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Abstract

Consider the problem of finding a smooth function joining two points A and B with minimum

length constrained to avoid fixed subsets when stochastic measurement errors are present. In

this case, the estimator proposed by Dias, Garcia and Zambom (2007) is consistent, in the

sense that as the number of observations increases the stochastic trajectory converges to the

best deterministic one. Two applications are immediate, searching the optimal a path for an

autonomous vehicle while avoiding all fixed obstacles between two points and flight planning to

avoid threat or turbulence zones.

Key words: Autonomous vehicle, B-splines, consistent estimator, confidence ellipses, penalized

optimization.

1 Introduction

Dias et al. (2007) proposed a solution for the following deterministic problem. Let A = (xa, ya)

and B = (xb, yb) be two points in R2, with xa < xb. The goal is to find a smooth function f :

[xa, xb] → R such that f(xa) = ya and f(xb) = yb, Graf (f) has minimum length, constrained to
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Graf (f) ∩ Γ = ∅ where Γ ⊂ R2. This problem is solved by an adaptive penalized optimization

procedure with expansion into basis functions which penalizes solutions that do not comply with

the constraint. The method is generalized to the case where the set Γ is not known exactly but

it is observed through a random mechanism that adds a random noise. In this paper, we prove

that the estimated solution for the stochastic problem converges almost surely to the solution of the

deterministic case when the errors are iid random varibles.

One motivation for this formulation is the search for optimal trajectories for an autonomous ve-

hicle which has to move from point A to point B in the minimum distance possible while avoiding all

fixed obstacles between these points. Obviously, if there are no obstacles, the best route is a straight

line between A and B. However, it is reasonable to assume that there is a safe distance r to be kept

between the vehicle and the obstacles at all times. In this case, Γ is the union of the balls of radius

r around the obstacles. Also, the maneuverability of the vehicle is not easy, that is it cannot make

abrupt turns and the trajectory has to follow a smooth curve. For more details about autonomous

vehicles see information about DARPA Grand Challenge (http://www.darpa.mil/grandchallenge).

A similar problem is to find a flight planning that avoids threat or turbulence zones. The usual

approach using dynamic programming divides the state space into cells of specified dimensions and

places the restrictions from cell to cell along prescribed heading. The computational cost of this

approach increases as the cell sizes decrease and the number of allowed heading increases. Moreover,

the paths must be smoothed to avoid abrupt heading changes. When the threat zones are circular,

the simplest solution for both problems consists of straight line segments and arcs of the discs, and

the possible segments are easily enumerated for a search algorithm. Asseo (1998) proposes an algo-

rithm based on a geometric construction to find routes with linear segments tangent to the threat

periphery and circular segments along the threat periphery to obtain the shortest route between a

starting point and a destination point using the principle of optimality.

However, the penalized approach we propose is much more general. Not only, it can deal with

non-circular threat zones but also, it is more efficient than the geometric one, the penalization term

avoids computation of all the paths that do not comply with the constraint. Moreover, the expansion

into basis functions reduces the dimensionality of the problem and, in practice, only few coefficients

2



have to be minimized. Another advantage is that we can easily deal with pop-up threats without

increasing the run-time. Furthermore, one truly new aspect that is studied here is the introduction

of the possibility of non-homogeneous error measurements in the location of the obstacles/threat

zones.

Optimization problems over paths connecting two points are important from the mathematical

point of view and have applications in several applied sciences. One of such problems, which has appli-

cations to non-linear analysis and computational chemistry, is the so-called mountain-pass problem.

There is a vast literature concerning the mountain-pass problem, the book by Jabri (2003) provides

a good introduction to the subject. One crucial difference between the problem proposed in this

paper and the mountain-pass problem is that we want to find the best continuous and differentiable

path subject to avoiding fixed sets instead of looking for critical points in the path.

In this paper, we prove that, in the case of multiple independent readings the stochastic solution

converges to the solution of the deterministic case.

2 An optimization problem

Let A = (xa, ya) and B = (xb, yb) be two points in R2, with xa < xb. For a function f : [xa, xb] → R

such that f(xa) = ya and f(xb) = yb, then Graf (f) = {(x, y);x ∈ [xa, xb] and y = f(x)} represents a

trajectory in the plane from point A to point B. Without loss of generality we can consider A = (0, 0)

and B = (b, 0) (if not, a change of coordinates will accomplish the change).

To be precise on what we called a smooth trajectory, consider only functions f belonging to

the Sobolev space H2
2 := {f : f ′ abs. continuous and

∫
(f ′′)2 < ∞}. This is an infinite-dimensional

space, however one may assume that f can be well approximated by a function belonging to a

finite dimensional space HK which is spanned by K (fixed) basis functions, such as Fourier ex-

pansion, wavelets, B-splines, natural splines. See, for example, (Silverman 1986), (Kooperberg and

Stone 1991), (Vidakovic 1999), (Dias 1998) and (Dias 2000).

Let Γ ⊂ R2 an open set. The goal is to find a smooth function belonging to H2
2 satisfying:

1. The trajectory has to go through the points A = (0, 0) and B = (b, 0), i.e. f(0) = 0 and
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f(b) = 0.

2. Graf (f) ∩ Γ = ∅.

3. The function f minimizes the trajectory in the sense that the length of Graf (f) is minimum.

For any f differentiable, the length of Graf (f) is given by∫ b

0

√
(1 + f ′(t)2)dt. (1)

Therefore, we want to find f ∈ H2
2 which minimizes

Q(f) =

∫ b

0

√
(1 + f ′(t)2)dt (2)

constrained to Graf (f) ∩ Γ = ∅, f(0) = 0 and f(b) = 0.

For the sake of simplicity, from now on we will consider that we have L points in R2 with

coordinates ξi = (wi, vi), i = 1, . . . , L. Denote by N = {ξ1, ξ2, . . . , ξL} and

Γ = ∪Li=1B(ξi, r)

where B(ξ, r) = {z ∈ R2; d(z, ξ) < r} and d is the Euclidean distance. It is easy to see this set up

can be generalized in a straightforward manner.

Dias et al. (2007) proposed an approximation method to find the best solution for this problem

by first defining the following functional

Jψ,α,n(f) = ψΦ(Zα +
√
H(r − d(f,N))) (3)

where d(f,N) = inf{d(z, ξ); z ∈ Graf (f), ξ ∈ N}, Φ is the cumulative standard Gaussian distribu-

tion, Zα is its αth percentile and (ψ, α,H) are tuning parameters.

Secondly, fixing K and a sequence t = (t1, . . . , tK−2) and consider f belonging to the space HK

spanned by B-splines with interior knot sequence t. That is,

f(x) = fθ(x) =
K∑
j=1

θjBj(x) (4)

where Bj are the well-known cubic B-spline basis (order 4) and θ = (θ1, . . . , θK) is a vector of un-

known coefficients.
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The solution of the problem is a function fθ ∈ HK , or equivalently θ = (θ1, . . . , θK) ∈ RK which

minimizes

Qα,ψ,r,H(θ) =

∫ b

0

(
1 + (

K∑
j=1

θjB
′
j(t))

2

)1/2

dt+ ψΦ

(
Zα +

√
H(r − d(

K∑
j=1

θjBj(·), N))

)
, (5)

subject to fθ(0) = 0, fθ(b) = 0.

A stochastic problem. To assume that Γ is a deterministic set would mean, in termos of the

applications, that the sensors of the vehicle/plane can see the whole field and detect with certainty

the placement of the obstacles/threat zones. This is not realistic, there is always a measurement

error involved. Therefore, we will suppose that the sensors can see the whole field but instead of

seeing N , they see η = N + ε where ε = (ε1, . . . , εL) is the measurement error. Specifically, we will

assume that

Γ = ∪L`=1B((w`, v`), r)

but the observations are given by (W`, V`) = (w`, v`) + (ε`1, ε`2), ` = 1, ..., L, with (ε`1, ε`2) ∼

N2((0, 0),Σi), ` = 1, . . . , L independent random variables with covariance structure given by Σ`

(that can depend on the point (w`, v`)) denoted by

Σ` =

 σ2
`,1 ρσ`,1σ`,2

ρσ`,1σ`,2 σ2
`,2

 . (6)

This scenario incorporates several practical situations, for example larger variance for darker spots,

increasing variance depending on the distance to the obstacle/threat zone, easier to spot threat zones,

etc.

Moreover, we have for each point, n independent readings. Thus, our data is composed of n

readings of the point process ηi = {(W1,i, V1,i), . . . , (WL,i, VL,i)} for i = 1, . . . , n. Denote W` =

(W`,1, . . . ,W`,n) and V` = (V`,1, . . . , V`,n), ` = 1, . . . , L.

For fixed γ ∈ (0, 1), the proposed estimator for fθ is the function

fγθ∗(x) =
K∑
j=1

θ∗jBj(x) (7)
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where θn is the solution of the minimization problem

θn = arg minQα,ψ,r,H,n(θ) (8)

subject to fγθ (0) = 0, fγθ (b) = 0, where

Qα,ψ,r,H,n(θ) =

∫ b

0

(
1 + (

K∑
j=1

θjB
′
j(t))

2

)1/2

dt+ ψΦ

(
Zα +

√
H(r − d(

K∑
j=1

θjBj(·), ηγ))

)
, (9)

(cf. with Equation (5)). The set ηγ is defined by

ηγ =
L⋃
`=1

Gγ(W`,V`) (10)

where for each ` = 1, . . . , L, Gγ(W`,V`) is a 100(1− γ)% confidence ellipse based on the n readings

for the `th point (W`,V`). The set ηγ can be thought as a fattening of the averaged point process

η̄ = 1
n
(η1 + . . .+ ηn) to account for the variability due to measurement errors.

Notice that, since the observations are iid random variables, it is immediate to see that

{(W̄`, V̄`), ` = 1, . . . , L} → N, a.s.

and

ηγ → N, a.s.

as n→∞. Therefore, it is easy to see that for fixed θ ∈ RK we have

Qα,ψ,r,H,n(θ) → Qα,ψ,r,H(θ), a.s. (11)

as n→∞.

From now on, to simplify the notation we will drop the subscript (α, ψ, r,H).

Lemma 12 For any continuous functions f : [0, b] → R and g : [0, b] → R and Γ ⊂ R2 we have

sup
x∈[0,b]

|f(x)− g(x)| ≥ |d(f,Γ)− d(g,Γ)|.

6



Proof. In fact, let ε = supx∈[0,b] |f(x)−g(x)| and without loss of generality assume d(f,Γ) > d(g,Γ).

It is easy to see that for any x ∈ [0, b] and w ∈ Γ

ε ≥ |f(x)− g(x)|

≥ d((x, f(x)), w)− d((x, g(x)), w)

= d((x, f(x)), w)− d(f,Γ) + d(f,Γ)− d((x, g(x)), w)

≥ d(f,Γ)− d((x, g(x)), w)

≥ d(f,Γ)− d(g,Γ) + d(g,Γ)− d((x, g(x)), w).

The result follows immediately by taking infimum over x ∈ [0, b] and w ∈ Γ in the last inequality.

Theorem 13 The functions Qn and Q are continuous functions.

Proof. We just need to check that the map θ 7→ Φ
(
Zα +

√
H(r − d(

∑K
j=1 φjBj(·),Γ))

)
is continuous

for any set Γ ⊂ R2. In fact, this map is Lipschitz. To see this, take θ, φ ∈ RK

|Φ

(
Zα +

√
H(r − d(

K∑
j=1

θjBj(·),Γ))

)
− Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·),Γ))

)
| ≤

≤ |φ′(ξ)
√
H

(
d(

K∑
j=1

θjBj(·),Γ)− d(
K∑
j=1

φjBj(·),Γ)

)
|

≤ 1√
2π

√
H sup

z∈[0,b]

|
K∑
j=1

(θj − φj)Bj(z)|

≤ C|θ − φ|

for a suitable positive constant. The first equality follows from the Mean Value Theorem, for some

ξ ∈ R. The inequality follows from Lemma 12.

We now can prove the main theorem of this paper.

Theorem 14 The solution of (8), θn, is a strongly consistent estimator for θ, the solution of (5).

Proof. In this case, we need the concept of epiconvergence. We need to prove that Qn epiconverges

to Q as n → ∞. The following result is true: if θn is an εn minimizer of Qn with εn → 0, then any

convergent subsequence of {θn} must converge to a point θ which minimizes Q and the optimal value
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Qn(θn) must also converge to the minimal point Q(θ). Notice that there is no need for uniqueness

of the minimizers. If Q has a unique minimizer θ then θ is the only accumulation point of the

sequence {θn}. Also, it does not guarantee that θ is finite. There are several characterizations of

epiconvergence. Here we follow Attouch (1984). The sequence Qn epiconverges to Q if:

Q(θ) ≤ sup
B∈N (θ)

lim infn→∞ inf
φ∈B

{Qn(φ)}, (15)

Q(θ) ≥ sup
B∈N (θ)

lim supn→∞ inf
φ∈B

{Qn(φ)} (16)

where N (θ) denotes the set of neighborhoods of the point θ.

Notice that there exists a countable base B = {B1, B2, . . .} for the topology of RK . For any point

θ, let

Nc(θ) = B ∩N (θ).

then, in our case, the suprema over uncountable set N (θ) in (16) and (15) can be replaced by

suprema over the countable set Nc(θ).

First we will prove (16). If B ∈ B and θ ∈ B ∩Θc then

Q(θ) = lim
n→∞

Qn(θ) ≥ lim supm→∞ inf
φ∈B

Qm(φ)

since

lim
n→∞

Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·), ηγn))

)
→ Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·), N))

)
, a.s.

and

lim
n→∞

inf
φ∈B

Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·), ηγn))

)
→ inf

φ∈B
Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·), N))

)
, a.s..

Therefore,

Q(θ) ≥ sup
B∈Nc(θ)

lim supn inf
B∈B

Qn(φ).

and (16) is proved.

For (15), first we choose a countable dense set Θc = {θ1, θ2, . . .} as follows. For each n, let θn ∈ Bn

such that

Q(θn) ≤ inf
φ∈Bn

Q(φ) +
1

n
.
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Therefore,

sup
B∈Nc

lim infn→∞ inf
φ∈B

Qm(φ)

= sup
B∈Nc

{
inf
φ∈B

∫ b

0

(1 + (
K∑
j=1

φjB
′
j(t))

2)1/2dt+ Ψlim supn→∞ inf
φ∈B

Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·), ηγm))

)}

= sup
B∈Nc

{∫ b

0

(1 + (
K∑
j=1

φjB
′
j(t))

2)1/2dt+ Ψ inf
φ∈B

Φ

(
Zα +

√
H(r − d(

K∑
j=1

φjBj(·), N))

)}
= Q(θ)

= sup
B∈Nc

{
inf
φ∈B

Q(φ)

}
≥ sup

B∈Nc

{
Q(θn)−

1

n

}
≥ Q(θ).
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