M) lwa)”
foreachn eN, x; € E, j=1,...,n, with [[(z;)}_||wq <.
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(4) There are M >0 and § > 0, such that

1(f(a+25) = F@)3 ) < M(I[(27)3 o),
forz; e B, j=1,2,..., with |[(2;)32|lwg < 6.
(5) Yam(sip)q(f) is a well defined mapping from Vu,qu(a) iNnt0 Li(syp) (F), for

some open neighborhood A of a in E, that is reqularly (s(p)’; q)-summing at
0.

Proof - We note that (2) is a reformulation of (1). It is clear that (5) implies
(2). We have that (5) implies (4) since ¥q m(syp),(f) is s(p)'/g-regular at 0.
If we assume (4) we have that 1, m(sp)¢(f) is s(p)’/g-regular if we show that

Yam(sip)q(f) 1s well defined on Vu,%B;(a)(a). (:L'J)OO is in Vi g B, (a), we
can find m € N, such that [|(7;)32;wq < J. By (4) we have

[(f(a+x5) = f(a)32; lm(sp)
< [(f(a+x5) = F(@) 7 lmesp) + 1 (@ +25) = F(@)3 0 lmsp)
<|(fla+25) = F@)7 (s + (M8)T < 400,

This shows that g m(s;p),.q(f)((25)52;) is defined. The equivalence of (4) and
(3) is easy to prove. Theorem 1.3 shows that (1) implies (5). O

6.1.6 Theorem For0 < q < s < 400, a mapping f : A C E — F 1is
(m(s;q),p)-summing at a € A if and only there are o > 0 and § > 0 such
that

{f: (S 1< kst - @) > 1)

q
s

1
q
} < ol @) 5 1 )il

for all finite families of elements xq,...,xym € E, with ||(x;)||wy < 6 and
Yise-os Yy € F.

Proof - (1) First we consider f (m(s;q),p)-summing at a € A and consider
Yi, .-, Y, € F'. We define

="y 10k
k=1
where

n —1
Il (Z ||yz||8)
h=1
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and dy, is the Dirac measure at by, = y;./||yill, k = 1,...,n. Forazy,...,z,, € E
by 1.4.2 of Chapter 1 we have
1
}q

{Z(Zkyk, a+xi>—f<a>>|s)
}q 16iall

=1
< 1(f(a+2:) = f(@)iZillmsa [ (Y ) i1l s-

Since f is (m(s;q);p)-summing at a € A, there are ¢ > 0 and § > 0 such
that

»Q

equal to

{i ([, 1 <9 s(asa) = fla) > Pants)

i=1

n

1(fa+z:) — fla) 1||S(q < o*@' || ()7 |17
for all finite families of elements z, . . a;m € E, with [[(z)]|wp < 6.

If we replace this in the above inequality we get

{i (Zl <o flat2) - fla) > |S)

1

}q < ol (@)

q
s

Ed AT

(2) The inequality

{i (321 <k a0~ @) > 1)

k=1

»
Q=

0

} < of|(z:)iZ,
for all finite families of elements z1,...,z,, € E, with |[(2;)7]/w, < § and
Yi,-- -y, € F', implies that

{f: ([ 1 <9 s(ata) = fla) > Pants)

a
s _Db

g(fz)’ (*)

=1

}q < ol ()

for all discrete probabilities p € W(Bpg), 1,...,Zm € E, ||(2)"1]|wp < 0.
Since these probabilities are dense in W (Bg) for the weak topology de-
fined by C(Bp), we have (x) for all u € W(Bp/) and 21,...,2, € E, with
|(z:)7 ||wp < 0. By 1.4.2 of Chapter 1 we have

1(F(at 22) = F@) ey < ol 5
for all z1,..., 2y € E, ||[(2:)7|lwp < 0. This shows that f is (m(s;q),p)-
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summing at a € A.

(1) and (2) imply the final assertion of our theorem. O

6.2 COMPOSITION RESULTS

6.2.1 Proposition If f is a mapping from A C E into F that is (m(s;q), p)-
summing at the point a € A and S € Pass("F; G) then So f is absolutely
(q, p)-summing at a.

Proof - We recall that
1 1 1

- 4.
g s(qg) s
For (7;)32, € £;(E) and for ¢ > 0 we choose representations f(a+z;)—f(a) =
T:¥i, © € N such that

()21 llstay 1) llw,s < (X +)I(fla+ i) — f(@)Z1lm(sia)-
We also know that there are ¢ > 0 and ¢ > 0 such that

s(@)'

(1 +e)l[(fla+z:) = fa)Zilmsg < (L+)al(@)Zillwb
when ||(2;)7%||wp < 0. We know that

1S (wa))Zills < 1S Tlas,sl(4i)iZ 15 s-

We also have
1(S(f(a+ i) = fa)Zallg = (7S (wi))2alle < 120 lls@r (S (i)l s-
Now we use the previous inequalities in order to have
1(S(f(a+2i) = f(a))Zillg < NS lassll (7)1 sy 1(5i) 2 5
< (1S as,s 17720 gy 1 (i) 224 [,

ns(q)

< (o) a"[[(z)Zillws MISlas,s < +oo,
when [[(2)82) [|wp < 0.

This implies that S o f is absolutely (¢, p)-summing at a and our result is
proved. O

In the preceding theorem, if we consider f linear, we can state the fol-
lowing result.
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6.2.2 Theorem IfT € Lip(sq)p)(E; F) and S € Pos s("F; G) then SoT €

Pas,(qp)("E;G) and
15 0 Tlas,igp) < 1S las,s 11T

5:9),p) "

Proof - We look at the proof of 6.2.1 and see that, for a given € > 0 and for
(zj)%2, € £;(E), we can find representations T'(z;) = 7;9;, i € N, such that

”(Ti)éﬁlusm)’||(yi>f?21”w,s < (T +9)l(fla+zi) — f(a))z?ilnm(sm)-
We also know that
(1 + &) [[(T(:))Z1 [ m(sig) < (1 + )T m(siqym ()21 [l p-
We also have
1(S(f(a+ i) = fa))Zillg = (7S (i) Zalle < N(7)E0 sty 105 (i) [ls-
Now we use the previous inequalities in order to have
1CS(T'(:)))Zllg < 1S las,s Il (73)32 1 oyl (i) 22 M1
< Slas,sl1(7) 221 gy (i) 22 M1
< (L4 &) 1T seqyipy 1 ()220 1 1Sl as,s < 400
Since ¢ is arbitrary this gives our result. O

Since L) (E; F) C LT, (B F) = Lin(sig)g) for ¢ > 1 (see 4.1.8, Chap-
ter 4), we can use the previous result and state the following interesting
theorem.

6.2.3 Theorem Ifq > 1, T € Lossq(E;F) and S € Puss("F; G) then
SoT € Puqy("E:G) and

1570 Tllas.g < [IS1as,s TG

as,s(q)’”

6.2.4 Theorem For complex Banach spaces E, F' and G, if f is a mapping
from A C E into F' that is (m(s;q), p)-summing at the point a € A and g
is holomorphic and absolutely s-summing at f(a) then g o f is absolutely
(¢, p)-summing at a.

Proof - We recall that




For ()32, € £, (E) and for € > 0 we choose representations f(a+z;)—f(a) =
T:Yi, © € N such that
1) Zill sy W) Zillws < (1 +)I(fa+z:) = f(@))Zillmsa)-

We also know that there are o > 0 and 6 > 0 such that

s(a)’
(1 +e)[[(f(a+z:) = fa)Zilmsg < (L+)al(@)Zsllwp

when [|(2:)2|lwp < 0. We know that (n!)~'d"g(f(a)) is absolutely s-
summing at 0 and there are C' > 0 and ¢ > 0 such that ||(n!)"*d"g(f(a))|lus.s <
Cc", for all n € N. See Theorem 5.3.3 in Chapter 5. We have

()" d"g(f (@) () Zalls < Cll (g2l

for all n € N. For ¢ > 1 we have

(g o fla+z:)— )Zillg < Z (7 (n) 7 d" g (f (@) ()2l

< i 1292 s (1) g (£ (@) ()

< 2 @) g IO ()2 o

n=1
ns(q)’
< Z "1 +e)" 0" ()2 ws
n=1
oo ns(q)
<O ererasy <o

if [ (24)2 |lwp < o, with 09 < 0 and ¢(14¢€)ody < 1. Of course &y has also to
be chosen small enough in such way that g o f(a + x;) is well defined for all
1 € N. This proves our result for ¢ > 1. In the case 0 < ¢ < 1 the preceding
proof is easily adapted by using the triangular inequality for g-norms. O

From this theorem and the fact that L7, (E; F) C L5 (E5 F) = Lim(siq)0))
for ¢ > 1, we have the following extension of Theorem 6.2.3.

6.2.4 Theorem For complex Banach spaces E,F and G, ifq>1, a € F,

T € Eg(sq),(E; F) and g is holomorphic and absolutely s-summing at T'(a),
then g o T s holomorphic and absolutely q-summing at a.
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Chapter 7
NUCLEAR MAPPINGS

In this chapter we study multilinear, polynomial and holomorphic nuclear
mappings between Banach spaces. These mappings appeared in [5] when the
author studied an infinite dimensional extension of the Malgrange theorem
on existence and approximation of solutions for convolution equations (see
[9]). For other related results we cite [11] and [10]. The concept of nuclear
multilinear mappings was extended and studied in [12]. In this chapter we
study further extensions.

7.1 NUCLEAR MULTILINEAR MAPPINGS

In this section, Ej,...,E, and F' are Banach spaces over K. We also denote
by L(Ei, ..., E,; F) the Banach space of all continuous n-linear mappings
from F; x ... x E, into F'. Here the norm in this space is given by
1T = sup  [[T(z1,...,zn)ll;
llz;[<1,j=1,....n

forall T € L(Ey, ..., E,; F).

We COHSideI‘ S 6}07 +OO]’ dk, Tk € [17+OO]7 Q;c S T;c S +OO, k = ]-7 sy n,
such that

1 1 1
1< =4 —+... 4+
S 4 an
In order to simplify our notations we write pp = (r,.(q,))" for k = 1,...,n.

We recall that, for k =1,...,n,
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L_1, 1
G e (@)

7.1.1 Definition A mappingT € L(E, ..., E,; F) is said to be (s;(r1,q1) ..., (Tn, qn))-
nuclear if there are ()32, € €5 (€ co, if s = +0), (y;)21 € loo(F),
(1)1 € by (ER), k=1,...,n, such that

T(x1,...,2,) = Z /\j901j($1) . ‘Pnj(xn)yj

J=1

forall x, € By, k=1,...,n. In this case we use the notation

oo
j=1
We denote the vector space of all such mappings by L, (s:r1,g1),...s(rmgn)) (B - - - s Ens F).
It

1—1+1+ +1
tn s 4 g

and
TN N s 1,000y = E TG 520 sl (W) 520 oo TT (k)50 s sa)
k=1

the infimum being considered for all representations of 7" as in 1.1, we have
a tp-norm on Ly, (s;(ry,q1),...(rman)) (E15 - - - En; 7). This t,-normed space is a
complete metrizable topological vector space. If r, = ¢, kK = 1,...,n, we
replace (s;(r1,q1), .-, (Tn,@n)) by (8;71,...,7,) in the preceding notations.
Ifry=...=r,=rand ¢ = ... = ¢q, = q we use (s;(r,q)) to replace
(s;(r1,q1),- -+, (Tn,qn)) in the preceding notations. If r = ¢, we replace
(s;(r,q)) by (s;r). When t, = 1, s can be written in terms of ¢,...,q,
and we replace (s; (r1,q1), .-, (Tny @) by ((r1,q1), -+, (Tn, qn)), or by (r,q),
whenry =...=r, =rand ¢t = ... = ¢, = ¢, in the above notations. In
this last case, when r = ¢, we replace (r, q) by r. We call the attention of the
reader for the different notations (s;r) and (r,q). The use of ; and , makes a
difference in the notations. In the case of 1-nuclear mappings we omit this 1
in the notations.

7.1.2 Proposition If Tis in Ly (sri,q1)trman))(E1s - Eni F), Ay is in
L(Dy;Ex), k =1,....n and S € L(F;G), then SoT o (Ay,...,A,) €
'CN,(S;(rl,ql),...,(rn,qn))(D17 cee 7Dna G) and
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The proof of this result follows easily from the involved definitions.

7.1.3 Examples (1) We have
TN < NIT M. (5:0r4.0) 70
for all T € L (s;(r1,q1)0s(rman)) (E1s - -, By F).

We consider a representation of 7" as in 7.1.1 and use Holder’s inequality
in order to write

1T (1, )l = D2 Njeri (@) - o (20)y;
j=1

< OV llsll )32 lloo TT 1ms ()32 llq;
k=1
n

< OG5 llsll i) lloo TT 11(om)52 gy,
f—1

<Dl )52 lloo TT 10r3) 520 lmry )
f—1

if |ok|l <1, k=1,...,n. Hence
1T < (1D llsl ()3 lloo TT 1 (0n5) 52 lmiry ar):
f—1

for each representation of 7" as in 7.1.1. This implies our inequality.

(2) The vector space L¢(Eh, ..., E,; F) of the continuous n-linear mappings
of finite type is contained in Ly (s(r1.q1),...(rm.00)) (E1s - - s Eni ). It is enough
to recall that T' € L¢(E), ..., E,; F) if it has a representation of the form

T(xy,...,2,) = Z ©1(x1) - .. i (Tn)yj,
=1

with op; € B}, k=1,...,n,y; € F, j =1,...,m. In this case it is usual to
use the notation

T = Z@lj X oo X PnjYj.
j=1
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B)IUT =1 X ... X py, we have

lpr X X nyllv.(sstra.a)orman)) = lspall - llspnll -
Since [|T] = [leull - - [lnllllyll, by (1) it follows that

o1 X o X OnYlIN (sitrr,an)sn gy 2 1011 lnllY]l-
On the other hand it is clear that

1 X X Pyl N sitr1.a0).rmign)) < llpall - [l enllllyl]-

(4) We consider (0;)52, € £, if 0 < s < +o00, and (0;)32; € co, if s = +o0.
We also take (Ozk])Jil €l for k=1,...,n. Now we deﬁne the “diagonal
"mapping D(o,ay;...an;), € Ly, .. ,E%; fl) by

Dio;ar5.an)zz, (§15)5215 - -+ (§ng)521) = (05005815 - - - nj&ng) i1

If we consider the usual Schauder basis (e;)52; of ¢, and consider the j-th
projection 7;, j = 1,2,..., defined on each {,;, k = 1,...,n, we can write
the representation

D(gjalj an] ZO']Ojljﬂ'] .. X QpT;€;5.

Since (m;)52, € E;‘i((&;ﬂ)’), with ||(7rj)j:1||wﬂ“§€ = Land [|(€)72[loc = 1, we
have that D(o,a,;...an)2, 18 (85 (r1,q1), - -, (75, ¢n))-nuclear and
1D 05...c0m)22, N3t o rngn)) < N(03) 520 sl (@) 52 My - - Ml ()52 [l

Now we can prove the following factorization theorem.

7.1.4 Theorem For T € L(Ey,...,E,;F) the following conditions are
equivalent:

(a) T is (s;(r1,q1), .-, (T, @n))-nuclear.

(b) There are Ay, € L(Ey;6y), k=1,...,n, Y € L(1; F), (0)), € Ly, if
s < 400, or (04)52, € co, if s = +00, and ()32, € €y, fork =1,....n
such that

T = YOD(UJQU an]);o O(Al,...,A )

1

In this case

1Tl sstr1.a0)estrmgar) = E YT C03)520 s TT (o) 52l 1A

k=1

126



with the infimum taken for all possible such factorizations.

Proof - By 7.1.2 and 7.1.3.(4) it follows that (b) implies (a) and

T (si6r1.0).vrmnanyy < YA (05)520 s H 1k )5 e [ ARl

In order to prove the reverse implication, for each € > 0, we consider any
representation of T of the form

oo
T = Zgjalj@lj X ... X Qi PniYs,
j=1
such that

||(O-])] s H I( O‘kj)] 1||pk||(90kj)g 1||wr ||(yj)] oo
k=1

S (X )T N, (550r1,q1)s0ees ()

Now, if we consider Ag(z) = (prj(z))52,, when x, € Ej, we have A, €
L(Ey; 6y) and [|Agll < [[(¢x) 321 lwrr » for k= 1,...,n. We also consider
Y € L({y; F), defined by

Y ((&5)52 j= 1) ijy]

We have [|[Y]| < [[(y5)52;]|cc- It follows that
T=Yo D(U]‘Ollj-nanj);‘;l o (Al, Ce ,An)

and

Y[ ()32 ls H Hey)Zall ol Arll < (U4 )TN (s56r1,00), (.00
k=1

This concludes our proof. O

Now we consider some inclusion results.

7.1.5 Theorem For s,t €|0,+0c0], 7k, Pk, g € [1,+0], s < t, 1. < p <
G, k=1,...,n

1 1 1 1 1 1
1< - + + . 4+ =, I<-+—+...+—
T T t 8

and
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1 1 1 1 1 1
— 4t — =
1 Tn S y41 DPn t

then EN (r1,q1),. -~7(Tn7Qn))(E17 B F) C £N,(t;(p1,ql),...,(pn,qn))(Ela By F)
and

”T“N t5(P1,41);--,(Pnsqn)
for all T € Ly (sir1,q1),...(rmsgn)) (B - - - -En; F)

Proof - We consider

(Tlvql)v ,(rn,qn))

1 1 1 1 1 1 1
1oL Ly e Lolo(l, 1)
(%> TL Pk u S U1 Up,

Hence v < t. For T (s;(r1,q1),-..,("n, @s))-nuclear and for ¢ > 0 we can

choose a representation of 7" in the form

T = ZO’j(,Dlj X ... X ©OnjYs,

j=1
such that o; > 0 for all j € N and

”(Uj);ilns H ||(‘ij)§i1||m(r§€,q§€)H(yj);?ilnoo <1+ 5)||T||N7(8§(r17q1),~--7(7"n7Qn))'
k=1

We can write

Z S/u S/vl‘PlJ) Lox (o S/UnSan)y
and have
105"l < 105 ) 20l = (1) ll6)*,
and
103 1) 21 g, < 1) o 1 (25) 3 N,
= (1eNZlls)* ™ 11 (085) 21 o
for K =1,...,n. This last inequality follows from Holder’s inequality since

1 1 1

v /
Di Ty Uk
Now, for ¢r; = a;1;, we can write

105" 0r) 3 Iy < (@)1 oy 105 4) 32l

< M) N ey @) )™ (W) T s,
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< @) lergapyy (1) 52 ) 1 ()51 -

This last inequality comes from the fact that (r}.(q;)) < (pi.(q;.))". It follows
that

1005 k)3 ) < (1052l 1(207) 3 e
Hence T is (t; (p1,¢1), - - -, (Pn, ¢n))-nuclear and

T3, (t501.01) s rsan)) < (L NN TN, (550r1,01)sens (s
for every e > 0. O

7.1.6 Corollary (]) [frk < Pk < Ak, k= 17 <., N, every ((Tla q1)7 ) (rna qn))_
nuclear multilinear mapping T is ((p1,q1), - - -, (Pn, @n))-nuclear and

TN (100 o)) < NN a0 -

(2) ]fS S t} every (87 (Tla q1)7 ey (Tna qn))-nuclearT 18 <t7 (rla ql)a ) (Tn, Qn))'
nuclear and

T Nt 1) (msgn)) < N TN s:0m1100) () -

(3) ]f dk > Tp > Pk k = 17 ..., N, every (S’ (Tla QI)’ SRR (Tnv QTL))_nUCleaT
multilinear mapping T is (s; (p1,q1), - - -, (Pn, Gn))-nuclear and

(3, (5501,01),0s o)) < N TN (5501,1) 0 (0 00))

7.1.7 Proposition L(E,, ..., Ey; F) is dense in L (s;(r1.q1),....(rgn)) (E1s - - By F).

)

Proof -We note that, for T € Ly (str1,01),...0rm,00)) (E1s - - By F), with a
representation

o
T = ZO’jSOlj X ... X PnjlYj,
j=1
the mapping of finite type 7}, given by
T = 0515 X oo X P,
j=1

is such that

and

129



|T = Tonll 3, (5:0r1.1) (s

< H(gj)gqim-HHs [Tis ||(Qij)]o‘ierIHm(r;,q;)H(yj)go‘ierlHoo-

Now it is enough to observe that
Tim |(05)7Z, 11 ]ls = 0,

in order to have the proof of our result . O

7.1.8 Remark Since every 7' € L;(Ey, ..., E,; F) has a finite representa-
tion of the form

T:ZU]SDUXXSOTL]yj (2),
j=1
with 0; € K, ¢i; € E}, y; € F, j = 1,...,m, it is natural to define the
following (t,-)norm on L¢(Ey, ..., E,; F):

1T 11 (st 0) gy = 0E [(05)520 s TT Gk o a1 (03) et oo
k=1

with the infimum taken for all finite representations of 7" as in (2). Of course
we have

1T, s:r1.00)rman)) < NN (s5600.0), (i)
The natural question is to find out when we have

I TN N sir1s1)ss(rmsgn)) = TN 5300100110 (rs0))
for all T'e€ L;(Ey, ..., Ey F).

7.1.9 Theorem If Ey,...,E, are finite dimensional vector spaces and T is
in L(Ey,...,Ey; F), then

||T||N7(3§(Tl7(11)7"'»(7"77.7(]71)) = ||T||va(‘S;(rl7q1)""7(7'n7q’ﬂ))'
Proof - In this case L;(Ey, ..., Ey; F) = L(Ey, ..., E,; F) and this is a com-

plete space for the tp-norms || . [|n(s:(r1,1)..(rg)) A0 Ny (536010100 ()
By the Open Mapping Theorem the ¢,-norms are equivalent. Hence there is
¢ > 0 such that

1T s (5301000 () < CIT N (s30m1,010) (o))

forall T € L(E, ..., Ey; F). For e > 0 we choose an infinite representation

T = ZO’jQOlj X ... X ©njlY;
j=1
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such that
H(%)?LHS H ||(@kj)ﬁ1||m(r;,q,;)H(%’)}'LHoo <1+ 5)||T||N,(S;(h,q1),...,(rn,qn))-
k=1
We can find m € N such that

< TN (s50r101) (s -
N’(S§(Tl7‘11)""7(7'71’(171))

We use the triangular inequality for ¢,-norms in order to write

Z 0;P15 X ... X PnjlY;

i>m

Cc

in

(||THNf,(S;(Tl7Q1)7-~~7(7"mf1n)))tn <

Zgjgolj X oo X PniY;
j=1 Ny (55(r1,q1)50,(Tnqn))

ln

+ ZO’j(ple...X(pnjyj

ji>m

N,(s;(m,ql),..‘,(rn,qn))
and this expression is surmounted by

in

Z O']'QDU X ... X Sonjyj

j>m

((1+5) ||T||N,(s;(rl7q1)7...,(rmqn)))t"—i—ctn

N»('S;(Tl7q1)7"'7(rn7q7’b))

< ((1 + 5)tn + 5tn) (HT||N7(5§(7'17‘11)7---7(7’n7q”)))tn'

Since € > 0 is arbitrary we have the result. O

7.1.10 Proposition IfT € ,CN,(S;(H7q1)’m7(rmqn))(El, ooy By F) and Sy €
Li(Dy; Ey), k=1,...,n, then

HT © (Slv R Sn)HNf,(s;(rl,th),-n,(Tn,qn)) < ||T|

Ni(si (1 )osrmgn)) L1 1Skl
k=1

Proof - If J; denotes the natural injection from Si(Dy) into Ej, we can write
Sp = Jy oSy, for k =1,...,n. Therefore we can say that T o (Jiyoy )
isin L7(S1(D1),...,S.(Dy); F). Now we apply 1.9 and 1.2 in order to have
the result. O

Next theorem uses the notion of Banach space with the A\-bounded ap-
proximation property.
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7.1.11 Theorem If E;. has the \g-bounded approzimation property for k =
1,...,n, then

for allT € L¢(Ey,...,Ey F).

Proof - We consider the case n = 2. The proof for the general case is
analogous as one can note easily. We consider 171 € L¢(Ey; L(Ey; F)) given
by Ty (x1)(xg) = T(x1, 25) for x), € Ey, k = 1,2. Since E] has the A\;-bounded
approximation property, for each € > 0, there is S; € L(Ey; Ey) such that
Ty 0S; =Ty and ||S1]] < (1 +¢)A;. hence we can write

T(Sl(dil),l’z) = T(Il,l’g) ka - Ek, k= 1,2

Now we consider Ty € L;(Ey; L(Ey; F)) given by Ti(xs)(x1) = T'(x1, xo) for
x € By, k = 1,2. Since E} has the A\y-bounded approximation property,
for each ¢ > 0, there is Sy € L;(E»; Es) such that T 0 Sy = T and ||S| <
(1 4+ ¢)Xo. Hence we can write

T'(x1, S2(x2)) = T(21, 22) Vap € By, k=1,2.
Thus we have T'= T o (51, S2) and, by 7.1.10,
1T s (1,00 r2.02)) = 1T © (1, S2) I (si6rr.an)(rsae))
< TN, sicrs,a0),rziaen ISTNS2 ]l < (1 4+ €2 M AT ||, (5501 0), (r212)) -

This implies that

TN Ny (sitrr,a0) r2.20) S M AT (1,000, 07210))-
The same argument used in the proof of 7.1.9 gives

”THNf,(S;Tl,Tz) < HTHN,(S;T1,7"2)

and this proves our theorem. 0O

7.2 NUCLEAR POLYNOMIALS

In this section, F and F' are Banach spaces over K. We also denote by
P("E; F) the Banach space of all continuous n-homogeneous polynomials
from F into F'. Here the norm in this space is given by

IP|l = sup [|P()]],

ll=ll<1

for all P € P("E; F).
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We consider s €]0, +o0], ¢, € [1,+00], such that ¢’ <" and
n
?.

In order to simplify our notations we write p = ('(¢’))’. We recall that
1 1 1

¢

1
1<+
S

7.2.1 Definition A mapping P € P("E; F) is said to be (s;(r,q))-nuclear
if there are (\;)32, € €5 (€ co, if s = +00), (Y;)521 € loo(F), (p5)32, €

Uin(rsqy (E'), such that
P(z) = Xjp;(x)"y;
j=1
for all x € E. In this case we use the notation

P =3 XNy (1).

j=1
We denote the vector space of all such mappings by Pu, (s (rq) ("E; F). If
1 1 n

t, s ¢’
and

1P (sstrayy = I 1(O)50 11l (03) 521 oo 1 (25) 520 e 0y

the infimum being considered for all representations of P as in (1), we have a
tp-norm on Py (s (r.q)) ("E; F'). This t,-normed space is a complete metrizable
topological vector space. When r = ¢ we replace (s;(r,r)) by (s;7) When
t, = 1, s can be written in terms of ¢ and we replace (s; (r,q)) by (r,q) in the
above notations. When r = ¢ we write ¢ for (¢, q) In the case of 1-nuclear
mappings we omit this 1 in the notations. Note the different notations (s;7)
and (r,q).

We denote by L("FE; F') the vector space of all continuous n-linear map-
pings from E" = E x ... x E into F. We note that L(E™; F') denotes the
set of all continuous linear mappings from E" into F. The vector subspace
of L("E; F) of the symmetric mappings is denoted by Ls("E; F'). We recall
that T € L("E; F) is symmetric if T(x1,...,2,) = T(To@), .-, To(m)) for
each ¢ in the group S, of all permutations of {1,... ,n}. It is clear that
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Ls("E; F) is closed in L("FE; F) for its natural norm. The symmetrization
Tsof T € L("E; F) is defined as

1
Ts(xl, Ce ,a:n) = E Z T(xg(l),...,xg(n)),

: O'ESTL
forall x, € E, k=1,...,n. It is easy to show that

7.2.2 Proposition The mapping that sends T € L("E;F) into Ty €
L;("E; F) is a continuous linear projection onto L("E; F).

By definition each continuous n-homogeneous polynomial P from E into
Fisgivenby aT € L("E; F) through the formula P(z) = T'(z) = Tz, ..., z),
for all z € F.

If P € P("E; F) there is a unique T € L,("E; F) such that 7' = P. This
T is given by the polarization formula:

1
T(z1,.. o w0) = - Yo aePlam + . F ez,
ni2® i
for all x, € E, k =1,...,n. In order to see a proof of the above result, see
Mujica [ |. This result implies the following theorem.

7.2.3 Theorem The mapping h,, from L("E; F) into P("E; F), given by
ho(T) =T, is an isomorphism for these spaces with

~ n" .
1T < T < I,
for allT € Ly("E; F).
~ We also use the following notation: P = h;'(P), for cach P € P("E; F).
P is given by the polarization formula.
7.2.4 Remarks (1) If o, € E', k=1,...,n, we have
ho(pr X .o X op)(x) = @1(x) ... pn(z),

for each x € . We note that, for a fixed x € E, the above expression can

be considered as a symmetric multilinear function of (¢4, ..., ¢,). We apply
the polarization formula and get
1
pr(@)on(@) = —oo 3 eran(Epr o Epn) (@),



forallz € E.

(2) If P € Pnsy(rq))("E; F'), for each € > 0, we can find a representation

[o¢]
P =73 0;07y;

j=1
such that

17521 llsll (2521 [ g (i) 521 oo < (1 4+ Pl (i) -
We note that we can find a representation of P of the form
p: Z(TJSOJ X ... X PYilY;j-
j=1
Hence
1Pl w sira < N(03)520 s 1023) 52 e 105D 520 oo < (1 + )Pl (sicra))-
This proves that P € Ly (s,(nq) ("E; F) and

1Pl s < NPl (s
(3) f T' € Ly (s:(r,q)("E; F), we can find a representation

T = ZO’jQOlj X ... X PnjlYss

j=1
such that
171w stray < 1(03)520lls TT 11085) 5=t lomer.an ls1-
k=1
Now we consider the non trivial case ||(¢x;)52;[lm@,q) # 0, k =1,...,n and
define

1(k5)521 im0

Thus we have

T= Z Uj”(Splj);ile(r’,q’) e H(%Onj)?il”m(rﬂq’)wlj XX ;.
j=1

In view of (1) we have the following representation of T

T = Z Uj”(@lj)?ilnm(r’,q’) e ||(§0nj)]o'i1||m(7"’,q’)ajv
j=1
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where

1
o = (n!Q" Z €1.. .€n(51¢1j +... .+ 5nwnj)n) Y

ep=x1,k=1,....n

This allows us to write 7" in the form

1 00
Z n|2n€1'"Enzo-j”((plj);il”m(r’,q H((pn]j 1||mr ,q") (ngwk]> Yj-

ep==%1, ° j:l
k=1,...,n

We have
[(e1t1) + -+ enng) e e gy < <Z |!(¢kj)§i1\|m(w,qf>> <n"
k=1

We use the triangular inequality for the ¢,-norm in order to write

1

tn n tn
HT”th,(s;(r,q)) < 2;1 (n|2n) (H(Jj)ﬁolus kl_‘[I H((pk’j)jqol‘m(r’,q’)”(yj)?ol”oonn>
ER= s =

tn
<2" ((1 +8) nlon ||T”N(s (r,q) )) .
Hence
~ (L n"
1T 3, (ss(rgpy < 27 1)g||T||N,(s;<r,q>>-
If t,, = 1, we obtain
1| v, (s300) 7|!T||N<s (ra)-

These results show that the mapping h,, restricted to Ly, (s;rq)) ("£; F) N
L;("E; F) = LNS (si(nq)) (" E; F) is an isomorphism between PN (sira) ("B F)
and Ly, (s;(rq)) (" L3 F), with

1 n"
1Plx st < NPl gosrayy < 270 ||P||N(s<rq)

7.2.5 Proposition IfPEPN () ("EsF), A€ L(D;E) and S € L(F;G),
then So Po A€ P (DG) and

HSoPoAHN {(r,9))

(s3(r,9)) HA”n

The proof of this result follows easily from the involved definitions.
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7.2.6 Examples (1) We have
1P < Pl sitrma)
for all P € Py (s(r,q) ("E; F).
It is an application of Holder’s inequality

(2) It is clear that the vector space P;("E; F) of the continuous n-homogeneous
polynomials of finite type is contained in Py (s;rq))("£; F). It is enough to
recall that P € Py("E; F) if it has a representation of the form

m

P(z) =Y (@;(x))"y;,

=1

with p; € ', y; € F, j =1,...,m. In this case it is usual to use the notation

=2 ¥
j=1

(3) If P = ™y, we have

1"yl n sy = e l™ -
In fact, since ||P|| = ||¢l|™||yll, by (1) it follows that

1™yl n sra) = Ml ™1yl
On the other hand it is clear that

le"YlIn smapy < llspll™ |l

(4) We consider (0;)32, € (s, if 0 < s < 400, and (O']);)ol € ¢, if s = +o00.
We also take (a;)%2, € £, Now we define the “diagonal "mapping D, ar e, €
Pl 01) by

Dig;amz=, ((§)521) = (0(0&;)")52s-

If we consider the usual Schauder basis (e;)52, of £, and consider the j-th
projection 7; defined on /,/, we can write the representation

Z (a;m;)"
j=1
Since ()32, € £5((€)"), with ||(75)32, [Jwsr = 1 and |[|(e5)32,[lcc = 1, we have
that D(g;amex, is (s; (r, ¢))-nuclear and [ Dig;amee [ nisiray < 1(05)52 sl ()52 13-
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Now we can prove the following factorization theorem.

7.2.7 Theorem For P € P("E;F) the following conditions are equivalent:
(a) P is (s;(r,q))-nuclear.

(b) There are A € L(E;Ly), Y € L(;F), (0;)2, € Ly, if s < +o0, or
(%’)?’Q € ¢o, if s = +00, and (Oéj)j?’;l € {, such that

P=Yo D(Ujﬂ?);?il o A.
In this case
1P| sirayy = f [Y[[]](05)52 sl (o) 520 5 1AL
with the infimum taken for all possible such factorizations.
Proof - By 7.2.5 and 7.2.6.(4) it follows that (b) implies (a) and
1Pl w simayy < IYICo5) 520 sl (o) 5 I NAN™

In order to prove the reverse implication, for each ¢ > 0, we consider any
representation of P of the form

P =3 o(ae;)"y;,

j=1
such that

(@)% sl ()32 5N ()32 1 ()2 oo < (L + TN 5560
Now, if we consider A(z) = (p;(7));2,, when x € E, we have A € L(E; ()
and [|A]| < [[(#5)32 ||lw- We also consider Y € L({y; F), defined by

Y ((&5)52 j= 1) Zé}y]

We have [[Y|| < [[(y;)721]loo- It follows that
P =Y 0 D(an, © A
and
Y1 (a3)52 sl ()5 B ITAN™ < (1 + @) I |, s
This concludes our proof. O

Now we consider some inclusion results.
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7.2.8 Theorem For s,t €]0,+o0], r,p,q € [1,+0], s <t,r <p<q,

1 n 1 n
1< -+ —, 1< -4+ —
s t p
and
n 1 n 1
—— < ==
r s p t
then 'PN7(S;(T,q))(nE; F) C 'PN7(t;(p,q))(nE; F) and

||P||N,(t;(p,q)) < ||P||N7(S;r)7
for all P € Py (s;rq)("E; F).

Proof - We consider

1 1 1 1 1 n
—-—=——-, and — = - ——.
voT P u s v
Hence u < t. For P (s;(r,q))-nuclear and for € > 0 we can choose a repre-

sentation of P in the form

P =23 0;(e)"y;,

J=1

such that o; > 0 for all j € N and
(o) 521 1 1(25) 721 g 1 ()72 loo < (1 + ) 1PN, (s50r.0)
We can write

z_: s/u s/v yj

and have
1522 e < 105" )22 0l = (1032 ]16)*™,

and
105" 035 Iy < 1005 )2 lloll(03)3 e

= ([@)32alls)* 1 (03) 32 lmir -
Hence P is (¢; (p, q¢))-nuclear and

Pl vt < (X4 Plv,s:0m0)5

for every e > 0. O
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7.2.9 Corollary (1) If r < p, every (r, q)-nuclear P is (p, q)-nuclear and
||P||N,(p7q) < ||P||N,(7"7q)-
(2) If s < t, every (s; (r,q))-nuclear P is (t; (r,q))-nuclear and
IPlln ey < IPIN(sstria) -
(3) If r > p, , every (s;(r,q))-nuclear P is (s; (p, q))-nuclear and
1Pl ssman < 1P v gsstran -

7.2.10 Proposition P("E;F) is dense in Py, (srq)("E; F).

Proof -We note that, for P € Py (s rq)("E; F), with a representation
P =3 0;07y;,
j=1

the mapping of finite type P,,, given by
P =Y 0;y;,
j=1

is such that

e}

P—P,= > o0y

j=m+1

and

1P = Palln(sitran < 11005)52m 41 lls1(05)7Zm1 (g g 1(95) 72 m 411l oo-

Now it is enough to observe that

lim_[}(0;)7Zm11lls = 0,

m—00

in order to have the proof of our result . O

7.2.11 Remark Since every P € P;("E; F) has a finite representation of
the form

P =3 0;¢}y (2),
j=1
with 0; € K, p; € E', y; € F, j = 1,...,m, it is natural to define the
following (,,-)norm on P¢("E; F):
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1P s (ssrayy = ([ (0) 750 15 Ml (05) 70 oy 1 (97) 7 oo

with the infimum taken for all finite representations of P as in (2). Of course
we have

1PN (sitra < IPIN Gsi6m)) -
The natural question is to find out when we have

IPlxsiran = 1Pl sicrans
for all P € Py("E; F).

7.2.12 Theorem If E is finite dimensional and P € P("E; F), then
1PN stran = NPl csicran -

Proof - In this case P;("E; F') = P("E; F') and this is a complete space for
the t,-norms || . || n,(s;trq)) and || - || N, (si(r.q))- BY the Open Mapping Theorem

) )

these t,,-norms are equivalent. Hence there is ¢ > 0 such that
IP1y (sicra) < €l Pl (sirans
for all P € P("E; F'). For € > 0 we choose an infinite representation
P =7 00}y
j=1
such that
100521 llsll (2721 e gy (i) 521 oo < (1 4 T || v (55601
We can find m € N such that

> o)

ji>m

c < 5”T||N,(S;(7”,<1))'

N,(s;(r,q))

We use the triangular inequality for ,-norms in order to write

tn
(T vy sicran)™ < | |22 7353
j=1 Nf,(s;(’/‘,q))
tn
+ Z 0505 Y;
J>m N,(s;(r,9))
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tn

< 1+ )" (T v srap)™ + ¢ | | X o507y

j>m

< (A2 +) (I sstman)"™

Since ¢ > 0 is arbitrary we have the result. O

N, (s;(r,9))

7.2.13 Proposition If P € Py (srq)("E: F) and S € L(D; E), then
1P o Sllng ssray) < 1Pl vgssran 1511

Proof - If J denotes the natural injection from S(D) into F, we can write
S =JoS. Hence Po J is in Ps("S(D); F). Now we apply 2.12 and 2.5 in
order to have the result. O

Next theorem uses the notion of Banach space with the A-bounded ap-
proximation property.

7.2.14 Theorem If E' has the \-bounded approzimation property, then

1P|y siray) = 1Pl (sicrap)
for all P € P;("E; F).

Proof - We consider the case n = 2. The proof for the general case is
analogous as one can note easily. We consider 71 € L¢(E; L(E; F')) given by
Ty(x1)(zy) = P(x1, 1) for 2, € E, k = 1,2. Since E' has the A-bounded
approximation property, for each ¢ > 0, there is S € L;(E; E) such that
TyoS =T and ||S|| < (14 ¢)\. Hence we can write

P(S(21),5) = P(x1,75) Vop € B, k=1,2.

Now we consider Ty € L;(E; L(E; F)) given by Ty(z2)(x1) = P(21,22) for

xr € B, k =1,2. Since P is symmetric we have T, = T, and Thb 0 S =T
and ||S] < (14 ¢)A. hence we can write
P(x1,S(x2)) = P(x1, 2) Ve, € B, k=1,2.
Thus we have P = P o (S, S) as well as P = P o S and, by 7.2.13,
1PNy sitray = 1P 0 Sl (sicrap)
< 1Pl siran 1517 < (14 )2 X[ Pl v (s -

This implies that
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1Pl npsitrayy < X2 PIw,sicra)
The same argument used in the proof of 7.2.12 gives

1PNl vy (sima)) < NP (s:0m00)

and this proves our theorem. O

7.3 THE STUDY OF THE DUALS

In this section we keep all the notations used in the previous sections..

7.3.1 Theorem For s € [1;400|, E} with the Ag-bounded approximation
property, the topological dual of L (s;(ry,q1),....(rman)) (E1s - - -, By F') is isomor-
phic isometrically to Lis.m ). mert (B, -, B F') through the map-
ping

B(¥) (1, - 0n)(y) = ¥lpr X ... X pny),
forallye F, o € B}, k=1,...,n, and ¥V in the required dual.

Proof - We start with ¥ € (L (s0m ql) ,,,,, (rmsan)) (1 s Ens F))'. We want to
/

and ¢y; € E/{w for k = 1, . .7,”7.”74, j = 1,...,m. There is ()\j);nzl € (7 such
that [[(A;)72,]ls = 1 and

[(B(®) (@15 - -+ i) )il = il/\jHB(\P)(‘Plj: )| = (2).
=
For each € > 0, we can find b; € F, ||b;|| =1, j =1,...,m, such that
() < = 3 MBIV o))
=
Now we can get n; € K, |n;| =1, j =1,...,m, such that
(i) <e+ f: AiniBW) (@ - 5 @n) (b))

=1

By the definition of B(¥) we may write

(Z) S €+ Z Ajnj\ll(gplj . X QOn] e+ VU (Z i1 P1;5 X ... X Sonjbj) .

=1
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By the continuity of ¥ we have

(i) < e+ [IIm)Tlls TT110ks) 7 g 1105)71 o
k=1

=+ 1] IT 1(eri)islmirap)-
k=1

This shows that B(V) € [’(S'%m(f"laq’l)---,m(r;,q;))(EL ... El:F') and
IBCE) | (s )iy < 12

We note that the proof of this implication does not need the approximation
properties for £, k=1,...,n.

Now we consider T' € L (st q1)...m(rtyq2)) (E1s - - -, Epy; F') and define the lin-
ear functional Wr (well defined through tensor product consideration) on the
space (Ef(Elﬁ ooy B F)’ ” . HNf7(5§(rl:(Il)"'w(rn,(In))) by

Ur(S) = 3N T (@12 ny) (b))

j=1
for every S € L¢(E\, ..., Ey; F) of the form
S = Z/\nglj X ... X cpnjbj-
j=1

By Holder’s inequality we have
(W (S)] < 1) (T (g, - -5 0mi)) il 1) 7o oo = (i)
Since T is (s';m(r}, q1), - .., m(r}, q,))-summing we get
(i) < TNl srimrt gh)oemrta) |51 lls T 11C087) 72 g g 11(05) 521 oo
k=1
This shows that

(W (S)] < NT(ssmry.p).emrtyaa) SN (i) (g
forall S € Ly(Ey,...,E,; F). Since on L;(FEy,. .., Ey; F), with our hypothe-

sis for Ex, ..., E,, we have || . | N (s:trq0), (rmign)) = || - ||Nf,(s;(rl7q1)7,__7(rn,qn)), we
conclude that W is continuous on L¢(Er, ..., Ey; F) for || .|| n,(s:(r1,q1),0(rmsan)
and

7]l < (Tl srsvs,rs)-
By the density of L¢(Er, ..., En; F) in Ly (s0r1,q1),s(rmsan)) (B0 - - -5 By F), we
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Now we note that B(¥7) = T. O

7.3.2 Theorem If s € [1;+00| and E' has the A\-bounded approximation
property, the topological dual of Py (srq)("E; F) is isomorphic isometrically
to Pisim@ gy ("E's F') through the mapping

B(¥)(p)(y) = ¥(e"y),
forally e F, p € E', and ¥V in the required dual.
Proof - We start with U € (P (s,trq)("E; F))’. We want to show that

B(¥) belongs to P(smr.q) (" E'; F'). We consider m € N and ¢; € £, for
j=1,...,m. There is (\;)L; € £]* such that |[(\;)7,]|s = 1 and

I((B()(23)ells = D NIBW) ()]l = (9).
j=1
For each ¢ > 0, we can find b; € F, ||b;|| =1, j = 1,...,m, such that
(i) < e+ > NIBW)(07) (b))l
j=1
Now we can get n; € K, |n;| =1, j =1,...,m, such that
(i) < e+ A BW)(p;)(b).
j=1
By the definition of B(V¥) we may write
(Z) S €+ Z )\JHJ\I’(QOJ)nb] =+ Y (Z )\jﬁ]@?bj) .
=1 =1
By the continuity of ¥ we have
(8) < e+ WHIAm) 7 lls (i) Fr g an 10571 lloo = & + NI (5) 7t [l g1y -
This shows that B(V) € Prgm@ gy ("E'; F') and
1BCY) | (srim,ay) < 191

Note that the proof of this implication does not need the approximation
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property for E’.

Now we consider P € P(s;m(r,q)("E'; F') and define the linear functional
Wp on the space (Py(E; F), || - [|n; (si(r0))) DY

Up(S) = ;Ajp(wj)(bj)

for every S € P (E; F) of the form

8= Alp)"b;.

j=1

By Holder’s inequality we have
(O (S)] < 1Ot sl (P(s)) il 11 (B5) 5t oo = ().

Since P is (s';m(r’, ¢'))-summing we get

(1) < N Pll¢srsmirr.an ) =1 L1 (0551 gy 11 (B7) 5 oo
This shows that

(Wp(S) < 1Pl smeranlISTIny (si6ma)

for all S € Py("E;F). Since on Py("E;F), under our hypothesis on E,
we have the equality || . [|n,(sg) = || - |ny,(s:rq)), We conclude that WUp is
continuous on Py("E; F) for || . [|n(snq) and [|Vp| < [[P]l(sm@.q)- But

Pr("E; F) is dense in Py, (s(rq) (" E; F). Hence we can extend ¥p to a con-
tinuous linear functional Wp on Py (s (rq)("E; F) in a unique way, with

1Pl < 1Pl im0
Now we note that B(Up) = P. O

7.4 NUCLEAR HOLOMORPHIC MAPPINGS

In this section F and F' are complex Banach spaces and we denote by A a
non empty open subset of F.

We observe that, for s < ¢, r < ¢, s €]0,+o0], r € [1,4+00], we have
1 1

—=c42 Vn € N.

th s ¢

This implies that, for all n € N, the spaces P, (s;(r,q)) (" £; F') are well defined.

1<
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Since
1 1 1
' # +o0, 1:——|—7:>1<—+ﬁ,, Vn > 2,

the only way to have Py (s(r.q)) (" E; F') normed for all n € N is by considering
s=r=1.
In this section we consider s < ¢, r < ¢, s €]0,+00|, and r € [1, +o0].
The following definition is motivated by the concept of holomorphic map-
ping of a given holomorphy type introduced by Nachbin ( see [17]).

7.4.1 Definition A holomorphic mapping f : A — F is said to be
(s; (r; q))-nuclear at the point a € A if

1 -
(1) =d"f(a) € Pgsrap ("B F), N,

tn n
) ) < 400.
N>(5§(T7Q))

If f is (s;(r,q))-nuclear at each point a of A it is said that f is (s;(r,q))-
nuclear on A.

(2) lim sup (H;ldnf(a

n—oo

We denote by Hn (s;(rq))(A; F) the vector space of all (s; (r,q))-nuclear
holomorphic mappings on A with values in F'.
The following result implies that Py (s;r.q) ("E; F) C Hn (si(rq)) (E; F).

7.4.2 Proposition If P € Py (pq)("E;F), k=1,...,n and x € E, then
d*P(z) € Py s:rg)("E; F) and

A n!
d"p sra) < 1Pl st ok
I P@) Ivsan < G —gilPIveealll

Proof - For an (s; (r, ¢))-nuclear representation of P of the form

P= Z Ajp;b;
we have
d*P(z) =R Z Aj(pj(x k’gp?bj ().
Since ||Q|| < ||Q||N7(s. ) for all Q € P (s,rq)) (FE; F), if we prove that
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(1) = M\I(Aj(%@))"k)?';l\lsl\(%)?illlﬁ(rgqql\(bj)j’ilHoo < 400,

we have that (¥) is a valid (s; (r, ¢))-nuclear representation of d*P(z). In
order to prove this we consider y = z/||z|| and write

(1) = mﬁ!k)!HwH”kH(Aj(%(y))”’“)?‘;1HsH(%)?:lHﬁ(w,qI)H(bj)i-ilHoo

n—k 9] n—k oo ||k 9]
< (n_k,)!HxH ||()‘j)j:1||ssjlelg|90j(y)| 1(25) 721 I 1(05) 721 [0

n' n— 0o 00 n— oo oo
Sm\fﬂc!l NN I e)52 1 ey () g 18352 Nl

This is finite in view of the chosen (s; (r, ¢))-nuclear representation of P. Now
we can write

7 n! n— 00 oo ||n 00
1d* P () | v (si(rq) < m”ﬂfﬂ OGNl (03) 5 i g 11052 oo

and this implies that

n!

7k n—k
[d" P ()| v (s50r.00) < MHPIIN,@;(r,q))Hxﬂ

as we wanted to show. O

7.4.3 Definition A holomorphic mapping f : E — F is said to be
(s; (r,q))-nuclear of bounded type at the point a € E if

1 -
(1) mdnf(a> S PN7(S;(r,q))(nE; F), Vn € N,

tn >
) o
N, (s;(r,q))

7.4.4 Theorem If f € H(E;F) is (s;(r,q))-nuclear of bounded type at 0,
then f is (s;(r,q))-nuclear of bounded type at each a € E.

n—oo

(2) lim (H:L!af"f(a)

Proof - For 1 > ¢ > 0 there is k(¢) € N such that
tn
<é&".
N,(s3(ra))
For a fixed a € E we choose € such that ||a]| < 1. Note that:

(i) for ||a|| > 1 it follows that [|a||" < |la| and |a]|' < e]la| < 1,

n > k(e) — H;!d"f(())
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(ii) for [ja|]| < 1 it follows that ||a|™ < 1 and, since 0 < & < 1, we have
ellal|™ < 1.
We know that

@:fzfﬂm)

where P, = (n!)~d"f(0), for each n € N (see Nachbin [17]). By 7.4.2 we
have
n!

7k
Hd Pn(a)HN,(s;(r,q)) S mHPnHN,(S;(T,q))”a|

|n—k'

Hence, for k > k(e), we can write

ty
1 (@)% ) < Zudk W% i < Z( 1Pl el )

SO (’;) (=) (el < (s fj (’,;f) o (e

n=~k n=~k
Ek(k')tk i <n> E'fl*k(HaHn*k)tk < Ek(k')tk (1)k+1
T2 \k - ’ 1 — ¢||al|t '
We note that, by (i) and (ii), €||a||** < 1. Hence it follows that

tg 1

1. = 1 1 k

—d" f(a) <e ( ).
Hk’! Nsira) 1= ellall \1—¢ellal|*

If we take the limit for £ — oo, we know that ¢, — 0 and we have

t

lim Hldk a <e L ,
k—oo || k! N, (s5(r,q)) l—e
for all € €]0,1[. Hence,if we take ¢ — 0, we get
lim Hldkf(a) =0,
k—oo || k! N, (s3(r,9))

as we wanted to prove. 0O

We denote by Hnp,(s:(rq)) (£; F) the vector space of all f € H(E; F') that
are (s; (r, ¢))-nuclear of bounded type at 0. By 7.4.4, we have Hyp,(s;(r,q)) (E; F') C
H N, (s;(rq)) (£ F). For each p > 0,we define a natural distance d, on H e, (s;(r.q)) (£ F)
by considering d,(f,g) = p,(g — f), where
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tg

pp(f) = 11 £(0)

,(S;(r,q))'

Condition (2) of 7.4.3 implies that p, is well defined. We note that d, is
invariant under translations. We consider on Hnp, (s,(r,q)) (£ F') the topology
generated by d,, p > 0.

7.4.5 Proposition  Hyy (s(r,q)(E£; F') is a complete metrizable space.

Proof - Since the sequence (d,),en generates the topology of H s, (s;(r.q)) (£ F),

it follows that this topological vector space is metrizable. Let (fi)ren a
Cauchy sequence in Hyp,(s;(rq)) (£ F'). This implies that (f(0))ren and
(n!=2d" f,(0))gen are Cauchy sequences in F' and Pn s (T q))("E F), n € N,
respectively. Hence there are f(0) € F and P, € Py (srq)("E; F), n € N,
such that

lim f(0) = f(0), and  lim n!~'d"f,(0) = P,, Yn€N.

For every p > 0, there is 0 < M, < +o0 such that p,(fx) < M, for all £ € N.
it follows that 1f:(0) < M,, and |n!"'d"f.(0 )|| ) S Mpp™

Hence we have ||Pn||§\’;7(s;(nq)) < M,p~", for all n € N, and we can write

in
liin_)solip ||Pn||]\7;,(s;(T7Q)) <

=

for every p > 0. This implies that
7}1_{20 HP”HJE(S;(W)) =0,
and

£ = F0) + 3 Pu € Hagy oy (B2 ).

n=1

Since for every € > 0 and p > 0, we have k(¢) € N such that

~ tn
17:(0) A F0) — (0

<e,

N,(s5(r,q))

for all k,j > k(e). Now we pass to the limit for j tending to co and have
1 - tn
17%(0) = FO) + D> p" d"fk 0) — —d" f(0) <e,
Z n! N, (s:(r4)
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for all k > k(e). Thus (fi)3Z, converges to f in Hyp, (si(rq) (£; F). O
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Chapter 8

QUASI-NUCLEAR
MAPPINGS

8.1 MULTILINEAR MAPPINGS

In this chapter Fj is a Banach space with the Ag-bounded approximation

property for k = 1,...,n and we consider s,r,qx € [1,4+00], k = 1,...,n,
such that
1 1 1 1
I<—=-+—+...+—.
th 8 G In,

In view of Theorem 7.3.1 of Chapter 7, we know that the topological dual
of the complete t,-normed space

LN (s:r1.01) - (Tn7q'n))(E17 o By K) = LN (s:(r1,q1)see. (rn,qn))(Eh o Ey)
is isometrically isomorphic to
Lisrimrt ah),mirtya) (B -5 Bt K) = L5 (e a0),omrta) (B - By
through the mapping

BW)(@1, -5 @n) = Wlpr X ... X on),
for all pp € E;, k=1,...,n, and ¥ in the required dual.
We use the notations
S(T)=<T,S >=BYS)T),
for 8 € Lisim(ry.a))imiria)) (B - E)y T € LN (si(rra)ornga)) (B - En).
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Now we show that the pair

('CN,(S;(H,CH) ,,,,, (Tnyqn)) (Eb BRI En)7 E(s’;m(ri,qi) ,,,,, m(r%,q{l))(EL BRI E;L))
is dual.

(i) It is clear that for each S" # 0 in Lism(r g0),..om(rs.a0) (B1s - - -5 E7,) We can
find a T'in Ly (si(r1,01),.,(rsgn)) (15 - - - s E) such that S’(T") # 0.

(i) Now we take T # 0 in Ly (s;(r1,q1),.s(rmsgn)) (B0, - - - s E) of the form

T = Z)\Jgﬁl’] X .o X Pnj-

j=1
There is (x1,...,2,) € Ey X ... x E, such that
T(I’l, . .ZL‘n) = Z Aj@l,j(lj) e Qpn,j(xn) 7é 0
j=1
We consider A,, € E} given by A,, (p) = p(xy), forp € B and k= 1,...,n.
We have A, X ... X Ay, € Lisrim(rt q0),.omrtyan)) (B, - - -5 By,) and
0#T(x1,....00) = Ag, X ... x Ag (T).
In view of this duality, if

U= {T € 'CN,(S;(Tl,Q1) ..... (Tnsqn)) (E17 ceey En)a ||T||N,(s;(r17q1) ..... (rn,an)) S 1}7
we can take its bipolar set U? and the corresponding gauge
pueo(T) = inf{\ > 0; T € AU},

for all T € Ly (si(r1,91),.s(rmsgn)) (F15 - - -5 En). We know that U is the small-
est weakly closed (relative to the duality) absolutely convex subset of the
space LN, (si(r1,q1)ss(rman)) (E1s - - - £) containing U. Hence pyeo is a norm on
LN, (531,01 )00 () (E15 - - ,E,). Tt is easy to show that U is equal to

{T € ‘CN,(S;(Tj,ql) ..... (rn,qn))(Ela SERE) En); |S/(T)| < 17 ||S/”(s’;m(r’1,q’1) ..... m(rl,,qh)) < 1}
and
puoo(T) = inf{A > 0; [S"(T)| < A, YV 1"l (srimr 00, mrag)) < 1}

This characterization of pyo.(T) is the one that will be used in several places
of this section and Chapter. We start with this:

Since
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1S (D) < TN si(rran)orman)ys ¥ 1S (st a),mrgan < 1
it follows that
Puee(T) S NT N, (550r1,01) 00 (0 (%),
for all T' € L, (s;(r1,q1)s0es(rmgn)) (E1s - 5 E).
We know that
1T < T, si6r1.00)

----- (Tny%t))

for all T' € L (s;(ry,q1),0s(rmsan)) (E15 - - -, E). Now we have
> NT;
j=1

for all T; € U and A, j = 1,...,m, m € N, satisfying 37, |A;] < 1. This
implies that ||T|| < 1 for each T in the absolutely convex hull V' of U. If
T is in U, the weak closure of V', we have S'(T) = lim;e; S'(T;) for every
S"€ Lo q)) sy ) (s -+, B, with T; € Vi € 1. In particular we
have this result when we consider S" = A,, X ... x A, , ||zk|| < 1, 2 € E},
k =1,...,n. This shows that ||T|| < 1. Therefore

(pueo(T)) YT <1 VYT #£0.

<> INIITI <1,
=1

Thus we have
T < pyee(T) (),
for all T' € L, (s;(r1,q1)....(rmsq0)) (E15 - - - En). We denote by

L (Er, ..., En) | -

( N (5'(7“1 ql) 7777 (rnaQH)) ||N 7"1 ql) 7777 (T’ﬂvqn)))

a completion of (L, 7“1 @ ss(rmsgn)) (B s E), pueo).  The restriction of

|| HN J(85(11,01) 5o, (Trsan)) (ﬁN i(r1,q1)- (Tan))<E17 cee 7E7L) 18 Puyee. By (**)
N (5:(m.01) (g ))(El, ..., E,) is contained in L(F, ..., FE,) and

1T < “THN ((14q1) ey (Prsdin)) (3 * %),

for all T € L (Ey, ... Ey).

3 7"1 ql) ----- (Tnv‘Jn))

8.1.1 Definition The elements of L+ Ey, ... E,) are said
to be (s;(r1,q1), -, (Tn, gn))-quasi- nuc]ear n-linear forms on By X ... X E,.
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8.1.2 Theorem The topological dual of Lz Ey,...,E,) is

o(85(71,q1)50005 (rn,qn))(
ping

BY) (@1, pn) = Wpr X ... X 9n),
forall op, € B, k=1,...,n, and ¥ in the required dual.
Proof -It is enough to prove that Ly (s(r.q1),....(ran) (E1, - - -, ) has the

same topological dual for the norm pyreo and the t,-norm || . ||n,(s;(r1,q1),....(rs00))
By (*) it follows that (Ln (si(r1,g1),....(rnsa0)) (15 - - - s ), Pueo) is continuously
immersed in (Lx,(s;tr1,01),0(rmsan) (B1s - s En) || - I (sirn00)ss(rmsan)))

v e (ACN,(s;(m,ql) ..... (qun))(El, - ,En), H . HN7(S;(T1’Q1) ..... (qun)))/, we know that

sup |U(T)| = M < +o0.
TeU

An element T of the absolutely convex hull V of U is of the form T =
>y ATy, with 3570 [N < Tand T € U, j = 1,...m. Hence

(WD) < DI < Y0 [\IM < M.
j=1

Jj=1

Since each T' € U is the weak limit of a net (7;);c; of elements of V' we
have

W(T)| = lim [¥(T;)| < M.
1€

Thus ¥ is bounded over U, hence continuous for pye., as we wanted to
show. O

8.1.3 Remarks (1) We have ¢ x...xp,in L VEn)

N,(35(r1,q1) -, (Tn,qn ) (E17 s
and

|l % ... x 90”||ﬁ,(s (1) soons () lleall - llenll-

By 7.1.3 (3), we have T = 1 X ... X @5 0 LN (530r1,01),s(rmsgn)) (15 - - - E)
and

o1 x ... % @nHN,(S;(m,tﬂ) ,,,,, (Tnsqn)) = H(Pl” e H‘zan

since, by (x) and (%), we can write

.....
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< lor X o X Onll N (s0r1,01), ()
and we have ||¢1 X ... X @u|| = ||l¢1]l - - - ||@nll, it follows that (1) is true.

(2) Since Ly(En, ..., E,) is contained in Ly (s(r.g1),...(rmsgn)) (E1s - - -5 En), it

follows that Ly(Ev, ..., En) C LF (im0 rmgny) Bl -5 En)-

(3) By 7.1.7 of Chapter 7, we know that L¢(Es, ..., E,) is dense in the t,-
normed space (Ln,(s;(ri,q1),(rmsan) (E1s - s En )y |- I N,sitraig0)ss(rmsgn)))- We
use () in order to have L(Ey, ..., E,) dense in

(LM(S;(H,q1)7---,(rn7qn))(E17 T E”)’ H : ”ﬁ,(s;(m,q1),--.,(rn,qn))>'
By the density of the vector space (L (s;(r1,q1),....(rmsqn)) (15 - - -, ) in

(LR (sitranrman) Er 0 B [ 7 i)

it follows that L(Es, ..., E,) is dense in this same space.

8.1.4 Theorem For s,t €]0,4+00], i, pr € [1,+00], s < t, rp < pr < @i,
k=1,...,n,

1 1 1 1
I<-—+—-+ +—, I<-+—+ +—
s Tn tph Yz
and
1 1 1 1 1
— + +——-<—+ + — - -,
™ Tn S D1 Pn t
then Eﬁ,(s;(rl,q1)7...,(rn,qn))(E17 . Ey) C Eﬁ,(t;(pl7q1),...,(pn,qn))(El’ ..., E,) and
”T||Kﬂ(t;(m7q1),~-~,(pn7qn)) < HT”ﬁ,(S;(m7q1),--~7(rn,qn))’

forallT € L5 (Er, ..., Eyn).

N, (85(r1,q1)5+5(Tnsqn))
Proof - By 7.1.5, Chapter 7, we have
ch(s;(rl7QI)7~--,(7’n7Qn))(E17 By C £N7(t§(p17q1):-~~:(pn7Qn))(El, s By)

and

HTHN7(t;(p1,q1) ----- (Pnrqn)) < HTHN7(S§(7'17‘]1)7---7(7'7“(]71))7
forall T € £N7(3 (Tlgq1),~~~,(Tn7Qn))(El7 Cey En) By (*) we get

||T”ﬁ,(t;(pl,q1)7,,,7(pn7qn)) < HTHN7(S§(T1,q1)7~~~,(7"n,qn))’
for all T' € L (s;(r1,q1),0s(rmgn)) (E15 - -, E). If U denotes the closed unit ball

)
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for || . ||N,(si(r1,g1),..(rnsan))» €2Ch element T" of the absolutely convex hull V' of
U is of the form T' = 3770, T, with 372, [\ < Tand T; € U, j=1,...,m
It follows that

||T‘|N,(t;(pl,q1>,-..,<pn,qn>> < Zl Ryl “TJ‘||Jﬁ(t;(m,qn,...,(pn,qn))
]:

S Z >\ ’HT HN $(11,01)55(Tn G ) S L.
j=1
If T'e U, we know that T is the weak limit of a net (7;);cs of elements of
V. Hence
/ BERT 1
§(T) = lim §'(T))
for all 8" € Ly m(rt.q)....m(rta)) (E1s - - -, B,). Since we have, by 5.5.6,
/;(t/ pl’ql)v -m (p{n.vq'/n))<E17 Tt E7/1> - L(Sl;m(rllqi)7 ( Thoah )) (Ei’ t El)
it follows that
! IR T e
for all S" € Lvmp,.q)),...my.at)) (E1s - - -5 Ey) with norm < 1. Thus we have
[ST)| = lim | S'(T5)] < SHPHTHN <1,

Tl fh)’ )(rﬂ’qn))
for all S" € L, n(E1, ..., E)) with norm < 1. Thus we have

<1

m(p],q1) - m(Ph 4,

1T

|va(tQ(pl7q1)7"'7(pn7qn))
We have proved that

"T‘|ﬁ,(t;(m,ql),...,(pm!In)) S 1

for every T' € U®°. This implies
TN % o,

Y

forall € LF o1 o) (rma ))(El, ..., Ey,). The result follows by continuous

extension of the inclusion mapping to the completions of the involved normed
spaces. O

We conclude this section with the following module property.

8.1.5 Proposition If T' € Ly (551 o)
k=1,...,n, thenTo(Sl,...,Sn) zsmﬁ

(El, e ,En), Sk S £(Dk,Ek),
(D1,...,D,) and

,(53(7“1@1)7-"7(7"an))
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HT © (517 S )”N (85(71,q1)seees(Prsn)) < HTHN,(S;(N q1) ey (Prsan) H HSkH

Proof - It is enough to prove the inequality for 7 in Ly, (s;(r1.g1),....(rm.gn)) (E1s - - - s En).
We know that

HTO<Sl7"'7 )HN < HTO(Sla'"7SH)HN,(S;(T1,Q1) ~~~~~ (Tnyqn))

3(11,q1) -5 (Tn4Gn

< TN i1 ) HIISkH

If U denotes the close unit of Ly (s;(ry,q1),.... (qun))(El, ., Ey)and T € U, we

have

77777

If V is the absolutely convex hull of U and T € V, then T =371 ATy, with
i Nl <Tland Ty € U, for j =1,...,m. Therefore

|To(Sh,...,S )HN (5:(r1,q1)yoons (Prstin)) = JZP‘ |||To(51a"' )HN (11,1 )y eens (s ))

.....

n

< Zp‘ | H 1Skl < H || Sk]|-
7=1

If T is in the weak closure U of V, there is net (7;);cr in V' such that
S(T) =lim SYT), VS € Liwimiry.ay).mryan) (B0 Br)-

.....

If S} denotes the transpose mapping of Sg, k¥ = 1,...,n and R’ is in the
vector space Ly m(r! q!),...m(r,.q.)) (D1 - - - Dy,), we have R'o (S7,...,S}) is in
Lisrimrt ah),-mirg ) (B - 'EL), with

n

HR/ o (Si, ) SZ)H(S’;?%(TL(J{) ~~~~~ m(rhqh) = HR/”(S’;m(T/l q1)ym(r],5a7,)) H |Sli||

NOW, if ||R/H(s/;m(r’1,q’1) ..... m(rl,q.)) < 1, we have
R(T 6 (Siee S = R o (S, ST = lim [ R o (S5, ... S1)(T))
= lim |R'(T; o (S1,...,S,))| <sup||T;o (Sy,...,S )||N

iel icl 3(11,01) 005 (rn,qn))

< H Sk
k=1
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Thus

.....

for all T' e U°°. This implies
|To(Sy,...,S

the required inequality. O

8.2 QUASI-NUCLEAR POLYNOMIALS

In section 1 we could have done part of the results for a general complete ¢-
normed space (G, p). In fact, if G’ denotes the topological dual of (G, p) and
(G,G") is a dual pair, then we may consider the closed unit ball U of (G, p)
e its bipolar U°. Then the gauge pyo.. of U defines a norm on G in such
a way that pyeo < p and (G,p) = (G, pye)’. We call (G, pyoo) the normed
space associated to (G,p). We also say that pyeo is the norm associated to
.
In this section E is a Banach space over K such that E’ has the A-
approximation property and s,r € [1,+o0] are such that
ol 1,n
t, s (¢

In section 2 of Chapter 7 we have introduced the complete t,-normed space

(P, (ssma)) "ESK) | - I vsstra)) = (Posima) ) - s ra)))-

If]| . Hﬁ,(s;(r,q)) denotes the norm on Py (s (r.q)) (" E£; K) associated to || v si0m0))s

we have
HPHN,(S;(T,(])) < HPHN(S;(T,Q)) (Z)

for all P € Py (s;(rq)("E). In an analogous way as it was done in section 1
we have

1PU < Pl oo (i)
for all P € 'PN7(5;(T7q))(nE).

As we saw in theorem 7.3.2 of Chapter 7 we have: If £’ has the A-bounded
approximation property, then the dual of (P, (s;rg)("E), | - |N,(sirq))) 15
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isomorphic isometrically to Py m( q)) (" E’) through the mapping

B(W)(p) = ¥(¥"),
for all ¢ € E’, and ¥ in the required dual. Hence we can write that the
topological dual of (Py,(s;trq))("E), || - |5 (s q))) is isomorphic isometrically
t0 P(s.m(r.qy) ("E") through the mapping

B(W)(p) = ¥(¥"),
for all ¢ € E’, and ¥ in the required dual.

The completion of the space (P, (srq)("E), || - ||N rq) 18 denoted
bY (P (ssran "ED L 5 (sigrgyy)- BY () it follows that PN (sirgy (T E) 18
contained in P("FE) and

1P < 1Pl o (i)

for all P € P "E).

No(s; (7“‘1)(

8.2.1 Definition FEach P € Py . ))( E) is called an (s; (r,q))-quasi nu-
clear n-homogeneous scalar polynomial on FE.

From the definition of the norm || .
equal to

inf{A > 0: (D) <MY Q' € Promran (), QN wmoray <1} (i),
for each P € P (s,(rq))("E). We also have HTHN (rg)) €dual to

inf{\ > 0;|S"(P)| < A, VS" € Ligmugn("E"), ||S'|| (s'meg)) < 1} (v),
for each T' € Ly (s;r,q))("E).

15 (sy0,qyy We can write [Pllg o0

As we saw in 7.2.4, section 2 of Chapter 7, the mapping h,, restricted to
the intersection of Ly (s;(rq))("E; F) with L("E; F)(= L (si(rq) (" E; F)) is
an isomorphism between Py (srq)) (" E; F) and Ly s;trs)) ("E; F'), with

1Pl sitray < NPl sy < 270 —HPIIN (s3(ra))-

Now we are ready to show the following result.

8.2.2 Theorem The mapping h,, when restricted to the intersection of
L "E) with L,("E) (denoted by Lz (s Tq))("E)), is an isomorphism

N’(S§(T7Q))<
between P ("E) and Lz (”E), with

(53(r,9)) Ns,(s3(r,9))
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n

5|~ _ (=D p
PR (srman < WPIF g <2577 PR (0
Proof - It is enough to prove the inequalities for P € Py (s;rq)("E). We
prove one of them. The other has an analogous proof. We denote by W the
closed unit ball of Ly (s(rq)("E) for its t,-norm. We have

nn

n(-Lt— n(L—
1PUF (siirayy < NP lIsstray < 2707 *HPHN ) < 2nE Y

nl’

for P € W. If V denotes the absolutely convex hull of W, every P € V is

of the form P = > AP Wlthzml\)\|<1andP€Wj—1

Hence
m

_ S (D gn(h-n T
HPHM(S;(T’,Q)) §;|)\j|||P]HN7(S;(T’q Z 12 n! =2 n!’

Now for each P € W there is a net (P,);c; in V such that
Q'(P) = lim Q(B),  YQ € Py an("E); Q' lwmeray < 1.
It follows that

n

(-
Q(P)] < sup Q' (P)] < 5up 1Pl < 25

This implies (see (iv))

. n(E-nn"
HPHN(S;(T,q)) <2 n!’
for all P € W?. Thus we have
- e
HPHN(S;(W)) =2 T IPIR sy
for all P € Py (s(rq)("E). O

8.2.3 Remarks We state some results that have proofs analogous to those
of section 1.

(1) For P = ¢™, we have P € PR (s ("E) and

7:4))
" ||N ) = lell™

(2) Since P("E) is contained in P (s(rq))) ("E), it follows that Pp("E) C

NG )

(3) Pf("E) is dense in the ¢,-normed space (Py,(s;rq)("E), || - ||N(si0m9)))-
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Thus we have P;("E) dense in in (Pn (s ("E), | - ||]\~,(5,(Tq))). By the
density of the vector space Pu (srq)("E) in (Pﬁ’(s;(rﬁq))(”E), | - Hﬁ’(s;(m))),
|

it follows that P;("E) is dense in (P ¥ (s:(r0)) ("E), |l - “ﬁ,(s;(nq)))'

4 Forsatrupe 1a+00a3§ta7”§p§ ;
q
1 1
<42 1< 42
s 7 t p
and

1
—-<

ﬂ\z
H—\l—

%\3

$
FE) and
<Pl

then Pﬁ,(s;(r,q))(nE> C Pﬁ,( t;(p, ))(

(s:(r,9))’

IPU%
for all P € Py . ("E)-
(0) If P € Py (g ("E), S € L(D; E), then Po S is in Py

¥ (ssry (D) and
| Po SHN,(S;(W)) < HPHNV(S;(T,Q))HSHTL'

8.3 THE QUASI-NUCLEAR HOLOMORPHY
TYPE

In this section F, D are complex Banach spaces and s, 7, ¢ € [1,400]. In this
case we have

1 1
*+ﬁ Vn € N.
t, s ¢

1<

In this section we are going to prove that (Pg ., q))(”E));’f:O, where

Pn (s:rq)("E) = C coincides with the constant functions on E, is a holo-
morphy type from E into C in the sense of Nachbin (see [17]).

Since each Pg .. q))(”E) is a Banach space and is contained in P("E),

we only have to prove the following result.

8.3.1 Proposition If P € Py

N, (s5( 7“(1))(
d* P P(z) € Py (si( rq))(kE) and

"E), k=1,...,n and v € E, then
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n!

7k
I L@ s S = 11 s 171

|nfk.

As a consequence it follows that

”pxn_k”ﬁ,(s;(r,q)) < ||P||1\77(5;(7«7q))Han_k-

Proof - From 7.4.2 of Chapter 7 we have

n!

7k n—=k
I P@lctoan < oy P el

We denote by Uy the closed unit ball at the origin in Py (si( rq))(kE) for

|- || (si(r.q))- We consider V;, the absolutely convex hull of Uy and denote by
v, the gauge of V.. For fixed z € F and k € {1,...,n} we consider the linear

mapping ¥ from Py, (s:(rq) (" E) Into Py, (s:(rg) (E) given by ¢(P) = d*P(z).
We know that

ka(¢(P>) < ||¢(P)||ﬁ7(5;(r7q))
for all P € Pg ., q))(”E). Hence we can write

n!

Py (d"P(x)) < mHPHN,(s;(r,q))Hx||n_k

for all P € 73]\7 (si(r q))(”E). Now we consider ) € V,,. We can write
Q=2 NP
j=1

with P; € U, and |A|+ ...+ |\y,| = 1. Hence

. m . nl

Py (d°Q(x)) < D I\jlpvi(d" Pi()) < FPAY
j=1 (n—k)!

If (P S 'PN7(5;(r7q))(nE), ” . ||N,(S;(T7q))), P 7§ 0, we can write

(v, (P)) ' pi (d"P(x)) <

]

L
(n—k)!
and afterwards
. !
P(0(P) = (@ P@) < ol v, (P).

This implies that 1) is continuous from the normed space (P, (s;(r.q) (" E), Pv;,)
into the normed space (Py,(s;(rq) (" E), pv;, ). Now we can extend ¢ to a con-
tinuous linear mapping from Pg . q))(”E) into Pg .. q))(kE), since these
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Banach spaces are the completions of the normed spaces (Pn,(s;(r,q))("E), Pv;,)
and (Py,(s:(rq) (*E), pv;,) respectively. This fact and the previous inequality
imply our thesis.
In order to have the second inequality of our statement we note that

A n! .

d*P(z) = ———Pa"*.

(z) (n—k)!

This concludes our proof. O

Now we can state

8.3.2 Proposition The sequence (P "E))e, is such that

% (sitran
(1) Each PR (sr q))(”E) is a vector subspace of P("E).
(2) Py (5:(m0)) (OE) coincides with P(°E) = F as a normed space.

(8) There is 0 = 2, such that the Jollowing is true. Fork €N, k <n,z € F

and P in P () ("E) we have d*P(x) € Py (. ), (*F) and
d" P(z) nl o B
| B sy = G R a1l < 1P el
,(S5\rq

This proposition shows that (P (si(r q))(”E));‘f’:O is a holomorphy type
from E into C. We follow Nachbin (see [17]) in the next definition.

8.3.3 Definition A holomorphic mapping f : A — K is said to be
(s; (r,q))-quasi-nuclear at the point a € A if

7 (s 71(1))(”E), Vn €N,

~ ) < +00.
N,(s5(ra))

If f is (s;(r,q))-quasi-nuclear at each point a of A it is said that f is
(s; (r,q))-quasi-nuclear on A.

(1) 1" f(a) € Py

(2) liin_)solip (H;J”f(a

We denote by Hy Tq))(A) the vector space of all (s;(r,q))-quasi-nuclear
functions on A.

Proposition 8.3.1 implies that P (si(r q))(”E) CH (E).

N,(si(r,))

165



8.3.4 Definition A holomorphic mapping f : E — K is said to be
(s; (r,q))-quasi-nuclear of bounded type at the point a € E if

1., .
(1) ﬁd f(a) = Pﬁ,(s;(r,q))( E)> Vn € N,

o) =0
N, (s.(rq))

8.3.5 Theorem If f € H(E) is (s;(r,q))-quasi-nuclear of bounded type at
0, then f is (s; (1, q))-quasi-nuclear of bounded type at each a € E.

n—oo

(2) lim (H;ld’”‘f(a)

Proof - For 1 > ¢ > 0 there is k(¢) € N such that

1

nzﬂdzéH&ﬂm <&

N,(s;(1,9))

For a fixed a € E we choose ¢ such that ¢|ja|| < 1. We know that
a) =Y d"P,(a)
n==k

where P, = (n!)~1df(0), for each n € N (see Nachbin [17]). By 8.3.1 we have

n!

7k n—k
Hd Pn(a)l‘ﬁ,(s;(r,q)) < (n _ k)' HPHHN,(S,(r,q))HaH :
Hence, for k > k(g), we can write
1 (@5 1o Z I P iy < 2 gl Pl el

:kﬂfi(Z) wmw¢k<kﬂ§j(k) “(ellal)"

n=k

k = (N n—k n—=k k
" () lal| <5H< )
2y 2Tl

Hence it follows that

1 1

. k 1 1 K

~d fa)| <e ( ).
HH Nsra) 1 —ellal| \1—¢llal]

If we take the limit for £ — oo, we have
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% 1

<o,
Nsina) L —¢llall

for all € €]0, 1[. Hence,if we take ¢ — 0, we get

=0,

N,(s3(r,q))
as we wanted to prove. 0O

We denote by Hy, 5:(r0))
(s; (r, q))-quasi- nuclear of bounded type at 0. By 8.3.5, we have H~

HE (st
by considering d,(f,g) = p,(g — f) where

pp(f) = 11£(0)

(E) the vector space of all f € H(FE) that are

7,9))

E). For each p > 0,we define a natural distance d, on H 5, (si(r, q))(

N ey

Condition (2) of 7.3.4 implies that pp is well defined seminorm. We are
considering on H g, (si(r q))(E) the topology generated by the seminorms p,,
p>0.

8.3.6 Proposition H ))(E) 15 a complete metrizable space.

Nb,(s;(r,q
Proof - Since the sequence (d,,)nen generates the topology of Hy, (si(r q))(E),
it follows that this topological vector space is metrizable. We consider a

Cauchy sequence (fx)gen in H s q))(E). This implies that (fx(0))gen and

(n!— 1al"f;.c( ))ren are Cauchy sequences in C and Py (s.(rq))(”E), n € N, re-
spectively. Hence there are f(0) € C and B, € Py (. ("E), n € N, such
that

kh—{go f1x(0) = f(0), and kh_}rglo n!='d" f,(0) = P,, Vn €N.
For every p > 0, there is 0 < M, < 400 such that p,(fx) < M,, for all k € N.
It follows that
£:(0)] < M, and [0l d" fi(O) 5 (irgyy < Mop™™s YR EN.
Hence we have HPnHN,(S. o < Mpp™", for all n € N, and we can write

1
lim sup | P, ||N<s (r0)) SE

for every p > 0. This implies that
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Jim || P ||N(S ) = 0,

and

f=10 +ZP EHNb(s rq))(E)'

n=1

Since for every € > 0 and p > 0, we have k(¢) € N such that

15:(0) (o) — a0

N,(s;(1,9))

<e,

for all k,j7 > k(e). Now we pass to the limit for j tending to oo and have

1./x(0)

forall k > k(e). Thus (fk) ° , converges to f in the topology of Hz,
U

dW@)——W OH <e

))(E).

If fe Hﬁb,(s;(r,q))(E) we may consider the Taylor’s polynomial of f at 0
with degree n:

Ttnol(z) = f(0) + Z .l'djf(O)(x), r e k.

Jj=1 J:
Since, for each p > 0, we have
[e%e} fﬂ N
pp(f - Tf,n,O) = Z ﬁ”djf(mnﬁ(s;(r,q))a
j=n+1J"

we can say that (T,,0)5, converges to f in the topology of Hﬁb,(s;(w))(E).

8.3.7 Proposition The vector subspace S of H~ _ ))(E) generated by
the functions ae?, ¢ € E', o € C is dense in Hz, (s:(r, q))(E)
Proof - Since (T},,0)52, converges to f in the topology of Hz, ))(E), it

is enough to show that Py . 7”q))(”E) C Sforalln €N It is easy to show
that

>0 1
ae = a + Z goz/\” "
n=1"""

in the sense of the topology of Hz, (si(r q))(E), for all a, A € C and ¢ € FE'.
Now, for every p > 0, we can write
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. ae™ — . > Pn’aH)"n_Q‘H@Hn
o (5 ~ o) = i £ P <o

Hence ap € S, for each ¢ € E', a € C. Now we suppose that ap® € S, for
k=1,...,n—1,p € E' o€ C. We have

. 1 Mo n—laAk@k awn
lli%pf’(m(“ —kX:: o)l

1

[e'e) k k—n k
oy Pl AP lelt
=lm A 3 X =

k=n-+1

0.

Hence ag™ € S for each ¢ € E’, o € C. Thus by the induction argument we
can conclude that P;("E) C S, for all n € N. Since the closure of P¢("E) in
H (sitr q))(E) i PX (sr q))(”E) C S for n € N, we have proved our result. O

8.3.8 Definition T € Hg, ., q))(E)', the function B(T') defined on E' by

B(T)(p) =T(e?), ¢ € E', is called the Borel transform of T'.

8.3.9 Theorem If E’ has the \-bounded approximation property and T €
Hz, (s,(rq))(E)’, the Borel transform B(T) is an entire function on E' of

(s'sm(r’,q")))-summing exponential type at 0.

Proof - Since, for every ¢ € E’, we have
ef = 1‘+‘£§2 %T¥7

in the sense of the topology of Hz, (si(r q))(E), we have

BT)(e) = T()+ 3 1 T(#)

We can consider Py (rﬁq))(”E) as a closed subspace of Hy, .. (E). Hence
if we consider 7, as the restriction of T to Pﬁy(s;(w))(”E), we have T,, €
Pﬁﬁ(s;(m))(”E)’. Hence, as we saw in section 2, there is P}, € P(yim.q) (" E')
such that T, (") = P (), for every ¢ € E', ||T,,|| = || P}l (s,m@,q)), for each
n. The continuity of 7" implies that there are C' > 0 and p > 0 such that
T(f)] < Cpp(f)a for each f in Hﬁb,(s;(r,q))(E>' Thus HPAH(S’;W(TCQ’)) = ||T.|| <
Cp", for each n € N. Therefore,
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lim sup(| P, | sy ™ <
and
BT) () = T(1) + 3 1y L)
defines an entire function on E’ of (s';m(r’,¢'))-summing exponential type

at 0. O

We denote by Exp(sm.q))0(E') the vector space of all entire functions
on E’ of absolutely (s'; m(r’, ¢'))-summing exponential type at 0.

8.3.10 Theorem The Borel transform s a linear isomorphism between
M (ss(ra) (B) 0 Bxp(srimirr,q0),0(E').-

Proof - Theorem 7.3.9 shows that B is a well-defined linear mapping from
H (ss(rgy () 60 Expsrn(rr gy, 0(E'). By 7.3.7 it is clear that the Borel
transform is an injection. Now we show that its image is Exp(sm(r,q)),0(£').
We consider g € Exp(ym(.q)),0(E'), with Taylor series

o(e) = 90) + 3 L Pi().

We have
. 1
hgls;}p(|]Pr’LH(S/;m(T,’q,)))n < 400,

Hence there are C' > 0 and p > 0 such that || P} (sm@ q))) < Cp", for all n.

Thus we can find T, € Py, ("EY, such that |[T,]| = | P wongry) and
T, (") = P} (), for each ¢ € E'. For each f € Hz, (s:(r q))(E), with Taylor
series

() = £0) + 3 Pla).
we define

T(f) = 9(0)1(0) + Y- Tul o)
Hence

THE< DBl < D NTMIPaN 5 asgrgyy < CPo(F).
n=0 n=0
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Hence T € Hf\?b (s:(ra

. ))(E)’ and it is easy to see that B(T) =g. O

171



172



Chapter 9

CONVOLUTION
OPERATORS

In this chapter we generalize results of Gupta ([5]) and Malgrange ([9]) on
existence and approximation theorems for convolution equations.

9.1 THE CONCEPT OF CONVOLUTION
OPERATOR

In this chapter E is a complex Banach space, such that £’ has the A-bounded
approximation property, and s,7, ¢ € [1,+o0], r < g.

We introduce some notations. If a € E'and f € Hg, ., (E), we denote
by 7, the mapping from F into itself defined by 7,(z) = x + a, for all x € E.
The complex function (7, f) is defined on E by (7,f)(x) = f(x —a), for every
x € E. Since f is (s;(r,q))-quasi-nuclear of bounded type at —a, it follows

that 7, f belongs to Hg, ., q>>(E )-

9.1.1 Definition A continuous linear mapping O from Hz, (si(r q))(E) into
itself is called a convolution operator if it is translation invariant, that s, for

all a € E and f € Hy, oy (E), OTaf) = 1a(O(f)).

We denote by Als;(rq)) the set of all convolution operators on Hg, (. (E).
Under the usual vector space operations and under composition as multipli-
cation A(s,(q)) is an algebra with unity.

)
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9.1.2 Definition = We define the mapping I' from A(s(rq)) into Hz, (si(r q))(E)'
by T(O)(f) = O(£)(0), for each O in A(srqy) and f in Hﬁb,(s;(r,q))(E)-

We are going to show that I' will be an isomorphism between A(g;(r,q))
and Hgy ., q))(E)’ . We need preliminary results.

9.1.3 Proposition Ifa € E and f is in Hy, (8,(Tq))(E), then d"f(.)(a) is
also in HNb (s:(r, q))(E) and

)a) =Y ETHMS’(CZ), where Tiy, = d™" f(0),
i—o b

in the sense of the topology of Hﬁb (si(r q))(E), foralln=0,1,...

Proof - It is known (see Nachbin [17]) that we have the following pointwise
inequalities:

Z E+nx Z ﬂ+nan

Now, from 8.3.1, it follows that E+na is in Py (si(r (‘E) and

)]
Tl < 1 F Ol ool = [Fssnllg oo el (5

Now we have

5 1
o (z‘!”m”“”'ﬁ,(smr,q))) < lim (Z.!Hd+ FONF (sxmay 1l ) = 0.

This shows that d"f(.)(a) is in H b (s:(r q))(E). Now we note that for p > 0
we have
n m o1
b (00 - 32 S ) <Y Ot @y o
=0 " 1= m+1
< Z HdH_nf< )Hﬁ,(s;(r,q))HaH"
= m+1
n! = (207 s
< —a|" , d " F(0)] % .

Since the last member of the inequality goes to 0 as m tends to co, we have
proved our result. O
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9.1.4 Proposition Ifa € FE and f is in Hg, (s

T—af = Z ;‘d%f( )a
n=0 """

(E).

() (E), then

in the sense of the topology of Hz, (s:(ma))

Proof - We keep the notations used in the proof of the previous proposition.
For p > 0 we have

n © p Y
" (f it ) > | = > i
= R (s30r4))
:Z&l Z jﬂ—&—nan
i=0 b |ln=mt1 T ¥ (s
00 00 p 1 n+Z) Ai—i—n N .
= ;mzm: il nl (n+1)! il FONF, s

<SS A2l FO) 5 g
1=0

=0 n=m+1

For a given £ > 0, such that 2ep < 1, 2¢|a|| < 1, we can find C(e) > 0 such
that

1 m n
EHd f(O)Hﬁ,(S;(r,q)) < C(e)e™,

for every n. Thus

T RYE SEVBIT) B ol VR MREEE
n=0 """ ] 1

=0 n=m-+1

< C(e) <i(2€p)i> ( i <2s||aH>")

and this goes to 0 as m tends to co. Thus, our result is proved . O

9.1.5 Proposition Let T be in Hy, (s (Tq))(E)’, so that there are p > 0
and C > 0 satisfying T(f) < Cp,(f), for each f in Hg, (S,(Tq))(E). Then

for each P € Py ., q))("E), with Ain L ., q))( E), satisfying A = P, the
(n — k)-homogeneous polynomial defined by

T,(Azh)(y) = To(Adky™®),  yeE,
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where T, means that T s applied to a function of x, is denoted by Tx(/TJ?’“)
and is in PR(S;(T’[]))(””“E) for k <n. Moreover

1T (A2 15 iy < CPIPIF r
Proof - We suppose first that P is in Py (s;(r.q)) ("E). We choose an (s; (1, q))-
nuclear representation of P:

j=1
Since we have
> A Ta(ps(@)") ey~ (%)
j=1
satisfying
IS Te(p5(@) )52 s < OVl Te (05 ()" )52 lloo
< 1) lsCAE sl 15
< O ANl (i)52a e g
it follows that (x) is an (s; (r, ¢))-nuclear representation of TI(A/J,T’“) and
1T (AR v, sstray < CoE N1 (05)520 o ar)-
It follows that
HT:B(Axk>Hﬁ,(S;(m)) < T (Az®) v ss(ra) < CPRHPHN,(S;(W))'

Now, U is closed unit ball of Py, (s;(rq)) ("E) for the norm || . ||y, (s;(r,q)), acting
as we have done several times before we can get

| T (Axk) Hﬁ}(s;(nq)) < Cpkv

first by considering P in the absolutely convex hull V' of U and then P in
the weak star closure U of V. From this inequality it follows that
1T (A7) 5 1oy < CIP I

HZ\NE(S;(W i(ra)

Now the result follows by completion. O

9.1.6 Definition IfT is in Hg, (E) and f is in Hz, (s,(rq))(E), we

(53(r,))
define the convolution product T % f by
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Tx f(zx)=T(r_2f), Ve € I,

9.1.7 Theorem IfT is in Hy, , (Tq))(E)’ and f is in Hz (8,(rq))(E), then
Txfisin Hg (s q))(E). Also, Or, given by Or(f) =T x f, is a convolution
operator in H (i q))(E).

Proof - By 1. 4 for each x € E, we have

(T * )(a) = T(ruf) = Z LT 5_031,

f:l, T (a7 (0)2 ().

By 9.1.5, for all n, we have Tz(d”"f(O)zi) € Pg (sirgn("E) and

1T+ F0)2) | 5 (smay < CONAT FO 7 (s
where p > 0 is such that |T'(f)| < Cp,(f), for all f € Hy
p1 > p we can write
> 1 ) = 1 il Ji+n
> IO 5 ) < 2 OISO o

= 0

b(si(rg () For

— 1 ;0 5in n!
<C). ﬁledJr FONR sy = Cﬁp(zm)(f)-
=0 "

This means that

Z dH_nf ) ) Pﬁ(S;(nq))(nE)
i—0 ¢
and
n!
”Pn“]’\?’(s;(nq)) S Cﬁp2pl(f) (*)

for all p; > p. Hence

1
‘ 1 = 1
hgl_)Solip (n!HPnHﬁ,(s;(r,q))) s

for all p; > p. This implies that

) 1
tm (1Pl ) =0

S=

Therefore

Tef= Z P € M sitran ()

nO
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It is clear that Or is linear. Also for p; > 0, we can use (x) in order to have

S P2 o Cp
T < =Pl < —_— <C .
Do (T % f) < 7;) ) | ||N,(5;(T7q)) > nZ::o (0 + p2>np2(p+02)(f) > 1p2(p+p2)(f>

This shows that O is continuous. Now we have 7,(Tx f)(x) = (T« f)(x—a) =
T(T_giaf) = T(1u7af) = (Tx7.f)(2), for all z € E. This completes the proof
that Or is a convolution operator. O

9.1.8 Theorem I is a vector space isomorphism between A (rq)) and
o gsiran (E)'-
Proof - We define the mapping I'y from Hy, ., (E)" into Az . given
by

LT (f) = Or(f) =T+ f.

This linear mapping is well defined by the preceding results. We have
(T o TYON(f) = (T1(T(O)(f) =T(O) * f.
But, for all x € E, we have
(I'(0) * [)(@) = T(O)(7-of) = O(7-:f)(0) = (7. O(f))(0) = O(f)().

Hence

(T e TY(O))(f) = O(F)
and I'y o I' is the identity mapping on A(.q))-

Also

(Lo )(T)(f) = T(TUD))(f) = Tu(T)(f)(0) = (T = £)(0) = T(f).
This shows that I o I'y is the identity mapping on Hﬁb,(s;(r,q))<E)/' O

9.1.9 Remarks (1) We also denote the convolution operator O by T,

: » /
for every T' in HNb,(s;(r,q))(E) :
(2) For T, T5 € Hg, (8,(r7q))(E)’7 we consider the convolution product of Ty

(E)"

and Ty defined by Ty#Ty = I'(Or,00r,). Of course T1*T5 is in Hz;, (53(r0))

(3) The convolution product has the following property
(Th *+T3) * [ = Onun(f) = (O 0 O,)(f) = Oy (O (f)) = Ty + (T2 f).
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(4) Tt is easy to see that Hz, (si(r q))(E)’ is an algebra under the convolution

operation with unity d given by 6(f) = f(0), for all f € Hg, (si(r q))(E).

We saw in Chapter 8 that the Borel Transform is a vector space isomor-
phism between Hy; .. q))(E)’ and Exp(s miqy) (E'). Now we can state the
following result.

9.1.10 Theorem The Borel Transform is an algebra isomorphism between

Hﬁb,(s;(r,q)) (E)/ and E:Ep(s’,m(r’;q’))<El).

Proof - We only have to show that the multiplication operation is preserved.
For Ty and T3 in Hg, (si(r q))(E)’ and ¢ € E’ we have

B(Ty + T2)(p) = (T1 x Ty)(e?) = ((T1 * Tz) * €?)(0) = (T * (T3 * €%))(0)

= T1(Tyxe?) = Ti(e¥To(e?)) = T1(e?)Ta(e?) = (B(11))(¢)(B(T2))()-

Hence B(T, * Ty) = B(11)B(13) as we wanted to prove. O
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9.2 APPROXIMATION AND EXISTENCE
THEOREMS

We need two preliminary results.

9.2.1 Proposition (see Gupta [5]) Let A be an open connected subset of
E. Let f,g be in H(A), with g not identically zero, such that, for any affine
subspace S of E of dimension one, and for any connected component S" of
SN A on which g is not identically zero, the restriction fl|y is divisible by the
restriction g|'s with the quotient being holomorphic on S’. Then f is divisible
by g and the quotient is holomorphic on A.

9.2.2 Theorem Let Ty, T be in Hg, (si(r q))(E)’, with Ty # 0, such that

Pe PN,(S'(Tq <nE)7(p < ElaTQ * Pe?¥ =0 = Tl(PGSD) = 0.

)

Then B(Ty) is divisible by B(Tz) and the quotient is an entire function of
exponential (s';m(r’,q"))-summing type at 0.

Proof - Let S be an one dimensional affine subspace of E’. There are @1, o €
E’, such that S = {¢1 + tps;t € C}. We suppose that ¢y is a zero of order k
of B(Ty) (1 + tps) = To(e?174%2). Of course, we have Ty(phe?1T0¥2) = () for
each ¢ < k. This implies

; {
Ty * QOZQG%—HOW = Z < .

L) sy et —o,
3=0

for each i < k. Hence it follows that Tj(phe® to#2) = 0, for every i < k.
This implies that ¢, is a zero of order k of B(11)(¢1+tws). Therefore B(11)|s
is divisible by B(T3)|s and the quotient is holomorphic on S. By 9.2.1, it
follows that there is h in H(E’) such that B(T}) = hB(T3). By 9.1.10 of
this Chapter and 5.4.9 of Chapter 5 it follows that h is an entire function of
exponential (s;m(r’, ¢))-summing type at 0. O

9.2.3 Approximation Theorem Let O be a convolution operator on the

space Hﬁb’(s;(m))(E). Then the vector subspace of Hﬁb,(s;(m))(E) generated
by

{Pe#; P € Py (s:(ra ("E),p € E',O(Pe?) =0}

)
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is dense for the topology of Hz, (si(r q))(E) in the closed vector space

K= {f € Hﬁb,(s;(r,q))(E); O(f) = 0}

Proof - By Proposition 8.3.7 of Chapter 8 the result is true for O = 0. Let
O be different from 0. By 9.1.8 of this Chapter, there is T' € Hy, (E)

(83(ra)
such that O = T. Now we assume that X € Hg, .. q))(E)’ is such that

P ePg (s-(rq))(nE)a<P € E'\T x Pe¥ =0 = X (Pe¥) = 0.

By Theorem 9.2.2, there is an entire function h on E’ of exponential (s'; m(r’, ¢'))-
summing type at 0, such that B(X) = hB(T). By 9.1.10 of this Chap-
ter, there is S € Hﬁb,(s;(r,q))(E),v such that h = B(S). Hence B(X) =
B(S)B(T) = B(S +«T) and X = S *T. Thus, for each f € K, we have
X*xf=8%x(Txf)=0and X(f) = (X = f)(0) =0. We have shown that
every X in Hﬁh(s;(r,q))(E)/ vanishing on the vector subspace of Hﬁb7(s;(r,q))(E)
generated by {Pe?; P € Py .. . ("E), ¢ € E',O(Pe?) = 0} vanishes on K.

Now our result follows by the Hahn-Banach Theorem. O

9.2.4 Theorem If O is a convolution operator on Hy, ., q))(E), its trans-

pose mapping O has the following properties:
(1) Ot(Hﬁb,(s;(r,q))(Ey) = (O_1<{O}))L7
(2) Ot(Hﬁb,(s;(r,q))(E>/) is weak star closed.

Proof - If O = 0, the result is clear. We consider now O # 0. Let T be
i HG, gy (E) such that O = T For each X € O'"(Hg, (.0 (E)):
we know that there is S € Hy, .. (F) satisfying X = O'(S). Hence
X(f) = OUS)(f) = S(O(f)) = 0 for all f € O°'({0}). This shows that
Ot(Hﬁb,(s;(r,q))(E)/) C (O71({0}))*. Conversely, if X € (O~*({0}))*, by
Theorem 9.2.2; there is an entire function h on E’ of exponential (s'; (1, ¢"))-
summing type at 0, such that B(X) = hB(S). By 9.1.10 of this Chapter,
thereis S € Hﬁb,(s;(r,q))(E)l’ such that h = B(S). Hence B(X) = B(T)B(S) =
B(T % S) and X = S« T. Now, for each f € Hﬁb,(s;(w))(E), we have

X(f) = (S*T)(f) = (S *T)* £)(0) = (5 (T* £))(0) = S(T"* [)

= 5(0(f) = 0" (9)(/)

and X = O%(9) € O'(Hy, (8,(Tq))(E)'). So (1) is proved.
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We note that
OO = () 1T € Hyy oy (Vi T() =0},
feo0~1({0})
Since, for each f € Hy, oy (E) AT € Hyy (o0 (E)T(f) = 0} is closed
for weak star topology, it follows that (2) is proved. O

In order to prove the existence theorem for convolution equations we need
the following theorem of Dieudonné and Schwartz (see [4]).

9.2.5 Theorem IfG and H are Frchet spaces and u is a continuous linear
mapping from G into H, then the following are equivalent:

(1) u(G) = H

(2) u', defined on H' with values in G', is an injection and u'(H') is closed
for the weak star topology.

9.2.6 Existence Theorem If O is a non zero convolution operator on
o gsiran (B them O(Hg (0 (B)) = M (s (F)-

Proof - By 9.2.5 we must prove that O is an injection and Ot(Hﬁb,(s;(r,q)) (EY)
is weak star closed. Since the last condition is true by 9.2.4, we only have to
prove the former one. We consider T' € Hﬁb,(s;(r,q))(E)/ such that O = Tx.
As we saw before, for every S € Hﬁb,(s;(r,q))(E)/7 O4(S) = S*T. If O'(S) =0,
we have 0 = B(S «T') = B(S)B(T'). Since B(T) # 0, we have B(S) = 0 and
S=0. O
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