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INVARIANT MANIFOLDS FOR STOCHASTIC PDE WITH
FRACTIONAL BROWNIAN MOTION

ALBERTO OHASHI

Abstract. In this work we study invariant manifolds for stochastic partial
differential equations (SPDEs) driven by a fractional Brownian motion with

parameter H > 1/2. The main ingredient in our analysis is the characterization

of a controlled deterministic evolution equation where the invariant sets for
the SPDE are precisely those of the controlled system. We provide a complete

characterization of a given invariant finite dimensional manifold by means of
Nagumo-type conditions.

1. Introduction

The analysis of invariant structures related to partial differential evolution equa-
tions have been intensely studied in the last years in the context of deterministic
equations. For example, global and local stabilization of nonlinear infinite dimen-
sional systems has been recently addressed following the concept of an inertial
manifold [6, 9]. Control problems are also considered by many authors. See R.
Rosa [23] for a survey of these results.

In general, the problem can be illustrated as follows. Very often, a mathematical
model involves an evolution equation in infinite dimension. This already presents
a major challenge, since usually the computer codes are based upon finite algo-
rithms. Fortunately, in several situations only a finite dimensional structure of the
system is relevant, and hence although the original model is infinite dimensional,
the estimation of a finite number of parameters can be successfully performed.

Only very recently invariant sets for stochastic partial differential equations
(henceforth abbreviated by SPDEs) have been studied. Many phenomena, say in
Physics or Economics, are described by stochastic equations of the following form

(1.1) dXt = (AXt + F (Xt))dt+G(Xt)dWt.

Here W denotes a cilindrical Brownian motion on some probability space (Ω,F ,P),
the operator A is the infinitesimal generator of a strongly continuous semigroup
in some Hilbert space E, and the mappings F and G satisfy appropriate growth
conditions. Usually the authors make use of the framework of random dynamical
systems [4] where the notion of perfect cocycles plays a key rule. In this context,
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they concentrate on the invariance of nonautonomous sets. See L. Arnold [4] and
S.Mohhamed et al. [20] for a complete survey of the theory.

On the other hand, in several applications it is important to study invariance of
sets in the strict sense, the so-called stochastic viability. In this framework, a closed
set K ⊂ E is said to be invariant for equation (1.2) when

P(Xx
t ∈ K,∀t ∈ [0, T ]) = 1, if x ∈ K.

Many authors have been studying the characterization, existence and regularity
of finite dimensional invariant manifolds for equation (1.1) and a survey of these
results can be found in D. Filipovic and J. Teichmann [13] and D. Filipovic [14, 12].
Their main motivation comes from HJM models [16] extensively used in mathemat-
ical finance in the context of semimartingale theory.

In fact, invariance and asymptotic properties of equations of the form (1.1) seems
to be well understood in the context of the Brownian motion, but in the general
fractional Brownian motion case (henceforth abbreviated by fBm) it still lacks a
detailed study. In recent years there have been various developments of stochastic
calculus for these processes (see e.g., references [17, 2, 3, 22, 7]). The main obstacle
in the stochastic calculus based on fBm is the stochastic integral. Since the fBm is
not a semimartingale, alternative methods should be applied. See for instance D.
Nualart [22] and Y. Hu [17] for a complete survey of the theory.

Invariance questions related to equations of the form (1.1) with fBm appear
naturally in infinite dimensional systems with a non-Markovian extrinsic memory
acting as an external stochastic force which is relevant for describing many natural
phenomena in the finite dimensional form. In this regard, it is crucial to understand
the characterization, existence and regularity of finite dimensional manifolds for
these equations. This is the programme that we start to carry out in this work.
Our motivation partly comes from modelling the term-structure of interest rates as
a SPDE driven by a fBm, recently studied by Catuogno and Ohashi [5]. Therefore,
in this work we initially study stochastic viability of a stochastic evolution equation
with pure fractional white noises.

We are concerned with SPDEs driven by an additive fBm, that is, we study the
evolution equation

(1.2) dXt = (AXt + F (Xt))dt+GdBH(t), X0 = x ∈ E, 1/2 < H < 1,

on a separable Hilbert space E. Here BH denotes a cilindrical fractional Brownian
motion with parameter H on a probability space (Ω,F ,P) and taking values on
some separable Hilbert space U . The operator A is the infinitesimal generator
of a strongly continuous semigroup {S(t); t ≥ 0} in E. In general A will be an
unbounded operator and hence we only consider mild solutions of the form

Xt = S(t)x+
∫ t

0

S(t− s)FXsds+
∫ t

0

S(t− s)GdBH(s),

where the above stochastic integral is understood in the Skorohod sense (see [2, 3]).

The coefficients F , G and A satisfy the following assumptions:
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(A0) The infinitesimal generator A is m− dissipative on E;

(A1) F : E → E is globally Lipschitz;

(A2) G is a Hilbert-Schmidt operator from U into E satisfying the following con-
dition: There exists α ∈ (0, 1/2) such that

(1.3)∫ T

0

∫ T

0

u−αv−α‖S(u)G‖(2)‖s(v)G‖(2)|u− v|2H−2dudv <∞, for 0 < T <∞,

where ‖ · ‖(2) denotes the Hilbert-Schmidt norm.

The above conditions ensure the existence and uniqueness of a continuous mild so-
lution for equation (1.2). The proof of this fact consists of a standard approximation
procedure by Yosida approximations.

Let IH−1/2
0+ be the left-sided fractional integral of order H − 1/2. See Section 2

for the definition. The main results of this paper are then the following.

Theorem 1.1. Assume that A generates a C0-semigroup on a Hilbert space E and
(A0) holds. Assume that the coefficients F and G satisfy assumptions (A1), (A2)
and (2.8). Then a closed set K ⊂ E is invariant for equation (1.2) if and only if
it is invariant for

(1.4)
d

dt
y(t) = Ay(t) + F (y(t)) +GI

H−1/2
0+ v(t), y(0) = x ∈ E

where v belongs to L2(0, T ;U)

As a corollary of the above result we provide Nagumo-type conditions on the
coefficients for the invariance of a given smooth submanifold in E. In the sequel,
TxM denotes the tangent space of a differentiable manifold in E and E denotes the
set of U -valued piecewise constant functions.

Theorem 1.2. Assume that assumptions in Theorem 1.1 are satisfied. Let M be a
C1-submanifold which is closed as a set and M⊂ dom (A). Then M is invariant
for equation (1.2) if and only if

(1.5) Ax+ Fx+ I
H− 1

2
0+ Gv(t) ∈ TxM,

for every x ∈M, t ∈ [0, T ] and v ∈ E.
Moreover a finite-dimensional C1− submanifold M ( closed as a set) is invariant

for equation (1.2) if and only if M⊂ Dom (A) and

Ax+ Fx ∈ TxM,

(1.6) I
H− 1

2
0+ Gv(t) ∈ TxM,

for every x ∈M, t ∈ [0, T ] and v ∈ E.
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The remainder of this paper is organized in the following way. After fixing the
notations and recalling some elementary results on the stochastic analysis of the
fBm in Section 2, we prove Theorem 1.1 via a Wong-Zakai approximation procedure
in Section 3. In Section 4 we prove Theorem 1.2.

2. Preliminaries on fractional Brownian motion

In this section we fix the basic notation that we use in this paper and we recall
some basic results from the stochastic analysis of the fBm. See for instance, D.
Nualart [22], Y. Hu [17] and Decreusefond and Ustunel [10] for a detailed account
of the theory. Initially, some facts from fractional calculus (cf.,[24]) are described.
Let (E, ‖·‖, 〈·, ·〉) be a separable Hilbert space and let α ∈ (0, 1). If φ ∈ L1([0, T ], E)
then the left-sided fractional (Riemann-Liouville) integral of φ is defined (for almost
all t ∈ [0, T ]) by

Iα
0+φ(t) :=

1
Γ(α)

∫ t

0

(t− s)α−1φ(s)ds

where Γ(·) is the Gamma function. The inverse operator of this fractional integral
is called Marchaud fractional derivative and can be given by its respective Weyl
representation

Dα
0+ψ(t) :=

1
Γ(1− α)

(
ψ(t)
tα

+ α

∫ t

0

ψ(t)− ψ(s)
(t− s)α+1

ds

)
where ψ ∈ Iα

0+

(
L1([0, T ];E)

)
.

We recall that a scalar fBm of Hurst parameter 0 < H < 1 is a centered Gaussian
process β = {βt, t ≥ 0} with the covariance function given by

(2.1) RH(t, s) =
1
2
(
s2H + t2H − |t− s|2H

)
.

Notice that if H = 1/2, the process β is a standard Brownian motion. From
(2.1) it follows that β has γ− Holder continuous paths for all γ < H. Let BH =
{BH(t); t ≥ 0} be a standard cilindrical fBm on a separable Hilbert space U given
by the following formal series

(2.2) BH(t) =
∞∑

i=0

βi(t)ei,

where {en;n ∈ N} is a complete orthonormal basis for U and {βi; i ∈ N} is a family
of real-valued independent fBms with the same Hurst parameter H. Similar to the
standard cilindrical Brownian motion one can always realize the standard cilindrical
fBm as of the covariance type in some Hilbert space U1 such that U ↪→ U1 and the
linear imbedding is a Hilbert-Schmidt operator. Let us denote L2(U,E) the set of
Hilbert-Schmidt operators from U into E with the usual norm ‖ · ‖(2). We do fix
once and for all 1/2 < H < 1 for the remainder of this paper.
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Let KH(t, s) for 0 ≤ s ≤ t ≤ T be the real-valued kernel function

(2.3) KH(t, s) :=
cH(t− s)H−1/2

Γ(H − 1/2)
s1/2−H

∫ t

s

(u− s)H−3/2uH−1/2du.

where

cH =

[
2HΓ(H + 1/2)Γ(3/2−H)

Γ(2− 2H)

]1/2

.

Define the integral operator KH induced from the kernel KH by

(2.4) KHh(t) :=
∫ t

0

KH(t, s)h(s)ds,

for h ∈ L2([0, T ];E). It is well-known ([24]) that

KH : L2([0, T ];E) → I
H+1/2
0+

(
L2([0, T ];E)

)
is a bijection. Moreover, KH can be described as

(2.5) KHh(s) = cHI
1
0+

(
uH−1/2I

H−1/2
0+

(
u1/2−Hh

))
(s)

where uα(s) = sα for s ≥ 0 and α ∈ R. A definition of the stochastic integral of a
deterministic V− valued function with respect to a cilindrical fBm uses the ideas
from the reproducing kernel Hilbert space theory for Gaussian process. One can
easily check that if Φ ∈ L2

(
0, T ;L2(U,E)

)
then

(2.6)
∫ t

0

Φ(s)dBH(s) :=
∞∑
i=i

∫ t

0

Φi(s)dβi(s); t ≥ 0

is a L2(0, T ;E)−valued random variable and its distribution is a symmetric Gauss-
ian measure on L2(0, T ;E). Moreover, the following estimate holds

(2.7) E‖
∫ T

0

Φ(t)dBH(t)‖2V ≤
∫ T

0

∫ T

0

‖Φ(u)‖(2)‖Φ(v)‖(2)φH(u− v)dudv

where φH(s) := H(2H − 1)|s|2H−2.

Let us denote Z(t) :=
∫ t

0
S(t−s)GdBH(s) where {S(t); t ≥ 0} is a C0−semigroup

on E such that

(2.8)
∫ T

0

‖S(t)G‖2(2)dt <∞.

If G ∈ L2(U.E) then we write Gi := Gei for i ≥ 1. We have the following approxi-
mation result.

Lemma 2.1. Assume that assumption (A2) holds and consider the following family
of stochastic convolutions
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(2.9) Zi(t) :=
∫ t

0

S(t− s)Gidβi(s); i ∈ N.

Then Z has a continuous version and

E sup
0≤t≤T

‖
n∑

j=1

Zj(t)− Z(t)‖E −→ 0 as n→∞.

Proof. It is an immediate consequence of Prop. 3.8 in Duncan et al. [11] com-
bined with straightforward calculations by using the factorization method on the
stochastic convolution similar to Theorem 5.9 in Da Prato and Zabczyck [8] �

3. A support theorem

In this section we provide a support theorem which is essential in proving The-
orem 1.1. In fact, the connection between stochastic equations and deterministic
controlled systems is made via support theorems. We recall the topological sup-
port of a probability measure on a topological space U is the smallest closed set in
U with mass equal to one. Our aim is characterize the support of the stochastic
convolution Z(·) as a process taking values in the space of continuous E−valued
functions. From now on we assume that Z(·) satisfies assumption (A2) and (2.8)
and we consider a complete probability space

(
Ω,F ,P

)
. We also fix a terminal

time 0 < T <∞. In the sequel, we denote by PV the law of a measurable function
V : Ω → X , where X ia separable Banach space.

The theory of Gaussian processes provides a sharp characterization for the sup-
port of the law PZ . A direct (but lengthy) calculation shows that the law of Z(·)
in L2(0, T ;E) is a symmetric Gaussian measure whose covariance operator is given
by

ΛHϕ(t) :=
∫ T

0

gH(t, s)ϕ(s)ds

where

gH(t, s) :=
∫ s∧t

0

∫ s∨t

0

S(t− v)GG∗S∗(s− u)φH(u− v)dudv.

Since PZ is concentrated on C0 = {u ∈ C([0, T ];E) : u(0) = 0}, the closure of
Image Λ1/2

H in the C0−topology is the support of PZ . This fact would lead to a
straightforward characterization of supp PZ as long as we know how to calculate
the square root of the covariance operator ΛH . In fact, a direct calculation proves
to be very hard. Moreover, it is not trivial to find a bounded linear operator A such
that ΛH = AA∗. See Corollary B.4 in [8]. Therefore other non-direct techniques
should be applied.

Let (W,H; P) be the Wiener space of the standard Rd-valued fBm. Here W =
{f ∈ C([0, T ]; Rd) : f(0) = 0}, H is the respective Cameron-Martin space and P is
the Wiener measure. The space H consists of Image KH where

〈KHh,KHg〉H := 〈h, g〉L2 ; h, g ∈ L2(0, T ; Rd).
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We have the following sufficient conditions for inclusions on the support of the
law of a Wiener functional V : W → X where X is a separable Banach space. See
Aida et al [1] for the details.

Proposition 3.1. Let V : W → X be a measurable map.
(i) Let ζ1 : H → X be a measurable map, and let Jn : W → H be a sequence of

random elements such that for any ε > 0,

(3.1) lim
n

P

(
‖V − ζ1 ◦ Jn‖X > ε

)
= 0.

Then

supp PV ⊂ ζ1(H).

(ii) Let ζ2 : H → X be a map, and for fixed h ∈ H let T h
n : W :→ W be a

sequence of measurable transformations such that PT h
n
� P, and for any ε > 0,

(3.2) lim sup
n

P

(
‖V ◦ T h

n − ζ2(h)‖X < ε

)
> 0.

Then supp PV ⊃ ζ2(H).

The remainder of this section is devoted to show the characterization of supp PZ

by using conditions (3.1) and (3.2). Let us consider the following Wiener functional
from W to C([0, T ]; R)

(3.3) Jd(t) :=
d∑

i=1

Zi(t)

where Zi is defined in (2.9). We now introduce a polygonal approximation for the
fBm. Let us recall the well-known Volterra representation of the fBm

(3.4) β(t) =
∫ t

0

KH(t, s)dW (s),

whereW is the unique Wiener process that provides the integral representation (3.4).

Remark 3.1. From the above representation we notice that W is adapted to the
filtration generated by the fBm β and both processes generate the same filtration
(Ft)0≤t≤T .

Let Π = 0 = t0 < t1 < · · · < tn = T be a partition of [0, T ] where tk := k T
n

and |Π| := max0≤j≤n−1(tj+1 − tj) = T
n . Let us consider the following polygonal

approximations

(3.5) βΠ(t) :=
∫ t

0

KH(t, s)dWΠ(s) =
∫ t

0

KH(t, s)ẆΠ(s)ds
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where

WΠ(t) := W (tj) +
W (tj+1)−W (tj)

(tj+1 − tj)
(t− tj),

for tj ≤ t ≤ tj+1; j = 0, 1, . . . n− 1.
One can check ([17]) that ∀γ < 1−H there exists a constant CH,γ independent

of Π such that

(3.6) E sup
0≤t≤T

|βΠ(t)− β(t)| ≤ CH,γ |Π|γ .

If ω ∈ W and |Π| = T/n then we define ω(n)(t) =
(
ω

(n)
1 (t), . . . , ω(n)

d (t)
)

where

ω
(n)
i (t) :=

∫ t

0

KH(t, s)ẆΠ,i(ω)(s)ds, 1 ≤ i ≤ d.

Obviously ω(n) ∈ H for all n ≥ 1 and ω ∈ W. For each h ∈ H we define

(3.7) T h
n ω := ω + (h− ω(n))

Lemma 3.1. If h ∈ H then PT h
n
� P for all n ≥ 1.

Proof. Let us consider h = KHγ and J
(n)
h (ω) := KHγ − ω(n) for ω ∈ W and

γ ∈  L2(0, T ; Rd). By definition of WΠ it follows that

∫ t

0

KH(t, s)ẆΠ(s)ds =
n−1∑
i=0

∫ ti+1∧t

ti∧t

KH(t, s)ẆΠ(s)ds

and therefore J (n)
h is Ft−adapted. By the Novikov condition

E

[
1/2 exp

(∫ t

0

|γ(s)− Ẇ (s)|2ds

)]
<∞

and the representation (3.4) it follows by Girsanov theorem ([10]) that

PT h
n
∼ P.

�

The following result is crucial in order to get (3.1) in Proposition 3.1. In the
sequel we write (Ψ · β) and (Ψ · βΠ) to denote the Wiener integrals with respect to
β and βΠ, respectively.

Proposition 3.2. Let βΠ be the polygonal approximation of the real-valued fBm.
If Ψ ∈ L2(0, T ;E) then

lim
‖Π|→0

E sup
0≤t≤T

‖(Ψ · β)(t)− (Ψ · βΠ)(t)‖E = 0



INVARIANT MANIFOLDS FOR STOCHASTIC PDE WITH FRACTIONAL BROWNIAN MOTION9

Proof. We proceed by approximating Ψ by step functions f . Assume that

f(s) =
n−1∑
i=0

αiχ[si,si+1)(s); 0 = s0 < s1 < . . . sn = T,

and consider the operator θH := I
H−1/2
0+ ◦DH+1/2

0+ defined on IH+1/2
0+

(
L2(0, T ; R)

)
.

By the semigroup property of fractional integrals and taking into account that
D

H+1/2
0+ is the inverse IH+1/2

0+ it follows that

‖(f · β)(t)− (f · βΠ)(t)‖E =

∥∥∥∥∥
n−1∑
i=0

αi

[(
β(ti+1∧t)− β(ti ∧ t)

)
−
∫ ti+1∧t

ti∧t

θHβΠ(s)ds
]∥∥∥∥∥

E

≤
n−1∑
i=0

‖αi‖E

∣∣(β(ti+1∧t)− β(ti ∧ t)
)
−
(
βΠ(ti+1 ∧ t)− βΠ(ti ∧ t)

)∣∣
By the estimate (3.6) we conclude that the assertion is true for step functions.
Now let us consider Ψ ∈ L2(0, T ;E) and a sequence (fn)n≥1 of step functions
which converges to Ψ in L2(0, T ;E). We have

sup
0≤t≤T

‖(Ψ · β)(t)− (Ψ · βΠ)(t)‖E ≤ sup
0≤t≤T

‖(Ψ · β)(t)− (fn · β)(t)‖E

+ sup
0≤t≤T

‖(fn · β)(t)− (fn · βΠ)(t)‖E

+ sup
0≤t≤T

‖(fn · βΠ)(t)− (Ψ · βΠ)(t)‖E

= T1(n) + T2(n,Π) + T3(n,Π).

By the first step we only need to estimate T1 and T3. Holder inequality yields

(3.8) T3(n,Π) ≤ ‖fn −Ψ‖L2(0,T ;E)‖θHβΠ‖L2(0,T ;R) <∞ a.s,

where we observe that ‖θHβΠ‖L2(0,T ;R) is square integrable for all partition Π. In
fact, by (2.5) and (3.5) we may write

βΠ(t) = cHI
1
0+

(
uH−1/2I

H−1/2
0+

(
u1/2−HẆΠ

))
(t),

and therefore

θHβΠ(t) = I
H−1/2
0+ D

H+1/2
0+ βΠ(t) = I

H−1/2
0+ D

H−1/2
0+ D1

0+βΠ(t) = cH%Π(t)

where

%Π(t) := tH−1/2I
H−1/2
0+ (u1/2−HẆΠ)(t), 0 ≤ t ≤ T.
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Then E‖θHβΠ‖2L2(0,T ;R) < ∞ and by dominated convergence theorem we can
conclude that for each partition Π

lim
n→∞

ET3(n,Π) = 0.

It remains to estimate T1. For this we shall use the factorization method on the
fractional Wiener integral. Recall the identity

(3.9)
π

sinπα
=
∫ t

σ

(t− s)α−1(s− σ)−αds; σ ≤ s ≤ t, 0 < α < 1.

Fix 0 < α < 1/2 and p > 1/2α. By using (3.9) and a stochastic Fubini theorem for
fractional Wiener integrals ([19]) we may write

((Ψ− fn) · β)(t) =
sinπα
π

∫ t

0

(t− s)α−1ym(s)ds,

where ym(s) :=
∫ s

0
(Ψ− fm)(σ)(s− σ)−αdβ(σ). Holder inequality yields

sup
0≤t≤T

‖((Ψ− fn) · β)(t)‖2p
E ≤ C1

∫ T

0

‖ym(s)‖2p
E ds

where the constant C1 depends only on p, α and T . We now choose p = 1. The
ordinary Fubini theorem and the isometry of the fractional Wiener integral with
the reproducing kernel ΘH of the fBm yields the following estimate

ET 2
1 (n) ≤ C1

∫ T

0

E‖ym(s)‖2Eds

= C1

∫ T

0

∫ s

0

∫ s

0

〈
(Φ− fn)(u)(s− u)−α, (Ψ− fn)(v)(s− v)−α

〉
E

× φH(u− v)dudvds.

Since L1/H(0, T ; R) ↪→ ΘH we then have

ET 2
1 (n) ≤ C2

∫ T

0

∫ s

0

‖(Ψ− fn)(u)(s− u)−α‖2Eduds

≤ C3‖Ψ− fn‖L2(0,T ;E).

Summing up all the estimates we complete the proof of the proposition. �

In the sequel, with a slight abuse of notation we write θH = I
H−1/2
0+ ◦ DH+1/2

0+

defined on IH+1/2
0+

(
L2(0, T ;X )

)
where X can be R or the Hilbert space U , depending

on the context. In accordance with Proposition 3.1, we are now in position to define
the following mappings
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(3.10) ζd
1h(t) :=

d∑
i=1

∫ t

0

S(t− s)GiθHhi(s)ds, h ∈ H

(3.11) Jn(ω) := ω(n), ω ∈ W

(3.12) ζ1(t)g :=
∫ t

0

S(t− s)GθHg(s)ds, g ∈ IH+1/2
0+ (L2(0, T ;E))

Proposition 3.3. The support of the Wiener functional Z : Ω → C(0, T ;E) is
given by

ζ1(IH+1/2
0+ (L2(0, T ;E)))

Proof. For each fixed d ≥ 1 we apply Proposition 3.1 to the Wiener functional
Jd defined in (3.3) with the correspondent transformations ζd

1 , Jn and T h
n , defined

in (3.10), (3.11) and (3.7), respectively. Conditions (3.1) and (3.2) in Proposition 3.1
are direct consequences of Proposition 3.2 and Lemma 3.1. We then have the
following characterization

supp PJd
= ζd

1 (IH+1/2
0+ (L2(0, T ; Rd))),

where IH+1/2
0+ (L2(0, T ; Rd))) is equal (as a vector space) to the Cameron-Martin

space of the Rd−valued fBm.

We now consider a full sequence of independent fBms {βn;n ≥ 1} on (Ω,F ,P).
At first, since E is separable one should note that we have the following orthogonal
Hilbertian sum

(3.13) I
H+1/2
0+ (L2(0, T ;E)) ≡

∞⊕
i=1

I
H+1/2
0+ (L2(0, T ; R))

To shorten notation we setOd := ζd
1 (IH+1/2

0+ (L2(0, T ; Rd))). Obviously the following
inclusions hold

Od ⊂ Od+1, for all d ≥ 1,

and therefore limd→∞ supp PJd
=
⋃∞

i=1Od. On the other hand, we know from
Lemma 2 that we can approximate the stochastic convolution Z in probability
uniformly in [0, T ] as follows

Z(t) =
∫ t

0

S(t− s)GdBH(s) = lim
d→∞

Jd(t).

Therefore we have
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supp PZ =
∞⋃

n=1

On.

By the relation (3.13) we can conclude that supp PZ = ζ1(IH+1/2
0+ (L2(0, T ;E))). �

Now we are able to prove Theorem 1.1 stated in the Introduction. Let us recall
that a closet set K is invariant for the evolution equation

(3.14)
d

dt
y(t) = Ay(t) + F (y(t)) +GI

H−1/2
0+ v(t), y(0) = x ∈ E,

if for each initial condition x ∈ K and a control v ∈ L2([0, T ];U) we have

y(x,v)(t) ∈ K; for all t ∈ [0, T ].

Theorem 3.1. Assume (A0), (A1), (A2) and (2.8). Then a closed set is invariant
for the differential equation (3.14) if and only if it is invariant for equation (1.2)

Proof. The hard part of the proof is the obtention of the support of the stochastic
convolution Z(t) =

∫ t

0
S(t − s)GdBH(s). We know from Proposition 3.3 that the

law of Z is concentrated on the set of continuous functions of the form∫ t

0

S(t− s)GIH−1/2
0+ h(s)ds, h ∈ L2(0, T ;U)

Then the proof follows the same lines of [21] and therefore we omit the details. �

4. Nagumo conditions and finite-dimensional invariant manifolds

In this section we prove Theorem 1.2 stated in the Introduction. Recall that if
M is a smooth manifold in E, then its tangent space at any x ∈M is given by

(4.1) TxM = {g ∈ C([0, T ];E); lim inf
t↓0

1
t
dist[x+ tg,M] = 0}; if x ∈M.

In the sequel, we denote E the set of U -valued piecewise constant functions.

Proposition 4.1. Let M be a C1−submanifold in E, closed as a set and M ⊂
Dom (A). Then M is invariant for the stochastic equation (1.2) if and only if

(4.2) Ax+ Fx+ I
H− 1

2
0+ Gv(t) ∈ TxM,

for every x ∈M, t ∈ [0, T ] and v ∈ E
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Proof. We claim that a closed set K is invariant for (3.14) if and only if the mild
solution of the equation

(4.3)
dzx,v(t)
dt

= Azx,v(t) + Fzx,v(t) + I
H− 1

2
0+ Gv(t)

satisfies the following condition: For each x ∈ K and v ∈ E we have zx,v(t) ∈ K for
all t ∈ [0, T ]. We fix an arbitrary u ∈ L2(0, T ;U) and let us consider a sequence of
step functions un converging to u in L2(0, T ;U). Then

yx,un(t)− yx,u(t) =
∫ t

0

S(t− s)
(
F (yx,un(s))− F (yx,u(s))

)
ds(4.4)

+
∫ t

0

S(t− s)GIH−1/2
0+ (un − u)(s)ds,(4.5)

and therefore

‖yx,un(t)− yx,u(t)‖E ≤ Lip(F )C1(T )
∫ t

0

‖yx,un(s)− yx,u(s)‖Eds(4.6)

+ sup
0≤t≤T

‖
∫ t

0

S(t− s)GIH−1/2
0+ (un − u)(s)ds‖E(4.7)

Grownwall inequality yields for all t ∈ [0, T ],

(4.8)

sup
0≤t≤T

‖yx,un(t)−yx,u(t)‖E ≤ exp(Lip(F )C2(T )) sup
0≤t≤T

‖
∫ t

0

S(t−s)GIH−1/2
0+ (un−u)(s)ds‖E .

By Holder inequality we have

(4.9)

sup
0≤t≤T

‖
∫ t

0

S(t−s)GIH−1/2
0+ (un−u)(s)ds‖E ≤ C(T,H)

(∫ T

0

‖G(un−u)(r)‖2Edr
)1/2

.

Since G is bounded we then have inequalities (4.8) and (4.9) imply that a closed
set K is invariant for (3.14) if and only if yx,u(t) ∈ K, t ∈ [0, T ] for all x ∈ K and
all piecewise constant U−valued function u. Thus proving our first claim.

Now let M ⊂ E be a closed C1− submanifold where M ⊂ Dom(A). We must

impose that the curve α 7→ I
H− 1

2
0+ Gv(α) in E satisfies the following condition: For

arbitrary x ∈M and v ∈ E

lim inf
t↓0

1
t
dist[S(t)(x) + t(Fx+ I

H− 1
2

0+ Gv(α)),M] = 0 for each α.

By assumption M is contained in the domain of A and therefore the above
condition can be replaced by

lim inf
t↓0

1
t
dist[(x+ t(Ax+ Fx+ I

H− 1
2

0+ Gv(α)),M] = 0 for each α.
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The proof now follows from Theorem 2 in Jachimiak [18]. �

Remark 4.1.

1) If H = 1/2 then condition (4.2) becomes

Ax+ Fx+Gν ∈ TxM for all x ∈M and ν ∈ U

and we arrive at the classical result for the Brownian motion ([21], [12], [25]). It
should be noted that we are forced to deal with curves in E due to the nonautonomous
behavior of the imposed dynamics given by the fBm. Shifts of this nature seems to
be common in the study of asymptotics of stochastic equations with fBm. See Hairer
and Ohashi [15] for a discussion.

2) As a direct corollary of Proposition 4.1 we note that if there exists an invariant
finite-dimensional linear subspace for the stochastic equation then the system (1.2)
can be written in the form

dX(t) = (AX(t) + FX(t))dt+
d∑

i=1

Gidβi(t) for some d <∞

We end this section with the characterization of a given finite dimensional in-
variant submanifold. In fact, by using Proposition 4.1 the proof of following results
are slightly modifications of the arguments used in Nakayama [21]. The proofs are
essentially the same as for Lemmas 2.3 - 2.6 in [21]. For completeness we present
it here.

Proposition 4.2. Let M⊂ E be a finite-dimensional C1−submanifold and closed
as a set. If M is invariant for (1.2) then every Xx(t) mild solution of equation (1.2)
is also a strong solution for every x ∈M. In particular, M⊂ Dom (A).

Proof. Let a ∈ Dom A∗ where A∗ denotes the adjoint of A. By using a stochastic
Fubini theorem for the fractional Brownian motion ([19]) we obtain for t ∈ [0, T ]

〈a,Xx(t)〉 = 〈a, x〉+
∫ t

0

〈A∗a,Xx(s)〉ds+
∫ t

0

〈a, F (Xx(s))〉ds+
∫ t

0

〈a,GdBH(s)〉, a.s

Following Lemma 2.3 in [21] one can show that if M satisfies the above assump-
tions and it is invariant for the stochastic equation (1.2) then M ⊂ Dom (A) and
therefore

P(Xx(t) ∈ Dom (A),∀t ∈ [0, T ]) = 1, for every x ∈M.

This concludes the proof. �

The following Lemma combined with Proposition 4.1 proves Theorem 1.2 stated in
the Introduction.
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Lemma 4.1. Let M⊂ E be a finite-dimensional C1−submanifold and closed as a
set. Then M is invariant for stochastic equation (1.2) if and only if M⊂ Dom A
and

Ax+ Fx ∈ TxM,

I
H− 1

2
0+ Gv(t) ∈ TxM,

for every x ∈M, t ∈ [0, T ] and v ∈ E.

Proof. Similar to the proof of Proposition 4.2 one can show that the above condi-
tions imply that every mild solution of the equation (1.4) is also a strong solution
which is given by

y(x,h)(t) = x+
∫ t

0

Ay(x,h)(s)ds+
∫ t

0

F (y(x,h)(s))ds+
∫ t

0

GI
H−1/2
0+ h(s)ds,

for h ∈ L2(0, T ;U). Therefore differentiating the above expression we conclude that

Ax+ Fx ∈ TxM for every x ∈M. Proposition 4.1 implies IH− 1
2

0+ Gv(t) ∈ TxM for
each x ∈ M, t ∈ [0, T ] and v ∈ E . Conversely, let x ∈ M, v ∈ E and t ∈ [0, T ].
By Proposition 4.1 it is sufficient to check (4.2). But this is a straightforward
calculation using the parametrizations in M �
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