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HJM INTEREST RATE MODELS WITH FRACTIONAL
BROWNIAN MOTIONS

ALBERTO OHASHI AND PEDRO CATUOGNO

Abstract. In this work we introduce Heath-Jarrow-Morton (HJM) interest

rate models driven by fractional Brownian motions. We consider the term
structure of interest rates as given by a stochastic partial differential equation

driven by a cilindrical fractional white noise. We obtain a drift condition which

is similar in nature to the classical HJM no-arbitrage drift restriction. By using
support arguments we prove that the resulting model is arbitrage-free under

proportional transaction costs.

1. Introduction

Financial models have been intensively studied over the last years by many
authors in the context of Markov processes and also in the general semimartingale
setting. In this framework, absence of arbitrage is the basic equilibrium condition
which fulfills the minimum requirement for any sensible pricing model. On the
other hand, empirical studies propose models which are not consistent with this
basic assumption. A classical example is the controversial case of the fractional
Brownian motion (henceforth abbreviated by fBm) which is neither Markovian
nor semimartingale. In fact, many authors have already shown that fBm allows
arbitrage in different ways. Rogers [17], Salopek [19], Shiryaev [21] and Cheridito [4]
have shown that fBm allows arbitrage in frictionless stock markets.

Very recently, Guasoni [10] has shown that under the presence of proportional
transaction costs, a stock market model driven by a geometric fBm is arbitrage free.
His fundamental contribution is the obtention of a readable condition which implies
no-arbitrage with transactions costs. He shows that processes with full support do
not allow arbitrage under some mild conditions. The fundamental concept is the
so-called stickness property. From the point of view of mathematics, this property
may be translated into the idea of a process admitting positive probability on
(roughly speaking) any random ball over arbitrary bounded stochastic intervals. In
economic terms, this concept reflects the idea that if the price process may remain
within today’s bid-ask spread over arbitrary bounded (stochastic) intervals, then
arbitrage is impossible under proportional transaction costs.

Empirical analysis on transaction costs in bond markets has been recently stud-
ied by Driessen et al. [7]. Under the assumption of a frictionless bond market, they
find strong evidence of misspecification of some well-known short-term interest rate
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models such as Vasicek, Cox-Ingersol-Ross and general affine interest rate models.
When they took into account transaction costs, the misspecification of the factor
affine models disappears in case of monthly holdings periods at market size transac-
tion costs. In fact, the implications of transaction costs in continuous time models it
still an open problem in the finance literature. Fundamental notions in continuous-
time finance such as no-arbitrage, pricing contingent claims and completeness are
not well-understood, despite some advances in the last few years.

This work is strongly inspired by Guasoni’s ideas on the relation between sup-
ports of continuous processes, transaction costs and no-arbitrage. The main goal of
this paper is to introduce arbitrage-free Heath-Jarrow-Morton [12] (HJM) interest
rate models driven by a cilindrical fBm under arbitrary proportional transaction
costs in the bond market. In this paper, the forward rate is considered as the
solution of a stochastic partial differential equation under the Musiela parametriza-
tion. We obtain a drift condition which is similar in nature to the classical HJM
no-arbitrage drift restriction. Although such condition is not sufficient to ensure
no-arbitrage in the market, when combined with an additional mild condition on
the volatilities it results in absence of arbitrage. Moreover, such drift condition is
useful to compute explicit formulas for bond prices similar to the semimartingale
case.

This work is organized as follows. The next section presents some basic results
concerning bond markets driven by the fractional Brownian motion. We prove some
general results regarding portfolios and absence of arbitrage. In Section 3 we specify
the forward rate as the mild solution of a stochastic partial differential equation in
the Musiela parametrization. In Section 4 we state and prove the main result of this
paper. Some technical results concerning integration for Banach-valued stochastic
processes is presented in the Appendix.

2. The bond market: Portfolios and no-arbitrage

Suppose that on some stochastic basis
(
Ω, (Ft)t≥0,F , P

)
there exists a d−dimensio

nal fBm (β1, β2, . . . , βd) with parameter H > 1/2 where d < ∞. In the next section
we will consider d = ∞. For a detailed account on the stochastic analysis of the
fBm, see for example Hu [13], Nualart [16] and Alos et al. [1, 2]. We assume that
the trading is defined on a fixed interval [0, T ∗] where T ∗ < ∞. Define the triangle
subset of R2

∆2
T∗ := {(t, T ) ∈ R2|0 ≤ t ≤ T ≤ T ∗}.

Let us consider a term structure of bond prices {P (t, T ); (t, T ) ∈ ∆2
T∗} where

P (t, T ) is the price of a zero coupon bond at time t maturing at time T . We assume
the usual normalization condition

P (t, t) = 1, ∀t > 0,

and P (t, T ) is a.s continuously differentiable in the variable T . In this way, we
introduce the term structure of interest rates {f(t, T ); (t, T ) ∈ ∆2

T∗} given by
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(2.1) f(t, T ) = −∂logP (t, T )
∂T

; (t, T ) ∈ ∆2
T∗ .

Then following relation holds

P (t, T ) = exp
(
−
∫ T

t

f(t, u)du
)
; (t, T ) ∈ ∆2

T∗ .

In this paper, we adopt the Heath-Jarrow-Morton framework [12] in the frac-
tional Brownian motion setting. That is, we seek the prices P (t, T ) as solutions of
certain stochastic differential equations of type

dP (t, T ) = P (t, T )
(
A(t, T )dt +

d∑
i=1

Bi(t, T )dβi
t

)
.

Of course, the above equation must be expressed in the integral form

(2.2) P (t, T ) = P (0, T ) +
∫ t

0

A(s, T )P (s, T )ds +
d∑

i=1

∫ t

0

Bi(s, T )P (s, T )dβi
s,

where A(t, t) = B(t, t) = 0 for all t > 0. We assume that the coefficients A(t, T ) and
Bi(t, T ) are deterministic real-valued functions satisfying the following condition.

C1 Bi(·, T ) ∈ |H| ∀T ≤ T ∗ and
∫ t

0
Bi(s, T )dβi(s) is jointly continuous on ∆2

T∗

for each i = 1, 2, . . . , d.

The set |H| is the usual subset of the reproducing kernel Hilbert space H iso-
metric to the space of functions ϕ : [0, T ∗] → R such that∫ T∗

0

∫ T∗

0

|ϕ(u)||ϕ(v)||u− v|2H−2dudv < ∞.

Condition C1 is sufficient to ensure that the Wiener-type integral is well defined
in L2(Ω,F , P). By Itô formula (see [1, 2]) the solution of (2.2) is given by

(2.3) P (t, T ) = P (0, T ) exp

{∫ t

0

(
A(s, T )−BH(s, T )

)
ds +

d∑
i=1

∫ t

0

Bi(s, T )dβi
s

}
,

where

(2.4) BH(s, T ) :=
1
2

d∑
i=1

∂

∂s

(∫ s

0

(K∗
s Bi

T )2rdr
)
.

Here Bi
T (u) := Bi(u, T ) and (K∗

s ϕ)r := K∗(ϕχ[0,s])(r) where K∗ is the usual
isometry from H into L2(0, T ∗; R) given by

(2.5) K∗ϕ(r) :=
∫ T∗

r

ϕ(t)
∂K

∂t
(t, r)dt,
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where

(2.6) K(t, s) := cHs1/2−H

∫ t

s

(u− s)H−3/2uH−1/2du,

for some positive constant cH and t > s. See Alös et al [1] and Nualart [16] for
more details.

We assume the existence of a traded asset that pays interest rt. In other words,
the unit of money invested at time zero in this asset gives at time t the amount

S0(t) := exp
{∫ t

0

rsds
}

,

where rt = f(t, t) for 0 ≤ t ≤ T ∗. By considering S0 as a numéraire, the discounted
prices are then expressed by

Zt(T ) :=
P (t, T )
S0(t)

, (t, T ) ∈ ∆2
T∗ .

Similar to the semimartingale case, integrals with respect to C(R+; R)−valued
processes plays a key rule in the fractional bond market. Recall that in the semi-
martingale case the integration theory for Banach space-valued semimartingales
was developed by Björk et al. [3] and generalized by Donno and Pratelli [6]. In this
case, it is crucial to conceive an integration theory in such way that the integral
be invariant under martingale substitution on the integrator in view of equivalent
martingale measure arguments. In our case we do not need any kind of invariance
and therefore the integration is much simpler than the classical case. In fact, we
only need a convenient integration by parts formula (see Lemma 2.1 and Proposi-
tion 2.1). For convenience of the reader we give all details in the Appendix.

Up to now the bond price P (t, T ) has been defined only for (t, T ) ∈ ∆2
T∗ . It

will be convenient to work with P (t, T ) when t > T . For this, we make use of the
same trick as in Björk [3]. We put P (t, T ) = S0(t)S−1

0 (T ) for t ≥ T . Following the
arguments in Shiryaev [22] and Björk [3] we now introduce the notions of admissible
self-financing portfolios in our context.

Let us denote M(R+) the space of (finite) signed measures on R+ with the total
variation topology. Let µ be a measure-valued elementary process of the form

µt(ω, ·) :=
N−1∑
i=0

χFi(ω)χ(ti,ti+1](t)mi,

where mi ∈ M(R+), 0 = t0 < . . . < TN < ∞ and Fi ∈ Fti
. We assume that the

support of mi is concentrated on [ti+1,∞) for each i and therefore the support of µt

is concentrated on [t,∞) for all (t, ω) ∈ R+×Ω. By taking into account proportional
transaction costs in the bond market, the liquidation value of a portfolio with zero
initial capital is

V k
t (µ) :=

∑
ti<t

χFi

(
Zti+1∧t − Zti∧t

)
mi

− k
∑
ti<t

Zti
|µti+1 − µti

| − kZt|µt|,
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where 0 < k < 1 and Zt(·) ∈ C(0, T ∗; R) a.s for all t ≤ T ∗ due to hypothesis (C1).
Moreover, by the very definition we have that Z satisfies assumption (A1) in the
Appendix. Here | · | denotes the total variation measure and Zti

mi is the usual dual
action. By passing from a finite number of transactions to continuous trading it
follows that if µ ∈ V (see Appendix) satisfies assumption (A2) then we may define

(2.7) V k
t (µ) :=

∫ t

0

µsdZs − k

∫ t

0

Zsd|µs| − kZt|µt|.

Definition 2.1. We say that µ ∈ V is an admissible trading strategy if it
satisfies (A2), it is Ft−adapted and there exists a constant M > 0 such that
V k

t (µ) ≥ −M a.s for all t ≤ T ∗. An admissible trading strategy is an arbitrage
opportunity with transaction costs 0 < k < 1 on [0, T ∗] if V k

T∗(µ) ≥ 0 a.s and
P
{
V k

T∗(µ) > 0
}

> 0. Therefore, the bond market is arbitrage free on [0, T ∗] with
transaction costs k if for all admissible strategy µ, we have V k

T∗(µ) ≥ 0 a.s only if
V k

T∗(µ) = 0 a.s.

Remark 2.1. Since the main dynamics takes place on ∆2
T∗ we do assume that

all admissible strategies µ are Markovian in the sense that the support of µs is
concentrated on [s,+∞).

By Proposition 5.1 it is straightforward to prove the following results in the same
spirit of Guasoni [10] - Lemma 2.1, Proposition 2.1. For convenience of the reader
we give the details here.

Lemma 2.1. Let 0 < k < 1 and G, G̃ be two jointly continuous stochastic processes
on R2

+ such that

E sup
(t,T )∈R2

+

|G(t, T )− G̃(t, T )|2 < ∞

and

sup
0≤t≤T<∞

∣∣∣∣∣ G̃(t, T )
G(t, T )

− 1

∣∣∣∣∣ < k a.s on A ∈ F .

Then V k
t (µ) ≤

∫ t

0
µsdG̃s a.s on A. Equality holds if and only if µs = 0 for all

s ≤ t on A.

Proof. Let us fix t > 0 and µ an admissible strategy. We write

(2.8) V k
t (µ) =

∫ t

0

µsdG̃s +
∫ t

0

µsd(G− G̃)s − k

∫ t

0

Gsd|µs| − kGt|µt|a.s

Integration by parts formula (5.5) yields

(2.9)
∫ t

0

µsd(G− G̃)s = µt(G− G̃)t −
∫ t

0

(Gs − G̃s)dµs.

We then have
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µt(Gt − G̃t) ≤
∫ +∞

t

|Gt(T )− G̃t(T )||µt|(dT )

≤ k

∫ ∞

t

Gt(T )|µt|(dT )

= kGt|µt| on A

(2.10)

Moreover

−
∫ t

0

(Gs − G̃s)dµs ≤
∫ t

0

|Gs − G̃s|d|µs|

≤ k

∫ t

0

Gsd|µs| on A.

(2.11)

By (2.8), (2.9), (2.10) and (2.11) it follows that

V k
t (µ) =

∫ t

0

µsdG̃s + µt(Gt − G̃t)−
∫ t

0

(Gs − G̃s)dµs

−
∫ t

0

Gsd|µs| − kGt|µt|

≤
∫ t

0

µsdG̃s on A; t ≥ 0.

The second assertion is obvious from the above calculations. �

Proposition 2.1. Let us fix 0 < k < 1 and 0 < T ∗ < ∞. If for all (Ft)t≥0−stopping
time τ such that P{τ < T ∗} > 0 we have

P

{
sup

τ≤t≤T≤T∗

∣∣∣Zτ (τ)
Zt(T )

− 1
∣∣∣ < k, τ < T ∗

}
> 0,

then the bond market is arbitrage free on [0, T ∗] with transaction costs k.

Proof. Let us consider rn := 1/n and the following stopping times

τn := inf
{
t; ‖µt‖TV ∧ rn 6= 0

}
∧ T ∗, n ≥ 1.

One should note that τn ↑ T ∗ a.s as n → +∞. Let us define the following sets

Aτn
:=

{
sup

τn≤t≤T≤T∗

∣∣∣Zτn(τn)
Zt(T )

− 1
∣∣∣ < k, τn < T ∗

}
.

Clearly P{τn < T ∗} > 0 and by assumption P(Aτn
) > 0 for all n ≥ 1. By the

continuity of Z it follows that Aτn
is an exhaustive sequence for Ω. Let us denote
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Z̃n
t (T ) := Zt∧τn

(τn ∧ T ); 0 ≤ t ≤ T ≤ T ∗.

By Lemma 2.1 and the definition of Z̃n we have V k
T∗(µ) ≤

∫ T∗

τn
µsdZ̃n

s = 0 on Aτn
.

Now suppose that V k
T∗(µ) ≥ 0 a.s. We then have V k

T∗(µ) = 0 a.s on Aτn
such that

Aτn
⊂ {V k

T∗(µ) = 0} a.s ∀n.

Therefore 1 = limn→+∞ P(Aτn
) ≤ P{V k

T∗(µ) = 0} ≤ 1 �

We recall the following concept from Guasoni [10].

Definition 2.2. A jointly continuous process G = {Gt(T ); (t, T ) ∈ R2
+} is sticky

with resect to (Ft)t≥0 if for all S∗ > 0, ε > 0 and for every τ (Ft)t≥0−stopping
time such that P{τ < S∗} > 0 we have

(2.12) P
{

sup
τ≤t≤T≤S∗

|Gt(T )−Gτ (τ)| < ε, τ < S∗
}

> 0.

Remark 2.2. (1) One should note that our definition of stickiness covers only the
triangle ∆2 := {(t, T ) ∈ R2

+; 0 ≤ t ≤ T < ∞} which is reasonable since we are
dealing with Markovian portfolios. Moreover, from economic point of view this set
contains all relevant information of the discounted bond price dynamics.

(2) Let G be a jointly continuous process. If Yt(T ) = log Zt(T ) is sticky, then the
bond market is arbitrage free with transaction costs k on [0, S∗] for every S∗ > 0.

3. Musiela parametrization and fractional HJM models

In this section, we recapture the HJM methodology [12] for the term structure
of interest rates from the fractional Brownian motion perspective with the Musiela
parametrization [15]. In this case, the forward rates will satisfy, in a sense to be
made precise below, the following stochastic partial differential equation

(3.1) dft(x) =

(
∂

∂x
ft(x) + αt(x)

)
dt +

∞∑
i=1

σi
t(x)dβi

t,

where (βi)1≤i<∞ is a sequence of independent real-valued fBms. In this paper we
are concerned with mild solutions in the spirit of Da Prato e Zabczyk [5]. The
stochastic equation is formulated in the semigroup framework in a Hilbert space
E, where ∂

∂x generates a strongly continuous semigroup on E. We assume that the
volatilities (σi

t)i≥1 are deterministic and it does not depend on y ∈ E. Therefore,
we are concerned with the additive noise formulation in the Skorohod sense.

In the sequel we consider a cilindrical fBm given by

(3.2) B(t) :=
∞∑

j=1

βj
t ej
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where (ej)j≥1 is a given orthonormal basis in a separable Hilbert space U .

3.1. The specification of the model.

Initially, let us consider a standard d−dimensional fBm (β1, . . . , βd) on some
stochastic basis (Ω, (Ft)t≥0,F , P) satisfying the usual conditions. Let us assume
for the moment that the forward rate is given by

(3.3) f(t, T ) = f(0, T ) +
∫ t

0

α(s, T )ds +
d∑

i=1

∫ t

0

σi(s, T )dβi
s, 1 ≤ d < +∞.

From now on the coefficients (σ1, . . . , σd) are deterministic functions. Equa-
tion (3.3) is well-defined if∫ T

0

|α(s, T )|ds +
∫ T

0

∫ T

0

|σi(s, T )||σi(t, T )|φH(t− s)dsdt < ∞, a.s

∀T > 0 and i = 1, . . . , d, where φH(u) := H(2H − 1)|u|2H−2.
Let {S(t); t ≥ 0} be the semigroup of right-shifts defined by S(t)(x) := f(t + x)

for any function f : R+ → R. Fix (t, x) ∈ R2
+. Then (3.3) can be written as

(3.4)

f(t, t + x) = S(t)f(0, x) +
∫ t

0

S(t− s)α(s, s + x)ds +
d∑

i=1

∫ t

0

S(t− s)σi(s, s + x)dβi
s.

In (3.4) we deal with the Musiela parametrization T = t + x where x is ”time
to maturity”. The operator S(t) acts on f(0, x), α(s, x + s) and σj(s, x + s) as
functions of x. By setting

rt(x) := f(t, t + x)

it follows that

P (t, T ) = exp
{
−
∫ T−t

0

rt(x)dx
}

; (t, T ) ∈ ∆2.

We will work out in an axiomatic way the minimal requirements on a Hilbert
space E such that (3.4) can be given a meaning when

(3.5) rt(·) = f(t, t + ·); t ∈ R+

is considered as an E−valued stochastic process in such way that {S(t); t ≥ 0} is
a C0−semigroup in E with infinitesimal generator ∂

∂x . The strategy follows very
similar to Filipovic [8, 9]. We give the details for convenience of the reader.

In order to have equivalence between (3.3) and (3.4), point-wise evaluation has to
be well-defined. Moreover, by (3.5) we must have E ⊂ L1

loc(R+). Then we assume
that
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(H1) The point-wise evaluation Jxh := h(x) is a continuous linear functional on E
for every x ∈ R+. Moreover, we assume that for every element h ∈ E there exists
a well-defined continuous representative, still denoted by h.

One can show [8] under (H1) that for every u ∈ R+ there exists a constant C(u)
such that

(3.6) ‖Jx‖E ≤ C(u) ∀x ∈ [0, u].

Moreover, (x, h) 7→ Jx(h) is jointly continuous.

(H2) {S(t); t ≥ 0} is a strongly continuous semigroup on E with infinitesimal
generator (A,dom (A)).

Then under (H1) and (H2) it follows that A is identical to the first derivative
operator which is densely defined on E.

At this point, we relax the hypothesis on the noise and we allow from now on
the cilindrical fBm B = (βj)∞j=1 defined in (3.2) on a separable Hilbert space U . In
the sequel we denote L(2)(U,E) the space of Hilbert-Schmidt linear operators from
U into E with the usual norm ‖ · ‖(2).

In the sequel we write αt(·) := α(t, t + ·) and σ = (σj)∞j=1, where σj
t := σtej :=

σj(t, t + ·); j ≥ 1. We also write σj
t (x) := σtej(x); (t, x) ∈ R2

+.

We impose that

(H3) f(0, ·) = ro ∈ E

(H4) The coefficients α : R+ → E and σ : R+ → L(2)(U,E) satisfy

∫ T∗

0

‖αs‖Eds +
∫ T∗

0

‖σt‖2(2)dt < ∞; ∀T ∗ > 0.

One should note that (H4) yields
∫ T

0
‖S(t)σt‖2(2)dt < ∞ for all 0 < T ∗ < ∞ and

therefore

∫ t

0

S(t− s)σsdBs =
∞∑

j=1

∫ t

0

S(t− s)σj
sdβj

s ∈ L2(Ω; E) ∀t > 0.

By the continuity of the mapping J it follows that for each (t, x) ∈ R2
+ we have

Jx(rt) = Jx

(
S(t)r0 +

∫ t

0

S(t− s)αsds +
∫ t

0

S(t− s)σsdBs

)
= rt(x) a.s.

This implies that
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rt = S(t)r0 +
∫ t

0

S(t− s)αsds +
∞∑

j=1

∫ t

0

S(t− s)σj
sdβj

s a.s

for each t > 0. Consequently, rt is a mild solution of

(3.7) drt =
(
Art + αt

)
dt + σtdBt; r0 = f(0, ·).

To ensure enough regularity we make an additional assumption

(H5) There exists a continuous modification of r, still denoted by r.

A simple growth hypothesis to ensure (H5) is the following: There exists α ∈
(0, 1/2) such that

∫ T∗

0

∫ T∗

0

u−αv−α‖S(u)σu‖(2)‖s(v)σv‖(2)|u−v|2H−2dudv < ∞, for all 0 < T ∗ < ∞.

To shorten notation we introduce the following linear functional

Tu(h) :=
∫ u

0

h(x)dx; h ∈ E.

With this notation at hand we shall write

P (t, T ) = exp(−Tt−T (rt)).

Let us write I := − lnP (t, T ). By using the continuous mapping Jx it follows
that

rt(x) = S(t)r0(x) +
∫ t

0

S(t− s)αs(x)ds +
∞∑

j=1

∫ t

0

S(t− s)σj
s(x)dβj

s

It is easy to see that Tu is a bounded linear functional for every u ∈ R+ and
it also jointly continuous on R+ × E. By noting that bounded linear operators
commute with the stochastic integral under assumption (H4) it follows that

I = TT−t(S(t)r0) +
∫ t

0

TT−t(S(t− s)αs)ds +
∞∑

j=1

∫ t

0

TT−t(S(t− s)σj
s)dβj

s .

In the sequel we denote l2 the usual Hilbert space of real sequences (ai)i≥1 such
that

∑∞
i=1 |ai|2 < ∞. At this point we need the following technical condition.

(H6)

(i)
∫
[0,T∗]4

‖σu(s)‖l2‖σv(r)‖l2φH(u− v)dudvdsdr < ∞, for every T ∗ > 0;
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(ii)
∫
[0,T∗]3

‖σu(t)‖l2‖σv(t)‖l2φH(u− v)dvdudt < ∞ for every T ∗ > 0.

Since Tu ◦ S(t) = Tt+u − Tt for every (u, t) ∈ R2
+ we then have by (H6.i)

I = TT (r0)− Tt(r0) +
∫ t

0

(
TT−s(αs)− Tt−s(αs)

)
ds

+
∞∑

j=1

∫ t

0

(
TT−s(σj

s)− Tt−s(σj
s)
)
dβj

s .

By splitting the integrals we shall write I = I1 − I2, where

I1 := TT (r0) +
∫ t

0

TT−s(αs)ds +
∞∑

j=1

∫ t

0

TT−s(σj
s)dβj

s

I2 := Tt(r0) +
∫ t

0

T t− s(αs) +
∞∑

j=1

∫ t

0

Tt−s(σj
s)dβj

s .

We now define σ̃j
s(u) := σj

s(u − s) if s ≤ u and σ̃j
s(u) = 0 for s > u. With this

transformation we have

Tt−s(σj
s) =

∫ t−s

0

σj
s(y)dy =

∫ t

0

σ̃j
s(u)du.

Condition (H6.ii) permits the use of a stochastic Fubini theorem [14] and there-
fore we may write

∞∑
j=1

∫ t

0

Tt−s(σj
s)dβj

s =
∞∑

j=1

∫ t

0

∫ t

0

σ̃j
s(u)dudβj

s

=
∞∑

j=1

∫ t

0

(∫ u

0

σ̃j
s(u)dβj

s

)
du

=
∞∑

j=1

∫ t

0

∫ u

0

σj
s(u− s)dβj

sdu a.s.

The usual Fubini theorem yields

I2 =
∫ t

0

J0

(
S(u)r0 +

∫ u

0

S(u− s)αsds +
∞∑

j=1

∫ u

0

S(u− s)σj
sdβj

s

)
du

=
∫ t

0

ru(0)du,

and therefore we arrive at
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lnP (t, T ) = I2 − I1 =
∫ t

0

r0(u)du−
∫ T

0

r0(y)dy

−
∫ t

0

TT−s(αs)ds−
∞∑

j=1

∫ t

0

TT−s(σj
s)dβj

s

= ln P (0, T ) +
∫ t

0

[
rs(0)− TT−s(αs)

]
ds

−
∞∑

j=1

∫ t

0

TT−s(σj
s)dβj

s , a.s ∀(t, T ) ∈ ∆2.

Since P (t, T ) is continuous in ∆2 the P−null set can be chosen for each T inde-
pendently of t ∈ [0, T ]. That is, (lnP (t, T ))0≤t≤T is a continuous process where

(3.8)

P (t, T ) = P (0, T ) exp

{∫ t

0

[
rs(0)−TT−s(αs)

]
ds+

∞∑
j=1

∫ t

0

−TT−s(σj
s)dβj

s

}
; (t, T ) ∈ ∆2,

and the discounted bond price is given by

(3.9)

Zt(T ) = P (0, T ) exp

{∫ t

0

−TT−s(αs)ds +
∞∑

j=1

∫ t

0

−TT−s(σj
s)dβj

s

}
; (t, T ) ∈ ∆2.

To shorten notation we shall write Iσj (t, T ) := TT−t(σ
j
t ) and Iα(t, T ) := TT−t(αt)

for (t, T ) ∈ ∆2 and j ≥ 1. From the above calculations we arrive at the following
result.

Lemma 3.1. Assume that assumptions (H1-H6) hold and the state space E is
well-defined. Then the forward rate rt(x) is the mild solution of equation (3.7).
Moreover, the discounted bond price satisfies the following stochastic differential
equation

(3.10) dZt(T ) =
[
− Iα(t, T ) + Σσ(t, T )

]
Zt(T )dt +

∞∑
j=1

−Iσj (t, T )Zt(T )dβj
t

where Σσ(t, T ) := 1
2

∑∞
j=1

∂
∂t

∫ t

0

[
K∗

t (Iσj (·, T ))r

]2
dr and K∗

t is the operator defined
in (2.5).

Proof. Fix 1 ≤ d < +∞ and 0 < T < ∞. We notice that Itô formula [1, 2] applied
to (3.9) yields
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dZd
t (T ) =

[
− Iα(t, T ) + Σd

σ(t, T )
]
Zd

t (T )dt +
d∑

j=1

−Iσj (t, T )Zd
t (T )dβj

t

where Σd
σ(t, T ) := 1

2

∑d
j=1

∂
∂t

∫ t

0

[
K∗

t (Iσj (·, T ))r

]2
dr and Zd

t (T ) is given in (3.9)
with 1 ≤ d < ∞.

We now consider the following mapping Πs(σ) ∈ L(2)(U ; R) defined by

Πs(σ)ei :=
∫ T−s

0

(σsei)(y)dy; s ∈ [0, T ].

By assumptions (H1-H2-H4) together with the estimate (3.6) it follows that∫ T

0
‖Πs(σ)‖2(2)ds < ∞ and, therefore for each t > 0∫ t

0

Πs(σ)dBs =
∞∑

j=1

∫ t

0

TT−s(σj
s)dβj

s

is a well-defined stochastic integral with respect to the cilindrical fBm. We then
shall write

(3.11) Zt(T ) = P (0, T ) exp

{∫ t

0

−TT−s(αs)ds +
∫ t

0

−Πs(σ)dBs

}
,

and Itô formula applied to (3.11) with respect to B on U yields the result. �

3.2. The choice of state space.

In the previous section, we adopt an axiomatic exposition to clarify the choice of
the state space. In this section, we choose the state-space as defined in Filipoviv [9].
Filipovic [9] proposed a family of spaces {Hω}ω as appropriate Hilbert spaces to
study HJM models in the semimartingale case. One should notice that even in the
fBm case, such spaces are regular enough to attend our needs since they fulfill con-
ditions (H1-H2). Moreover, they are coherent with realistic economic assumptions
on the forward rate.

In the sequel, if h ∈ L1
loc(R+) then we denote by h

′
its weak derivative. We

recall the following definitions and results from Filipovic [9].

Definition 3.1. Let ω : R+ → R+ be a increasing C1−function such that∫ ∞

0

ω−1/3(x)dx < ∞.

Define Hω := {h ∈ L1
loc(R+)|∃h′ ∈ L1

loc(R+) and ‖h‖ω < ∞} where
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(3.12) ‖h‖ω := |h(0)|2 +
∫ ∞

0

|h
′
(x)|2ω(x)dx

The space Hω endowed with the inner product

〈f, g〉Hω
:= f(0)g(0) +

∫ ∞

0

f
′
(x)g

′
(x)ω(x)dx

is a separable Hilbert space. Moreover, {Hω}ω satisfy the assumptions (H1-H2) as
seen by the following result.

Lemma 3.2. Fix a weight function ω. The evaluation functional Jx and the defi-
nite integration functional defined by

Jx(f) = f(x) and Tx(f) =
∫ x

0

f(u)du

are continuous on Hω for all x ≥ 0. Moreover, the semigroup of shift-operators on
Hω defined by

S(t)f(x) := f(t + x)
is strongly continuous, where the derivative operator ∂

∂x on Hω is the respective
infinitesimal generator.

The proofs of the above statements can be found in [9]. From now on, we assume
that the assumptions (H1 - H6) hold and we fix once and for all a Hilbert space Hω

as the state space for the forward rate rt. In this case, we obtain rt as a Hω−valued
continuous process which is the mild solution of

drt = (Art + αt))dt +
∞∑

j=1

σj
t dβj

t .

4. No-arbitrage and the quasi-martingale measure

In this section, we prove that under suitable conditions on the volatility σ =
(σj)j≥1, the bond market model is arbitrage free. The main ingredient in the no-
arbitrage argument consists in the sticky property defined in (2.12). From the
results in Guasoni [10] we may translate the sticky property defined in (2.12) to
topological supports of continuous processes.

It is convenient to work with the Wiener space of the fBm where the topology
is given by a Hölder-type norm and at the same time it defines a separable Banach
space. For this purpose, let C∞0 (R+; R) be the space of smooth C∞−functions g
with compact support such that g(0) = 0. We consider the following norm on C∞

‖ω‖W := sup
0≤t,s<∞

|ω(t)− ω(s)|
|t− s|γ(1 + |t|+ |s|)δ

,

where γ ∈ (0, 1) and δ ∈ (0, 1). Let Wγ,δ be the completion of C∞0 (R+; R) with
respect to ‖ · ‖γ,δ. It is straightforward to check that Wγ,δ is a separable Banach
space. Moreover, the following holds.
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Lemma 4.1. If γ ∈ (1/2,H) and γ+δ ∈ (H, 1) then there exists a unique probability
measure PH on Wγ,δ such that such that the canonical process associated to PH is
a fractional Brownian motion with parameter H.

The proof of the above result can be found in Hairer and Ohashi [11]. From now
on we fix 1/2 < H < 1, 1/2 < γ < H, H < γ + δ < 1 and we write W the above
space with these indices. Also, expectations with respect to PH will be denoted by
E.

We begin with an elementary result concerning full supports. Recall that a
Wiener functional X : W → E taking values in some Banach space E is said to
have PH -full support if PH{X ∈ O} > 0 for every non-empty open set O in E. In
the sequel, we fix 0 < T ∗ < ∞ and we denote C(∆2

T∗ ; R) the space of continuous
functions on ∆2

T∗ endowed with the usual topology.

Lemma 4.2. Let X : W → C(∆2
T∗ ; R) be a Wiener functional with PH− full

support. Then X is sticky on [0, T ∗] with respect to the natural filtration generated
by the fBm on W.

Proof. Given ε and τ a Ft−stopping time such that PH{τ < T ∗} > 0, we need to
show that

PH

{
sup

τ≤t≤T≤T∗
|X(t, T )− X(τ, τ)| < ε, τ < T ∗

}
> 0.

If p ∈ C(∆2
T∗; R) then triangle inequality yields{

sup
(t,T )∈∆2

T∗

|X(t, T )− p(t, T )| < ε/2, τ < T ∗
}

⊂
{

sup
τ≤t≤T≤T∗

|X(t, T )− X(τ, τ)| < ε, τ < T ∗
}

.

Let us consider P the set of polynomials p on ∆2
T∗ with rational coefficients such

that p(0, 0) = 0. We claim that there exists p ∈ P such that

(4.1) PH

{
sup

(t,T )∈∆2
T∗

|X(t, T )− p(t, T )| < ε/2, τ < T ∗
}

> 0.

Suppose that (4.1) is violated for every p ∈ P. Then we obtain{
sup

(t,T )∈∆2
T∗

|X(t, T )− p(t, T )| < ε/2, τ < T ∗
}

⊂
{

τ ≥ T ∗
}

PH a.s ∀p ∈ P.

Therefore

(4.2)
⋃
p∈P

{
sup

(t,T )∈∆2
T∗

|X(t, T )− p(t, T ) < ε/2
}
⊂ {τ ≥ T ∗} PH − a.s.
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By the density of P in C(∆2
T∗ ; R) and the full support of X it follows that

PH

{ ⋃
p∈P

{
sup

(t,T )∈∆2
T∗

|X(t, T )− p(t, T ) < ε/2
}}

= 1

and therefore PH{τ < T ∗} = 0 which is a contradiction. �

We now provide a simple criterion to the stochastic integrals in (3.9) have PH -full
support.

Lemma 4.3. Assume that Iσj (t, T ) is λ-Hölder continuous on ∆2
T∗ for every j ≥ 1

where λ + γ > 1. Then the Wiener functional
∑∞

j=1

∫ t

0
Iσj (s, T )dωj

s has PH-full
support on C(∆2

T∗ ; R).

Proof. Let us fix 0 < T ∗ < ∞. Recall that if Iσj (t, T ) is η-Hölder continu-
ous on ∆2

T∗ such that η + γ > 1 then the pathwise Riemman-Stieltjes integral∫ t

0
Iσj (s, T )dωj

s is well-defined and there exists a constant C > 0 which depends
only on T ∗, γ, η and H such that

(4.3)

∥∥∥∥∥
∫ ·

0

Iσj (s, ··)dωj
s

∥∥∥∥∥
γ

≤ C‖Iσj‖η‖ωj‖W ,

for every ωj ∈ W. Moreover, the pathwise Riemman-Stieltjes integral coincides
with the symmetric integral in Russo and Vallois [18]. Recall that we are assuming
that the volatilities are deterministic functions and therefore their Gross-Sobolev
derivatives vanishes. In this way, Proposition 3 in [1] tells that the Skorohod integral∫ t

0

Iσj (s, T )dβj
s ; j ≥ 1

can be interpreted as a pathwise Riemman-Stieltjes integral. By the estimate (4.3)
it follows that each

∫ t

0
Iσj (s, T )dωj

s has PH -full support, and since (βj)j≥1 is a
sequence of real-valued independent fBm we have that

∑d
j=1

∫ t

0
Iσj (s, T )dωj

s has
PH -full support as well. Taking the limit we prove the claim. �

By Lemma 4.2 and Remark 2.2 we know that if lnZt(T ) has PH−full support
then the bond market is arbitrage free. One should notice that assuming that the
volatility σ = (σj)j≥1 satisfies the assumptions in Lemma 4.3, there are infinitely
many choices of α which give the full support property for lnZt(T ) and therefore
the no-arbitrage property for the bond market. But there is a canonical choice for
the drift which gives the desirable property:

EZt(T ) = P (0, T ) ∀(t, T ) ∈ ∆2.

As a direct consequence of Lemma 3.1 we have the following basic result. Next
we write φH(v) = H(2H − 1)|v|2H−2 if v ∈ R.
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Corollary 4.1. If the drift α satisfies dPH ⊗ dt a.s the following equality

(4.4)

αt(·) =
∞∑

j=1

{
σj

t (·)
∫ t

0

T·+t−θ(σ
j
θ)φH(t−θ)dθ+

∫ ·

0

σj
s(y)dy

∫ t

0

σj
θ(·+t−θ)φH(t−θ)dθ

}

then EZt(T ) = P (0, T ) for every (t, T ) ∈ ∆2.

Proof. By Lemma 3.1 we know that Zt(T ) satisfies the stochastic differential equa-
tion (3.10). Since Skorohod integrals has zero expectation we arrive at the following
equality

Iα(t, T ) = Σσ(t,T )

for each (t, T ) ∈ ∆2. Therefore,

(4.5) αt(T ) =
∂

∂T
Σσ(t,T ).

In fact,

∂K

∂r
(r, s) = cH

(r

s

)H− 1
2
(r − s)H− 3

2 .

Differentiating expression (4.5) and taking into account that

|t− θ|2H−2 =
(tθ)H− 1

2

β(2− 2H,H − 1
2 )

×
∫ t∧θ

0

v1−2H(t− v)H− 3
2 (θ − v)H− 3

2 dv,

where β denotes the beta function, we then arrive at the expression (4.4) by con-
sidering the parametrization x = T − t. �

Remark 4.1. By Lemma 3.1 we notice that if H = 1/2 then we arrive at the
classical HJM drift condition in Lemma 4.1

αt(·) =
∞∑

j=1

σj
t (·)

∫ ·

0

σj
t (y)dy dt a.s

Let us consider

Sd
Hσt(·) :=

d∑
j=1

{
σj

t (·)
∫ t

0

T·+t−θ(σ
j
θ)φH(t−θ)dθ+

∫ ·

0

σj
s(y)dy

∫ t

0

σj
θ(·+t−θ)φH(t−θ)dθ

}
.
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We assume that the volatilities are regular enough in such way that SHσt(·) :=
limd→∞ Sd

Hσt(·) ∈ Hω and
∫ T∗

0
‖SH(t, ·)‖ωdt < ∞ for all 0 < T ∗ < ∞. Indeed,

it is not very restrictive to assume that the volatility σt satisfies such integrability
condition on the state space Hω. See Section 3.2 in Filipovic [9].

Similar to the semimartingale case the measure PH is considered as physical
measure. This motivates the following definition.

Definition 4.1. We say that an equivalent probability measure Q ∼ PH is a quasi-
martingale measure if the discounted bond price process Zt(T ) has Q-constant
expectation, that is,

(4.6) EQZt(T ) = P (0, T ) ∀(t, T ) ∈ ∆2.

Remark 4.2. Of course, if Q is an equivalent martingale measure then it is also
a quasi-martingale measure. One should notice that contrary to the martingale
case, the existence of a quasi-martingale measure does not ensure no-arbitrage.
Furthermore, with a quasi-martingale measure we may easily compute the bond
price as follows

P (t, T ) = eθ(t,T )EQ

[
exp

(
−
∫ T

t

rs(0)ds

)∣∣∣∣∣Ft

]
for some kernel θ(t, T ) depending on H and the volatility σ.

4.1. Proof of the main result.

Now we are in position to state the main result of this paper. Before this, we
present some elementary results concerning Girsanov transformations in the fBm
setting. Next, it will be convenient to work with l2 instead of a general separable
Hilbert space U in the representation of the cilindrical fBm. Notice that any Hilbert
space-valued cilindrical fBm can be considered in the l2 framework. From now on
we take U = l2. Recall that that the following operator

Kh(t) :=
∫ t

0

K(t, s)h(s)ds; h ∈ L2(0, T ∗; l2), 0 < T ∗ < ∞

is a bijection between L2(0, T ∗; l2) and the fractional Sobolev space I
H+1/2
0+ (L2(0, T ∗; l2))

in the notation of Samko et al [20]. See Nualart [16] for more details. Moreover,
its inverse is given by

K−1v(t) = c−1
H tH−

1
2 D

H− 1
2

0+

(
u

1
2−HDv

)
(t),

where D is the usual derivative operator and D
H− 1

2
0+ is the left-sided Marchaud

fractional derivative of order H − 1
2 . See Samko et al. [20] for a complete review

of fractional calculus. The next result is a straightforward consequence of the
representation of fBm in terms of the standard Brownian motion.
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Lemma 4.4. Let {γ(t); 0 ≤ t ≤ T ∗} be a l2-valued stochastic process Ft-adapted
such that

∫ T∗

0
‖γ(t)‖l2dt < ∞ and R(·) :=

∫ ·
0
γ(s)ds ∈ I

H+1/2
0+ (L2(0, T ∗; l2)) PH-

a.s. Assume that

(4.7) E

[
1
2

exp

(∫ T∗

0

‖K−1(R)(t)‖2l2dt

)]
< ∞.

Then B̃t := Bt −
∫ t

0
γ(s)ds is a QT∗-cilindrical fBm on [0, T ∗] such that

dQT∗

dPH
= E

(
K−1(R) . W

)
T∗ ,

where

E
(
K−1(R) . W

)
T∗ := exp

[(
K−1(R) . W

)
T∗ −

1
2

∫ T∗

0

‖K−1R(t)‖2l2dt

]

and
(
K−1(R) . W

)
T∗ is the usual Itô stochastic integral with respect to the cilindrical

Brownian motion W associated to B.

The above lemma gives the following result. Let γ ≡ {γ(t); t ≥ 0} be a Ft-
adapted stochastic process satisfying the following assumptions:

A.I
∫∞
0
‖γs‖l2ds < +∞ PH a.s;

A.II R(·) =
∫ ·
0
γsds ∈ I

H+ 1
2

0+ (L2(R+; l2)) PH -a.s;

A.III E
[
1
2 exp

( ∫∞
0
‖K−1(R)(t)‖2l2dt

)]
< ∞.

Then B̃t = Bt −
∫ t

0
γsds is a Q-cilindrical fBm on R+ where

dQ
dPH

= E
(
K−1(R) . W

)
∞ ∈ L1(PH).

One should also notice that E
(
K−1(R) . W

)
∞ is strictly positive a.s. In this case,

we may write

B̃t =
∞∑

j=1

β̃j
t ej ,

where β̃j
t := βj

t −
∫ t

0
γj

sds is a sequence of Q-real valued independent fBms.

In the sequel, all economic activity will be assumed to take place on a finite hori-
zon [0, T ∗] and we also fix k ∈ (0, 1) which corresponds to proportional transaction
costs in the bond market. The main result of this paper is then the following.
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Theorem 4.1. Assume that the volatility satisfies assumptions in Lemma 4.3 and
there exists a l2-valued stochastic process γt satisfying assumptions (AI - AIII) in
such way that

(4.8) σtγt = SHσt − αt dt⊗ dPH .

Then there exists a quasi-martingale measure for the bond market. In addition, the
market is arbitrage free on [0, T ∗] with proportional transaction costs k.

Proof. The forward rate is the mild solution of

rt = (Art + αt)dt +
∞∑

j=1

σj
t dβj

t

under the measure PH . Assuming (AI-AIII) and (4.8), we may write

rt = (Art + SHσt)dt +
∞∑

j=1

σj
t dβ̃j

t

under the equivalent probability measure Q with respect to PH . By changing the
measure PH to Q in Corollary 4.1 it follows that

EQZt(T ) = P (0, T ); ∀(t, T ) ∈ ∆2
T∗ ,

and therefore Q is a quasi-martingale measure. By Lemma 4.3 it follows that∑∞
j=1

∫ t

0
Iσj (s, T )dβ̃j

s has Q-full support and therefore Lemma 4.2 implies that
lnZt(T ) has Q-full support. By Proposition 2.1 and Remark 2.2 we may conclude
the proof. �

Under the assumptions in Theorem 4.1. the forward rate is the continuous mild
solution of the following stochastic partial differential equation

drt(x) =

(
∂

∂x
rt(x) + SHσt(x)

)
dt +

∞∑
j=1

σj
t (x)dβ̃j

t

under the measure Q.

APPENDIX

5. Integration for C(R+; R)−valued process

In this section we introduce a suitable integral to deal with bond markets driven
by fBm. Let

(
Ω, (Ft)t≥0,F , P

)
be a stochastic basis where the filtration (Ft)t≥o

satisfies the usual hypotheses. We denote M(R+) the space of (finite) signed mea-
sures on R+ with the total variation topology ‖ · ‖TV . We also write C0(R+; R) the
space of continuous functions from R+ into R converging to zero at infinity. For
m ∈M(R+) and l ∈ C0(R+; R) we put
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(5.1) lm :=
∫

l(θ)m(dθ)

Let us consider elementary measure - valued processes of the following form

(5.2) µt(ω, ·) :=
N−1∑
i=0

χFi(ω)χ(ti,ti+1](t)mi

where mi ∈ M(R+), 0 = t0 < . . . < TN < ∞ and Fi ∈ Fti
. We assume that the

support of mi is concentrated on [ti+1,∞) for each i and therefore the support of
µ is concentrated on [t,∞) for all (t, ω) ∈ R+ × Ω. We denote by Sb the set of
elementary processes of the form (5.2). We endow Sb with the following norm

(5.3) ‖µ‖2V := E sup
0≤t<∞

‖µt‖2TV

The class of integrators will be C0(R+; R)- valued stochastic processes satisfying
the following hypothesis.

Assumption (A1). Let {G(t, T ); (t, T ) ∈ R2
+} be a jointly continuous real-valued

stochastic process such that G(t, ·) ∈ C0(R+; R) a.s for all t ≥ 0 and

E sup
(t,T )∈R2

|G(t, T )|2 < ∞.

If µ ∈ Sb and G satisfies (A1) then we define∫ t

0

µsdGs :=
N−1∑
i=0

χFi

(
Gti+1∧t −Gti∧t

)
mi.

By Hölder inequality it follows that

(5.4) E sup
0≤t<∞

∣∣∣ ∫ t

o

µsdGs

∣∣∣ ≤ ‖µ‖VE1/2 sup
0≤s,t<∞

‖Gs −Gt‖2∞ < ∞

where ‖ · ‖∞ denotes the usual (uniform topology) norm on the space C(R+; R).
Let V be the completion of Sb with respect to (5.3). By the estimate (5.4) and the
definition of V we may easily define

∫ ·
0
µsdGs for all µ ∈ V. Next we present some

elementary technical results.

Lemma 5.1. Fix 0 < T ∗ < ∞ and consider tni := iT∗

2n for i = 0, 1, . . . , 2n; n ≥ 1.
Then if µ ∈ V and G satisfies assumption A1 then

limn→∞E

∥∥∥∥∥
2n−1∑
i=0

µtn
i
(Gtn

i+1∧· −Gtn
i ∧·)−

∫ ·

0

µsdGs

∥∥∥∥∥
∞

= 0

Proof. Straightforward estimates. �
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Next we fix 0 < T ∗ < ∞ and consider

M
(n)
i (T ) := sup

tn
i ≤t≤tn

i+1

G(t, T ); T ≥ 0,

m
(n)
i (T ) := inf

tn
i ≤t≤tn

i+1

G(t, T ); T ≥ 0,

where tni := iT∗

2n for i = 0, 1, . . . , 2n; n ≥ 1. With these objects we then define

Gn(s) :=
2n−1∑
i=0

χ(tn
i ,tn

i+1]
(s)M (n)

i ,

Gn(s) :=
2n−1∑
i=0

χ(tn
i ,tn

i+1]
(s)m(n)

i ,

and

∫ t

0

Gn(s)dµs :=
2n−1∑
i=0

M
(n)
i (µtn

i+1∧t − µtn
i ∧t),

∫ t

0

Gn(s)dµs :=
2n−1∑
i=0

m
(n)
i (µtn

i+1∧t − µtn
i ∧t).

We denote PT∗ the set of all partitions of [0, T ∗]. In the sequel we consider the
following assumption:

Assumption (A2).

ΠT∗(µ) := sup
π∈PT∗

∑
ti∈π

‖µti+1 − µti
‖TV is square integrable.

Lemma 5.2. Assume that µ ∈ V where (A2) holds and consider G a stochastic
process such that (A1) holds. Then

(a) limn→∞ E sup0≤t≤T∗

∣∣∣∣∣ ∫ t

0
Gndµ−

∫ t

0
Gndµ

∣∣∣∣∣ = 0,

(b) limn,m→∞ E sup0≤t≤T∗

∣∣∣∣∣ ∫ t

0
Gndµ−

∫ t

0
Gmdµ

∣∣∣∣∣ = 0.

Proof. We notice that

∣∣∣∣∣
∫ t

0

Gndµ−
∫ t

0

Gndµ

∣∣∣∣∣ ≤
2n−1∑
i=0

‖M (n)
i −m

(n)
i ‖∞‖µtn

i+1∧t − µtn
i ∧t‖TV

≤ max
i;i=0,...,2n−1

‖M (n)
i −m

(n)
i ‖∞Π(µ) a.s, 0 ≤ t ≤ T ∗.

By continuity limn→∞maxi;i=0,...,2n−1 ‖M (n)
i −m

(n)
i ‖∞ = 0 a.s. Moreover, there

exists a constant C such that
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max
i;i=0,...,2n−1

‖M (n)
i −m

(n)
i ‖∞ ≤ C sup

0≤s,T≤∞
|G(s, T )| a.s ∀n ≥ 1.

By assumptions (A1-A2) and the dominated convergence theorem we conclude
part (a). Similarly, sup0≤s≤T∗,T≥0 |Gn(s;T )−Gm(s;T )| goes to zero a.s as n, m →
∞. Moreover, it is bounded by C sup0≤s,T≤∞ |G(s, T )|. Again, by assumptions
(A1-A2) and dominated convergence theorem we conclude part (b). �

By Lemma 5.2 we shall define∫ t

0

Gsdµs := lim
n→∞

∫ t

0

Gn(s)dµs = lim
n→∞

∫ t

0

Gn(s)dµs

The next result is a straightforward integration by part formula.

Proposition 5.1. Assume that assumptions (A1) and (A2) hold. Then

(5.5)
∫ T∗

0

Gsdµs +
∫ T∗

0

µsdGs = GT∗µT∗ −G0µ0

Proof. By writing a telescoping sum we have
2n−1∑
i=0

(Gtn
i+1

−Gtn
i
)(µtn

i+1
− µtn

i
) = GT∗µT∗ −G0µ0

−
2n−1∑
i=0

(Gtn
i+1

−Gtn
i
)µtn

i
−

2n−1∑
i=0

(µtn
i+1

− µtn
i
)Gtn

i
,

a.s for all n ≥ 1. By Lemma 5.1 and Lemma 5.2 we only need to show that the left-
side goes to zero as n → ∞. But this is an immediate consequence of hypotheses
(A1) and (A2) together with the continuity of G. �
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[2] Alòs, E., and Nualart, D. (2003). Stochastic integration with respect to the fractional Brown-
ian motion. Stoch. Stoch. Rep.75, 129-152.

[3] Björk, T., Di Masi, G., Kabanov, Y Runggaldier, W. (1997). Towards a general theory of

bond markets. Finance Stoch. 1, 141-174.
[4] Cheridito, P. (2003). Arbitrage in fractional Brownian motion model.Finance Stoch. 7 (4),

533-553.

[5] Da Prato, G., and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cam-
bridge Univ. Press.

[6] De Donno, M. and Pratelli, M (2007). A Theory os Stochastic Integration for Bond Markets.

Ann. Appl. Probab. In Press.
[7] Drieseen, J., Melenberg, B. and Nijman, T. (2005). Testing affine term structure models in

case of transaction costs. J. of Econometrics. 126, 201-232.
[8] Filipovic, D. (2001). Consistency problems for Heath-Jarrow-Morton interest rate models.

Lecture Notes in Math. 1760, Springer-Verlag.
[9] Filipovic, D.(2000). Consistency Problems for HJM Interest Rate Models. Thesis. ETH.

[10] Guasoni, P. (2006). No Arbitrage under Transaction Costs with Fractional Brownin Motion
and Beyond. Math. Finance

[11] Hairer, M., and Ohashi, A (2007). Ergodic theory for SDEs with extrinsic memory. Ann.
Probab. In press.



24 ALBERTO OHASHI AND PEDRO CATUOGNO

[12] Heath, D., Jarrow, R., and Morton, A. (1992). Bond pricing and the term structure of interest
rates¿ A new metodology for contingent claims valuation. Econometrica. 60, 77-105.

[13] Hu, Y. (2005). Integral transformations and anticipative calculus for fractional Brownian

motions. Mem. Amer. Math. Soc. 175, 825.
[14] Krvavich, Y.V., and Mishura, Y.S. (2001). Differentiability of fractional integrals whose ker-

nels contain fractional Brownian motions. Ukranian Math. J. 53, 35-47.

[15] Musiela, M. (1993). Stochastic PDEs and term structures models. Journées Internationales
de Finance. IGR-AFFI, La Baule.

[16] D. Nualart. (2003). Stochastic calculus with respect to the fractional Brownian motion and
applications. Contemporary Mathematics 336, 3-39.

[17] Rogers, L. (1997). Arbitrage with fractional Brownian motion. Math. Finance. 7(1), 95-105.

[18] Russo, F. and Vallois, P. (2000). Stochastic claculus with respect to continuous finite quadratic
variation processes. Stochastics Stochastic Rep. 20no.1-2, 1-40.

[19] Salopek, D.M. (1998). Tolerance to arbitrage. Stochastic Process. Appl. 76(2),217-230.

[20] Samko, S.G., Kilbas, A.A., and Marichev,O.I. (1993). Fractional Integrals and Derivatives.
Gordon and Breach Science. Yverdon.

[21] Shiryaev, A. (1998). On arbitrage and replication for fractal models. Thecnical Report. Ma-

PhySto.
[22] Shiryaev, A. (1999). Essentials of Stochastic Finance. World Scientific.
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