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Abstract

Skew-normal/independent distributions is a class of asymmetric thick-
tailed distributions that includes the skew-normal distribution as a especial
case. The main virtue of the members of this class of distributions is that
they are easy to simulate from and they make it possible to implement the
Monte Carlo EM algorithm for maximum likelihood estimation. In this pa-
per, we take skew-normal/independent distributions (Lachos and Vilca, 2007)
for the unobserved value of the covariates (latent variable) and symmetric
normal/independent (Lange and Sinsheimer, 1993) distributions for the ran-
dom errors providing an appealing robust alternative to the usual symmetric
process in multivariate measurement errors models. Specific distributions ex-
amined include univariate and multivariate versions of the skew-normal, the
skew-t, the skew-slash and the contaminated skew-normal distribution. The
results and methods are applied to a real data set.

Key Words: Monte Carlo EM algorithm; skew-normal/independent distrib-
utions, Mahalanobis distance.

1 Introduction

Measurement error models (MEM) are useful for a variety of phenomena modeling
in many disciplines. The MEM describes functional relationships among variables
observed subject to random measurement errors. Examples include linear and non-
linear errors-in-variables regression models, factor analysis models, latent structural
models, and simultaneous equations models. Such models are used, among oth-
ers, in medicine, life sciences, econometrics, chemometrics and geology. Hence, a
study of its properties under nonstandard assumptions, like normality for example,
is very pertinent. This model corresponds to a multivariate structural linear regres-
sion model with a single predictor subject to random measurement errors (Kendall
and Stuart, 1979; Fuller, 1987), which is frequently used to compare measuring
instruments (Barnett, 1969, Theobald and Mallison, 1978, Shyr and Gleser, 1986,
Bolfarine and Galea-Rojas, 1996 and Chipkevitch et al., 1996). If r = 1 then the
classical linear errors-in-variables regression models follow which, under symmetrical
distributions, has been widely discussed in the literature, as can be seen in texts by
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Fuller (1987), Brown and Fuller (1990) and Cheng and van Ness (1999) as well as
in the paper by Arellano-Valle and Bolfarine (1996). In this paper we will focus on
the case r > 1.

On the other hand, recent statistical literature has seen an increasing interest
for models providing flexibility in capturing a broad range of non-normal behav-
ior, such as skewness, and thus, representing features of the data as adequately as
possible and to reduce unrealistic assumptions. Advantages of using such general
structures include easiness of interpretation, as well as estimation efficiency. In this
paper we consider a classical approach of multivariate measurement errors models
(MMEM), where the unobserved covariate (x) is a continuous random variable that
follows skew-normal/independent distributions (SNI, Lachos and Vilca, 2007), the
random errors follows symmetric normal/independent distributions and that we ob-
serve a vector of responses (Y) of dimension r for each experimental unit. The
SNI distributions is a rich class of distributions that contains as proper elements
the skew-normal, the skew-t, the skew-slash, the skew-power exponential and the
contaminated skew-normal distribution. This study is motivated by the fact that
many data sets considered in the literature seem to present nonnormal behavior,
such as asymmetry and heavy tails. This is the case with the data sets in Bar-
nett (1969) and in Chipkevitch et al. (1996) (see also Bolfarine et al., 2002) which
requires data transformation in order to be better approximated by the normal
(or by a symmetric) distribution. Specifically, we first extend the normal MMEM
by considering a hierarchical asymmetric version of this model, implying that the
observed responses follow a skew-normal/independent distribution so that the Skew-
Normal/independent Multivariate Measurement Errors Model (SNI-MMEM) is de-
fined. Closed form expressions are obtained for the likelihood function which extends
results in Arellano–Valle, Ozan, Bolfarine and Lachos (2005) and Lachos, Bolfarine,
Vilca and Galea–Rojas (2005).

The paper is organized as follows. In Section 2, for the sake of completeness,
we give a brief sketch of SNI distributions. In Section 3 we present the multivariate
skew-normal/independent measurement error model (SNI-MMEM). In Section 4 we
discuss the Monte Carlo EM algorithm for maximum likelihood (ML) estimation in
SNI-MMEM. The observed information matrix is derived analytically in Section 5.
The methodology proposed for SNI-MMEM models is illustrated in Section 6 consid-
ering a real data set and finally, some concluding remarks are presented in Section 7.

2 Skew-normal/independent distributions

A somewhat simpler departure from normality has been proposed by Azzalini (1985),
by defining the univariate skew-normal distribution. An extension to the multivari-
ate setting was proposed by Azzalini and Dalla–Valle (1996), defining the following
probability density function (pdf)

f(y|μ,Σ,λ) = 2φp(y|μ,Σ)Φ1(λ
�Σ−1/2 (y − μ)) , y ∈ R

p, (1)
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where φp(.|μ,Σ) stands for the pdf of the p-variate normal distribution with mean
vector μ and covariate matrix Σ, Φ1(.) represents the cumulative distribution func-
tion (cdf) of the standard normal distribution, and Σ−1/2 satisfies Σ−1/2Σ−1/2 =
Σ−1. When λ = 0, the skew normal distribution reduces to the normal distribution
(Y ∼ Np(μ,Σ)). A p-dimensional random vector Y with pdf as in (1) is denoted
by SNp(μ,Σ,λ), with marginal stochastic representation given by

Y
d
= μ+ Σ1/2(δ|T0| + (Ip − δδ�)1/2T1), with δ =

λ√
1 + λ�λ

, (2)

where |T0| denotes the absolute value of T0, T0 ∼ N1(0, 1) and T1 ∼ Np(0, Ip) are

independent, and “
d
= ” means “distributed as”. Reasoning as in Azzalini (1985),

one can define more general models such as skew-t distributions (Sahu et al., 2003;
Gupta, 2003), skew-Cauchy distributions (Arnold and Beaver, 2002), skew-slash
distributions (Wang and Genton, 2006), skew-slash-t distributions (Tan and Peng,
2006) and skew-elliptical distributions (Azzalini and Capitanio, 1999; Branco and
Dey, 2001; Sahu et a., 2003; Genton and Loperfido, 2005). Recently, Lachos and
Vilca (2007) define the SNI distributions which combine skewness with heavy tails
and study many of its properties and applications.

The asymmetrical class of SNI distributions has attracted attention, particularly
due to the fact that they include distributions such as the skew-t, the skew-slash, the
skew-power exponential, and the contaminated skew-normal. All these distributions
have heavier tails than the skew-normal ones and can be used for robust inference
in many type of models. We say that a p-dimensional random vector Y follows a
SNI distribution with location parameter μ ∈ R

p, scale matrix Σ (a p × p positive
definite matrix) and skewness parameter λ ∈ R

p, if its pdf is given by

f(y|μ,Σ,λ,ν) = 2

∫ ∞

0

φp(y|μ, u−1Σ)Φ1(u
1/2λ�Σ−1/2(y − μ))dH(u)

= 2

∫ ∞

0

up/2

(2π)p/2
|Σ|−1/2e−

u
2
dΦ1(u

1/2λ�Σ−1/2(y − μ))dH(u),

(3)

where d = (y − μ)�Σ−1(y − μ) is the Mahalanobis distance and U is a positive
random variable with cdf H(u;ν) indexed by the parameter vector ν ∈ R

r. For a
random vector with pdf as in (3), we use the notation Y ∼ SNIp(μ,Σ,λ; H). If
μ = 0 and Σ = Ip we refer to it as a standard SNI distribution and we denote it by
SNIp(λ; H). Its stochastic representation is given by

Y = μ+ U−1/2Z, (4)

where Z ∼ SNp(0,Σ,λ) and U is a positive random variable with cdf H independent
of Z. Moreover, from (2) it follows that (4) can be written as

Y
d
= μ+ U−1/2Σ1/2{δ|X0| + (In − δδT )1/2X1}, (5)
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where U , X0 ∼ N1(0, 1) and X1 ∼ Np(0, Ip) are all independent. Some of these
distributions are described subsequently. For each element of this class, the condi-
tional expectation û = E[U |y] and the distributional properties of the Mahalanobis
distance are described, because they are extremely useful to the implementation of
the EM-algorithm and in testing goodness of fit (or detecting outliers), respectively.

2.1 Examples of SNI distributions

• The skew-t distribution, with ν degrees of freedom, STp(μ,Σ,λ, ν). Consider-
ing U ∼ Gamma(ν/2, ν/2) with pdf of the form

h(u|ν) =
(ν/2)ν/2uν/2−1

Γ(ν/2)
exp (−1

2
νu). (6)

Similar procedures found in Gupta (2003, Section 2) lead to the following
density function:

f(y|μ,Σ,λ, ν) = 2tp(y|μ,Σ, ν)T1(

√
v + pλ�Σ−1/2(y − μ)√

d + p
|0, 1, ν+p), y ∈ R

p,

(7)
where as usual, tp(·|μ,Σ, ν) and Tp(·|μ,Σ, ν) denote, respectively, the pdf and
cdf of the Student-t distribution, namely tp(μ,Σ, ν). A particular case of the
skew-t distribution is the skew-Cauchy distribution, when ν = 1. Also, when
ν ↑ ∞, we get the skew-normal distribution as the limiting case. See Gupta
(2003) for further details. From Lachos and Vilca (2007), it also follows that

d = (y − μ)�Σ−1(y − μ) ∼ pF (p, ν).

u|y ∼ Gamma(
ν + p

2
,
ν + d

2
),

so that taking conditional expectation, û = E[U |y] =
ν + p

ν + d
.

• The skew-slash distribution with the shape parameter ν > 0, namely SSLp(μ,Σ,λ, ν).
Its pdf is given by

f(y|μ,Σ,λ, ν) = 2ν

∫ 1

0

uν−1φp(y|μ,
Σ

u
)Φ1(u

1/2λ�Σ−1/2(y−μ))du, y ∈ R
p,

(8)
and U has density given by

h(u|ν) = νuν−1
I(0,1), ν > 0, (9)

where the notation I(A) is the indicator function of the the set A. The skew-
slash distribution reduces to the skew-normal distribution when ν ↑ ∞. See
Wang and Genton (2006) for further details. The Mahalanobis distance has
cdf

Pr(d ≤ r) = Pr(χ2
p ≤ r) − 2νΓ(p/2 + ν)

rνΓ(p/2)
Pr(χ2

p+2ν ≤ r)
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and the conditional distribution in this case has the form

u|y ∼ Gamma(ν +
p

2
,
d

2
)I(0,1),

so that û =

(
p + 2ν

d

)
P1(p/2 + ν + 1, d/2)

P1(p/2 + ν, d/2)
, where Px(a, b) denotes the cdf of

the Gamma(a, b) distribution evaluated at x.

• The contaminated skew-normal distribution, SCNp(μ,Σ,λ, ν, γ), 0 ≤ ν ≤ 1,
0 < γ ≤ 1. Another SNI, arises when U is a discrete random variable taking
one of two states. The probability function of U , given the parameter vector
ν = (ν, γ)�, is denoted by

h(u|ν) = νI(u=γ) + (1 − ν)I(u=1), ν = (ν, γ)�, (10)

It follows straightforwardly that

f(y|μ,Σ,λ,ν) = 2{νφp(y|μ,
Σ

γ
)Φ1(γ

1/2λ�Σ−1/2(y − μ))

+(1 − ν)φp(y|μ,Σ)Φ1(λ
�Σ−1/2(y − μ))}. (11)

Parameter ν can be interpreted as the proportion of outliers while γ may
be interpreted as a scale factor. The skew-contaminated normal distribution
reduces to the skew-normal distribution when γ = 1. In this case, from Lachos
and Vilca (2007), we have that

Pr(d ≤ r) = νPr(χ2
p ≤ γr) + (1 − ν)Pr(χ2

p ≤ r),

and
h(u|y) = νpI(u=γ) + (1 − ν)pI(u=1),

with p =
up/2 exp{−du

2
}

νγp/2 exp{−dγ
2
} + (1 − ν) exp{−d

2
} , so that,

û =
1 − ν + νγp/2+1 exp {(1 − γ)d/2}
1 − ν + νγp/2 exp {(1 − γ)d/2} .

The skew–power exponential distribution is of the SNI type. However, in this
case, the scale distribution H(u;ν) is not computationally attractive and it will not
be dealt with in this work.

3 The model

Let n be the sample size; Xi, the observed value of the covariate in unit i; yij, the j-
th observed response in unit i and xi, the unobserved (true) covariate value for unit
i, i = 1, . . . , n and j = 1, . . . , r. Relating these variables we postulate as working
model the equations (see, Barnett, 1969 and Shyr and Gleser, 1986),
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Xi = xi + ui, (12)

and
Yi = α+ βxi + ei, (13)

where Yi = (yi1, . . . , yir)
�, is the vector of responses for the i-th experimental unit,

ei = (ei1, . . . , eir)
�, is a random vector of measurement errors of dimension r, α =

(α1, ..., αr)
� and β = (β1, ..., βr)

� are parameter vectors of dimension r. Let εi =
(ui, e

�
i )� and Zi = (Xi,Y

�
i )�, then the model defined by equations (4)-(5) can be

written as
Zi = a + bxi + εi = a + Bri, (14)

where a = (0,α�)� and b = (1,β�)� are p × 1 vectors, with p = r + 1, and
B = [b; Ip] a p × (p + 1) matrix and ri = (xi, ε

�
i )�, i = 1, . . . , n. Thus, using

(14), the distribution of Zi become specified once the distribution of ri is specified,
i = 1, . . . , n. In this paper, we assume that

ri =

(
xi

εi

)
iid∼ SNIp+1

((
μx

0

)
, D(φx,φ),

(
λx

0

)
; H

)
, (15)

i = 1, . . . , n, where D(φx,φ) = diag(φx, φ1, . . . , φp)
�, with φ = (φ1, . . . , φp), which

will be called structural SNI-MMEM. From (4), this formulation implies that

(
xi

εi

)
|Ui = ui ∼ SNp+1

((
μx

0

)
, u−1

i D(φx,φ),

(
λx

0

))
, (16)

Ui ∼ h(ui|ν), (17)

i = 1, . . . , n. It can be shown that conditional on Ui, εi and xi are independent
(Azzalini and Capitanio, 1999, Proposition 6) and further,

εi|ui
ind∼ Nm+1(0, u−1

i D(φ)) and xi|ui
ind∼ SN1(μx, u

−1
i φx, λx). (18)

this is, conditional on Ui, εi ∼ SNIp(0, D(φ), 0; H) and xi ∼ SNI1(μx, φx, λx; H).

The above model is considering that in the case of Barnett’s (1969) data, vi-
tal capacity is not symmetrically distributed in the population. The same seems
to be the case with testicular density data studied in the case of Chepkevitch et
al.’s (1996) data set. On the other hand, the errors εi, are related to measurement
error so that it is expected to be symmetrically distributed. The asymmetric pa-
rameter λx incorporates asymmetry in the latent variable xi and consequently in
the observed quantities Zi, i = 1, . . . , n, which will be shown to have marginally
multivariate SNI distributions. If λx = 0, then the asymmetric model reduces to
the symmetric MMEM considering normal/independent (NI, Lange and Sinsheimer,
1993) distributions. Note from (2) that the regression set up defined in (14)-(15)
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can be written hierarchically as

Zi | xi, Ui = ui
ind∼ Np(a + bxi, u

−1
i D(φ)), (19)

xi | Ti = ti, Ui = ui
ind∼ N1(μx + φ1/2

x δxu
−1/2
i ti, u

−1
i φx(1 − δ2

x)), (20)

Ti
iid∼ HN1(0, 1), (21)

Ui
iid∼ h(ui|ν), (22)

i = 1, . . . , n, all independent, where HN1(0, 1) denotes the standardized univariate
half-normal distribution and δx = λx/(1+λ2

x)
1/2. As in Fernandez and Steel (1999),

we assumed that ν is known. Classical inference on the parameter vector θ =
(α�,β�,φ�, μx, φx, λx)

� in this type of model is based on the marginal distribution
for Zi (see, Bolfarine and Galea-Rojas, 1995), given in the following proposition.

Proposition 1. Under the structural SNI-MMEM defined in (14)-(15), the marginal
distribution of Zi is given by

fZi
(zi|θ) = 2

∫ ∞

0

φp(zi|μ, u−1
i Σ)Φ1(u

1/2
i λ̄

�
x Σ−1/2(zi − μ))dH(ui), (23)

i.e., Zi
iid∼ SNIp(μ,Σ, λ̄x; H), i = 1, . . . , n, where

μ = a + bμx, Σ = φxbb� + D(φ) and λ̄x =
λxφxΣ

−1/2b√
φx + λ2

xΛx

,

with Λx = (φx
−1 + b�D−1(φ)b)−1 = φx/c and c = 1 + φxb

�D−1(φ)b.

Proof. See Lemmas 1 and 2 in Arellano-Valle, Bolfarine and Lachos (2005) or Propo-
sition 5 in Lachos and Vilca (2007).

It follows that the log-likelihood function for θ given the observed sample z =
(z�1 , . . . , z�n )� is given by

�(θ) =
n∑

i=1

�i(θ), (24)

where �i(θ) = log 2 − p

2
log2π − 1

2
log |Σ| + log Ki, with

Ki = Ki(di, Ai) =

∫ ∞

0

u
p/2
i exp{−1

2
uidi}Φ1(u

1/2
i Ai)dH(ui),

where μ, Σ, λ̄x as in Proposition 1, di = (zi−μ)�Σ−1(zi−μ) and Ai = λ̄
�
x Σ−1/2(zi−

μ) = Axai, with

Ax =
λxΛx√

φx + λ2
xΛx

and ai = (zi − μ)�D−1(φ)b.

The result presented in Proposition 1 is important because it facilitates straight-
forward implementation of inferences with standard optimization routines and ex-
isting statistical softwares. The asymptotic covariance matrix of the maximum like-
lihood estimators can be estimated by using the Hessian matrix, which can also be
computed numerically using, for instance, the optim routine in platform R. Here, to
obtain the maximum likelihood estimator of θ we use the EM algorithm and derived
algebraically its asymptotic covariance matrix.
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4 Maximum likelihood estimation

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a popular iterative al-
gorithm for ML estimation in models with incomplete data. More specifically, let
z denote the observed data and s denoted the missing data. The complete data,
namely zcomp = (z, s), is z augmented with s. We denote by �c(θ|z, s), θ ∈ Θ, the
complete-data log-likelihood function and by Q(θ|θ′) the expected complete-data
log-likelihood

Q(θ|θ′) = E[�c(θ|z, s)|z, θ′].
Each iteration of the EM algorithm involves two steps, the expectation step and

the maximization step:

E-step: Compute Q(θ|θ(r)) as a function of θ;

M-step: Find θ(r+1) such that Q(θ(r+1)|θ(r)) = maxθ∈Θ Q(θ|θ(r)).

Each iteration of the EM algorithm increases the likelihood function �(θ) and
the EM algorithm typically converges to a local or global maximum of the likelihood
function.

Let z = (z�1 , . . . , z�n )�, x = (x1, . . . , xn)�, u = (u1, . . . , un)
� and t = (t1, . . . , tn)�.

In the following we implement the EM algorithm for the structural SNI-MMEM by
considering that (x,u, t) are missing data, i.e, using triple augmentation. Thus, un-

der the hierarchical representation (19)-(22), with ν2
x = φx(1 − δ2

x) and τx = φ
1/2
x δx,

it follows that the complete log-likelihood function associated with (z,x, t,u) is

�c(θ|z,x, t,u) ∝ −n

2
log(|D(φ)|) − 1

2

n∑
i=1

ui(zi − a− bxi)
�D−1(φ)(zi − a − bxi)

−n

2
log(ν2

x) −
1

2ν2
x

n∑
i=1

ui(xi − μx − τxu
−1/2
i ti)

2. (25)

Letting ûi = E[ui|θ̂, zi], ûti = E[u
1/2
i ti|θ̂, zi], t̂2i = E[t2i |θ̂, zi], ûxi = E[uixi|θ̂, zi],

ûx2
i = E[uix

2
i |θ̂, zi] and ûtxi = E[u

1/2
i tixi|θ̂, zi], we obtain using known properties

of conditional expectation and the moments of the truncated normal distribution
(see Johnson et al., 1994, Section 10.1) that

ûti = E[u
1/2
i Ai] = ûiμ̂T i + M̂T E[WΦ1(

u
1/2
i μ̂Ti

M̂T

)|θ̂, zi], (26)

t̂2i = E[Bi] = ûiμ̂
2
Ti

+ M̂2
T + M̂T μ̂Ti

E[u
1/2
i WΦ1(

u
1/2
i μ̂Ti

M̂T

)|θ̂, zi],

ûxi = r̂i ûi + ŝ ûti, ûx2
i = T̂x

2
+ r̂2

i ûi + 2r̂iŝ ûti + ŝ2 t̂2i, and

ûtxi = r̂i ûti + ŝ t̂2i,
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where Ai = u
1/2
i μ̂T i + WΦ1(

u
1/2
i �μTi
�MT

)M̂T , Bi = uiμ̂
2
Ti

+ M̂2
T + u

1/2
i WΦ1(

u
1/2
i �μTi
�MT

)M̂T μ̂Ti

with WΦ1(u) = φ1(u)/Φ1(u), M̂T

2
= [1 + τ̂x

2b̂�(D(φ̂) + ν̂x
2b̂b̂�)−1b̂]−1, μ̂Ti

=

τ̂xM̂
2
T b̂�(D(φ̂) + ν̂x

2b̂b̂�)−1(zi − â − b̂μ̂x), T̂x

2
= ν̂x

2[1 + ν̂x
2b̂�D−1(φ̂)b̂]−1, r̂i =

μ̂x + T̂x

2
b̂�D−1(φ̂)(zi − â− b̂μ̂x) and ŝ = τ̂x(1 − T̂x

2
b̂�D−1(φ̂)b̂).

Since the conditional expectations given in (26) depends only on ui, we need to
known (and to generate) the conditional distribution ui|yi, which for each element
of this class of distributions can be easily derived from the results of the Proposition
1 jointly with the result of conditional distributions given in Section 2.1. Besides,
for the contaminated skew-normal distribution all the quantities of the E-step (26)
have closed form expression, with

E[WΦ1(
u

1/2
i μ̂Ti

M̂T

)] =
νγp/2WΦ1(

γ1/2
�μTi

�MT
) exp {(1 − γ)d/2} + (1 − ν)WΦ1(

�μTi
�MT

)

1 − ν + νγp/2 exp {(1 − γ)d/2}

E[u
1/2
i WΦ1(

u
1/2
i μ̂Ti

M̂T

)] =
νγ(p+1)/2WΦ1(

γ1/2
�μTi

�MT
) exp {(1 − γ)d/2} + (1 − ν)WΦ1(

�μTi
�MT

)

1 − ν + νγp/2 exp {(1 − γ)d/2}
For the skew-t and skew-slash, Monte-Carlo integration may be employed, which

yield a so-called MC-EM algorithm.
Thus, we have the following EM type algorithm:

E-step: Given θ = θ̂, compute ûi, t̂2i, ûti, ûxi, ûx2
i, and ûtxi for i = 1, . . . , n,

using (26).

M-step: Update θ̂ by maximizing E[�c(θ|z,x, t,u)|z, θ̂] over θ, which leads to

α̂ = yu − xuβ̂

β̂ =

∑n
i=1 ûxi(yi − yu)∑n
i=1 ûx2

i − nûx2
u

,

φ̂1 =
1

n

n∑
i=1

(ûiX
2
i − 2ûxiXi + ûx2

i),

φ̂j+1 =
1

n

n∑
i=1

(ûiy
2
ij + ûiα

2
j + β2

j ûx2
i − 2ûiαjyij − 2yijβjûxi + 2αjβjûxi), j = 1, . . . , r,

μ̂x = xu − τ̂xtu,

ν̂2
x =

1

n

n∑
i=1

(ûx2
i − μ̂xûxi) − τ̂x

1

n

n∑
i=1

ûtxi and

τ̂x =

∑n
i=1(ûtxi − xuûti)∑n

i=1(t̂
2
i − tuûti)

,
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where,

yu =

∑n
i=1 ûiyi∑n
i=1 ûi

, xu =

∑n
i=1 ûxi∑n
i=1 ûi

, tu =

∑n
i=1 ûti∑n
i=1 ûi

and û =
1

n

n∑
i=1

ûi.

Note that when ui = 1 the M-step equations reduce to the equations obtained in
Lachos, Bolfarine, Vilca and Galea-Rojas (2005) under the skew-normal distribution
and when λx = 0 (or τx = 0) the M-step equations reduces to the equations obtained
by Bolfarine and Galea-Rojas (1995). Moreover, when U ∼ Gamma(ν/2, ν/2) and
λx = 0 , the M-step reduces to equations obtained by Bolfarine and Galea-Rojas
(1996). The shape and scale parameters of the latent variable x, can be estimated by
noting that τx/νx = λx, and φx = τ 2

x +ν2
x. Starting values are often chosen to be the

corresponding estimates under a normal assumption, where the starting values for
the asymmetric parameters are set to be 0 and as recommended in the literature,
it is useful to run the EM-algorithm several times with different starting values.
Following Arellano-Valle, Bolfarine and Lachos (2005) we also propose selecting the
best fit by inspection of information criteria such as Akaike’s Information Criterion
(AIC, −�(θ̂)/N + P/N), where P is the number of parameters in the model and
N = P × n.

5 The observed information matrix

From (24) and the notation in Proposition 1, we have after some algebraic manipu-
lations that the log-likelihood function can be, alternatively, written as:

�(θ) =

n∑
i=1

�i(θ), (27)

where �i(θ) = log 2 − p

2
log2π − 1

2
log |Σ| + log(Ki), i = 1, . . . , n. Thus, the matrix

of second derivatives with respect to θ is given by

L =

n∑
i=1

∂2�i(θ)

∂θ∂θ�
= −n

2

∂2 log |Σ|
∂θ∂θ�

−
n∑

i=1

1

K2
i

∂Ki

∂θ

∂Ki

∂θ�
+

n∑
i=1

1

Ki

∂2Ki

∂θ∂θ�
, (28)

where
∂Ki

∂θ
= Iφ

i (
p + 1

2
)
∂Ai

∂θ
− 1

2
IΦ
i (

p + 2

2
)
∂di

∂θ

and

∂2Ki

∂θ∂θ�
=

1

4
IΦ
i (

p + 4

2
)
∂di

∂θ

∂di

∂θ�
− 1

2
IΦ
i (

p + 2

2
)

∂2di

∂θ∂θ�
(29)

−1

2
Iφ
i (

p + 3

2
)(

∂Ai

∂θ

∂di

∂θ�
+

∂di

∂θ

∂Ai

∂θ�
) − Iφ

i (
p + 3

2
)Ai

∂Ai

∂θ

∂Ai

∂θ�

+IΦ
i (

p + 1

2
)

∂2Ai

∂θ∂θ�
,
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with the notation

IΦ
i (w) =

∫ ∞

0

uw
i exp{−1

2
uidi}Φ1(u

1/2
i Ai)dH(ui),

Iφ
i (w) =

∫ ∞

0

uw
i exp{−1

2
uidi}φ1(u

1/2
i Ai|0, 1)dH(ui).

Notice that we can also write Ki = IΦ
i (p

2
). From Section 2.1 and Lema 2 in

Gupta (2003), direct substitution of H(u) in the integrals above yields immediately
the following results for each distribution considered, namely

• Skew-t.

IΦ
i (w) =

2wνν/2Γ(w + ν/2)

Γ(ν/2)
T1

(
Ai

(di + ν)1/2

√
w + ν/2|0, 1, w + ν/2

)
and

Iφ
i (w) =

2ννν/2

√
2πΓ(ν/2)

(
1

di + A2
i + ν

)
ν+2w

2 Γ(
ν + 2w

2
).

• Skew-slash.

IΦ
i (w) =

2w+νΓ(w + ν)

dw+ν
i

P1(w + ν,
di

2
)E[Φ(S

1/2
i Ai)] and

Iφ
i (w) =

ν2w+νΓ(w + ν)√
2π(di + A2

i )
w+ν

P1(w + ν,
di + A2

i

2
),

where Si ∼ Gamma(w + ν, di

2
)I(0,1).

• Contaminated skew–normal.

IΦ
i (w) =

√
2π{νγw−1/2φ1(di|0, 1

γ
)Φ(γ1/2Ai) + (1 − ν)φ1(di|0, 1)Φ(Ai)} and

Iφ
i (w) = νγw−1/2φ1(di + A2

i |0,
1

γ
) + (1 − ν)φ1(di + A2

i ).

The derivatives of log Σ, di and Ai involved tedious but not complicated algebraic
manipulations and are given in the Appendix. Asymptotic confidence intervals and
test on the MLEs can be obtained using this matrix, that is, if J = −L denotes the
observed information matrix for the marginal log-likelihood �(θ) of the SNI-MMEM,
then asymptotic confidence intervals and hypotheses tests for the parameter θ are
obtained assuming that the MLE θ has approximately a N3p+1(θ,J

−1) distribution.

In practice, J is usually unknown and has to be replaced by the MLE Ĵ, that is, the
matrix Ĵ evaluated at the MLE θ̂.

6 Application

Barnett (1969) data set. In this application, the multivariate skew-normal, skew-
t, skew-slash and skew-contaminated normal distributions, are applied to fit the data

11



Figure 1: Barnett data set. Profile Likelihood for the skew-t model.
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studied in Barnett (1969). We consider the measurements divided by 100 in order
to achieve numerical stability. In a previous analysis of this data set (Galea-Rojas
et al., 2002), a transformation was used to improve the normal fitting and Lachos,
Bolfarine, Vilca e Galea-Rojas (2005) noticed left skewness and used the skew-
normal distribution. We compare in the sequel skew-normal (SN), skew-t (ST),
contaminated skew-normal (CSN) and skew-slash (SSL) fitting for this data set.
Resulting parameter estimates for the four models are given in Table 1. As suggested
by Fernandez and Steel (1999) for each model, the AIC criterion (or equivalently the
log-likelihood) was used for choosing among some values of ν and γ. This strategy is
illustrated in Figure 1 for the skew-t model, it is clear that, in this case, the optimum
value of ν is around 12. Note that using AIC values (and log-likelihood) shown in
the bottom of the Table 1 we have that they favor the SNI models. Particularly,
we can see that the contaminated skew-normal fits the data better than the other
three distributions. Replacing the ML estimates of θ in the Mahalanobis distance
di = (zi − μ)�Σ−1(zi − μ), we present Q-Q plots and envelopes in Figure 2 (lines
represent the 5th percentile, the mean, and the 95th percentile of 100 simulated
points for each observation). It seems to us that the plots in Figure 2 provide even
stronger evidence that the contaminated skew-normal distribution provides a better
fit to the data set than the skew-t, skew-slash and the skew-normal distribution.

7 Final Conclusion

Paper deals with a multivariate skew–normal/independent MEM, with the skew-
normal (and the normal/independent distributions) MEM as special cases. A closed
form expression is obtained for the likelihood function of the observed measurements
which can be maximized by using existing statistical software. An EM-type algo-
rithm is developed by exploring statistical properties of the class considered. The

12



Figure 2: Barnett data set. Q-Q plots and simulated envelopes: (a) Skew-normal model
(b) contaminated skew-normal model (c) skew-t model and (d) skew-slash model.
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observed information matrix is derived analytically which allows direct implemen-
tation of inference on this class of models. For the Barnett (1969) data set, the
skew-contaminated normal distribution seems to present a better fit. We point out
that the results and methods provided in this paper is not available elsewhere in
the literature and the approaches used here can be used easily extended in treat-
ing other multivariate models, for instance, we can defined of a similar form the
skew-normal/independent linear mixed model which will be the subject of incoming
papers.
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Appendix: The observed information matrix in the multivariate
skew-normal/independent measurement errors model

In this appendix the first and second derivatives log |Σ|, Ai and di are obtained.
• Ai

From (24), it follows that

∂Ai

∂γ
= [Ax

∂ai

∂γ
+ ai

∂Ax

∂γ
],

∂2Ai

∂γ∂τ� = [
∂Ax

∂γ

∂ai

∂τ� + Ax
∂2ai

∂γ∂τ� +
∂ai

∂γ

∂Ax

∂τ� + ai
∂2Ax

∂γ∂τ� ]

with γ = μx,α,β, φx,φ, λx, Ax = λxΛx/(φx+λ2
xΛx)

1/2, Λx = φx/c, ai = X�
i D−1(φ)b,

X i = Zi − a− bμx, c = 1 + φxb
T D−1(φ)b, i = 1, ..., n. Using results in Nel (1980)

related to vector derivatives it follows that,

∂Ax

∂γ
= 0, γ = μx,α,

∂Ax

∂β
= −(2c + λ2

x)

λ2
x

A3
xD

−1(ψ)β,

∂Ax

∂φ
=

(2c + λ2
x)

2λ2
x

A3
xD(b)D−2(φ)b,

∂Ax

∂φx
=

(2c + λ2
x − c2)

2φ2
xλ

2
x

A3
x,

∂Ax

∂λx
=

φx

Λ2
xλ

3
x

A3
x,

∂ai

∂μx
= −b�D−1(φ)b,

∂ai

∂α
= −D−1(ψ)β,

∂ai

∂β
= D−1(ψ)W 2i − μxD

−1(ψ)β,

∂ai

∂φx
= 0,

∂ai

∂φ
= −D(b)D−2(φ)X i,

∂ai

∂λx
= 0,
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∂2Ax

∂β∂β� = −(4
φx

λ2
x

A3
x −

3(2c + λ2
x)

2

λ4
x

A5
x)M 1 − 2c + λ2

x

λ2
x

A3
xD

−1(ψ),

∂2Ax

∂β∂φx
= −[

2(c − 1)

λ2
xφx

A3
x +

3(2c + λ2
x)(2c + λ2

x − c2)

2λ4
xφ

2
x

A5
x]D

−1(ψ)β,

∂2Ax

∂β∂φ� = [2
φx

λ2
x

A3
x −

3(2c + λ2
x)

2

2λ4
x

A5
x]D

−1(ψ)βb�D(b)D−2(φ)

+
2c + λ2

x

λ2
x

A3
xI(p)D(b)D−2(φ),

∂2Ax

∂β∂λx
=

φxA
3
x

λ5
xΛ

2
x

(−3A2
x(2c + λ2

x) + 4λ2
xΛx)D

−1(ψ)β,

∂2Ax

∂φx∂φx

= −λ2
x + 1

λ2
xφ

3
x

A3
x +

3(2c + λ2
x − c2)2

4λ4
xφ

4
x

A5
x,

∂2Ax

∂φx∂φ
� = [

(c − 1)

λ2
xφx

A3
x +

3(2c + λ2
x)(2c + λ2

x − c2)

4λ4
xφ

2
x

A5
x]b

�D(b)D−2(φ),

∂2Ax

∂φx∂λx
=

c − 2

λ3
xΛxφx

A3
x +

3(2c + λ2
x − c2)

2λ5
xΛ

2
xφx

A5
x,

∂2Ax

∂φ∂φ� = [−φx

λ2
x

A3
x +

3(2c + λ2
x)

2

4λ4
x

A5
x]D(b)D−1(φ)MD−1(φ)D(b)

−2c + λ2
x

λ2
x

D2(b)D−3(φ)A3
x,

∂2Ax

∂φ∂λx
=

φxA
3
x

2λ5
xΛ

2
x

[3A2
x(2c + λ2

x) − 4λ2
xΛx]D(b)D−2(φ)b,

∂2Ax

∂λx∂λx
= − 3φx

λ4
xΛ

2
x

A3
x +

3φ2
x

λ6
xΛ

4
x

A5
x,

∂2ai

∂γ∂τ� = 0,γ = μx,α, φx, λx τ = μx,α, φx, λx;
∂2ai

∂γ∂τ� = 0, γ = β,φ, τ = φx, λx,

∂2ai

∂μx∂β
� = −2β�D−1(ψ),

∂2ai

∂μx∂φ
� = b�D(b)D−2(φ),

∂2ai

∂α∂β� = −D−1(ψ),

∂2ai

∂α∂φ� = I(p)D(b)D−2(φ),

∂2ai

∂β∂β� = −2μxD
−1(ψ),

∂2ai

∂β∂φ� = −I(p)D(Zi − a− 2μxb)D
−2(φ),

∂2ai

∂φ∂φ� = 2D(X i)D(b)D−3(φ)
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• di

For di = X�
i Σ−1X i, with diγ =

∂di

∂γ
and diγτ� =

∂2di

∂γ∂τ� , it follows that

diμx = −2b�Σ−1X i,

diα = −2I(p)Σ
−1X i,

d
iβ = −2qiD

−1(ψ)W 2i + 2c−1φxaiqiD
−1(ψ)β,

diφx = −c−2a2
i ,

d
iφ = −D−2(φ)D(X i)X i + 2c−1φxaiD

−2(φ)D(b)X i − c−2φ2
xa

2
i D

−2(φ)D(b)b,

diλx = 0,

diμxμx = 2b�Σ−1b,

diμxα� = 2b�Σ−1
I
�
(p),

d
iμxβ

� = −2c−1Ai,

diμxφx = 2
(c − 1)

c2φx
ai,

d
iμxφ

� = 2c−1X�
i Σ−1D−1(φ)D(b),

diαα� = 2I(p)Σ
−1

I
�
(p),

d
iαβ� = 2qi[D

−1(ψ) − 2c−1φxM 1] + 2c−1φxD
−1(ψ)β(Y i −α)�D−1(ψ),

diαφx = 2c−2aiD
−1(ψ)β,

d
iαφ� = 2I(p)Σ

−1D−1(φ)[D(X i) − c−1φxaiD(b)],

d
iββ� = 4

φ2
x

c2
ai[D

−1(ψ)(Y i −α− 2βμx)β
�D−1(ψ) + D−1(ψ)β(Y i −α− 2βμx)

�D−1(ψ)]

−2c−1φxD
−1(ψ)(Y i −α− 2βμx)(Y i −α− 2βμx)

�D−1(ψ)

+2μx(qi + c−1φxai)D
−1(ψ) + 2

φ2
x

c2
a2

i [D
−1(ψ) − 4

φx

c
M 1],

d
iβφx

= −2c−2aiA
�
i ,

d
iβφ� = 2[qiI(p)D(Zi − a− qib) + c−1φxA

�
i (Zi − a− bqi)

�D(b)]D−2(φ),

diφxφx = 2
c−3

φx
(c − 1)a2

i ,

d
iφxφ

� = (−2c−3φxa
2
i D(b)D−2(φ)b+ 2c−2aiD(b)D−2(φ)X i)

�,

d
iφφ� = 2D−3(φ)D2(X i) − 4c−1φxaiD

−3(φ)D(b)D(Xi)

−2c−1φxD
−2(φ)D(b)X iX

�
i D(b)D−2(φ)

+2c−2φ2
xD

−2(φ)D(b)X iX
�
i MD−1(φ)D(b)

+2c−2φ2
xa

2
i D

−3(φ)D2(b) − 2c−3φ3
xa

2
i D

−1(φ)D(b)MD(b)D−1(φ)

+2c−2φ2
xD

−1(φ)D(b)MX iX
�
i D(b)D−2(φ),
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• log |Σ|

∂2log|Σ|
∂τ∂γ� = 0, τ = μx,α, λx; γ = μx,α,β, φx,φ, λx,

∂2log|Σ|
∂β∂φx

= 2c−2D−1(ψ)β,

∂2log|Σ|
∂φx∂φx

= − 1

c2φ2
x

(c − 1)2,

∂2log|Σ|
∂β∂φ� = −2c−1φx[D1(β) − c−1φxD

−1(ψ)βb�D(b)]D−2(φ),

∂2log|Σ|
∂β∂β� = 2c−1φx[D

−1(ψ) − 2c−1φxM 1],

∂2log|Σ|
∂φx∂φ

� = −c−2b�D(b)D−2(φ),

∂2log|Σ|
∂φ∂φ� = −D−2(φ) − c−2φ2

xD(b)D−1(φ)MD−1(φ)D(b) + 2c−1φxD
2(b)D−3(φ),

whereAi = (Y i−α−2qiβ)�D−1(ψ),M = D−1(φ)bb�D−1(φ),M 1 = D−1(ψ)ββ�D−1(ψ),
ψ = (φ2, ..., φp)

�, qi = μx + c−1φxai W 2i = Y i −α−βμx, I(p) = [0, Ip−1] of dimen-
sion p − 1 × p.
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