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Abstract

We consider general Newton-Krylov methods with a line search for solving
F (x) = 0. In order to curb a possible increase in ‖F‖, typically occurring dur-
ing the first few cycles, we propose a simple modification of the Newton direction
which does not require a modified Krylov procedure.
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1 Introduction

Let {xk} be the iterate sequence of an inexact Newton method [7] for solving

F (x) = 0, x ∈ D (1)

where D ⊂ IRn is an open and convex set and F ∈ CI1(D, IRn). We have

xk+1 = xk + sk (2)

where sk are approximate solutions for the linear system

J(xk)s = −F (xk) (3)
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satisfying the stopping criterion

‖J(xk)s + F (xk)‖ ≤ ηk‖F (xk)‖. (4)

Here J(x) represents the Jacobian matrix for F at xk, and the tolerance ηk ∈ (0, 1] is
called the forcing term [7].

The forcing term has a crucial role in controlling the convergence rate. Several choices
for ηk have been proposed (see [12] and [14]). The local convergence analysis for inexact
Newton methods shows that if x0 is sufficiently close to a solution x∗ of (1) and the se-
quence ηk is uniformly bounded away from one, then the sequence {xk} converges to x∗
[7].

One of the most popular methods for solving (4) is the Generalized Minimum Residual
method (GMRES), [23], which belongs to the family of Newton-Krylov method [6]. A
modified version called GMRES(m), or restarted GMRES, is used in large scale prob-
lems. Whereas the restart policy is computationally more feasible, convergence cannot be
guaranteed in general, and stagnation becomes possible [15], [17], [24], [25], [26] and [28].

The Krylov method requires only the action of the Jacobian J on a vector v. Moreover,
for an appropriately chosen scalar ε this action can be approximated by finite differences
[4]

J(x)v ∼ 1

ε
[F (x + εv)− F (x)] (5)

giving rise to what is known as the matrix-free formalism.
Line search procedures or trust region techniques are used in inexact Newton methods

in order to enhance convergence from an arbitrary starting point, see [6], [11], [12], [18],
[22]. We follow the line search proposed in [1] and [9] which is a non-monotone strategy
similar to the one introduced by Li and Fukushima [13].

In this work we propose a safeguard that modifies the Newton-Krylov line search when
a sharp increase in the norm of F is detected. The modification is restricted to the first
few iterations, and thus enjoys the same global convergence and robustness properties of
the unmodified algorithm. The modified algorithm is also consistent with preconditioning
and with matrix-free implementation.

The main advantage of the proposed modification lies in its simplicity and wide ap-
plication (for example, GMRES can easily be replaced by other linear solvers that give
a descent direction). At the same time, it appears that the modified algorithm offers
considerable reduction in iteration and time count for some classes of problems.

In Section 2 we briefly review the Newton-GMRES algorithm and the inexact Newton
method with backtracking. In Section 3 we present the modified line search and in Section
4 we discuss the implementation of the resulting modified Newton–Krylov method. In Sec-
tion 4 we also test its performance on two problems from [19] and a set of boundary value
problems, showing considerable improvement in some of them, using the performance
profile analysis of Dolan and Moré [10]. Concluding remarks are given in subsection 4.3.
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2 Preliminaries

2.1 Newton-GMRES

The GMRES method was proposed in [23] for solving linear systems As = b, where A is
a nonsingular n × n matrix (not necessarily symmetric) and b ∈ IRn. If s0 is the initial
approximation for the solution and r0 = b−As0 is the corresponding residual vector, the
GMRES Krylov subspace after m iterations will be:

Km = [r0 , Ar0 , A2r0 , . . . , Am−1r0]. (6)

At the mth GMRES iteration a vector sm ∈ s0 +Km is calculated so as to minimize the
residual vector, namely, rm = mins ∈ s0+Km ‖b− As‖. In what follows we shall exclusively
use the 2-norm. When GMRES is used as a linear solver for the Newton method (1), (3),
the resulting method is called Newton-GMRES (Algorithm 1 below).

Algorithm 1. ( GMRES for the kth equation):
Let xk, ηk be given.
Step 1: Choose s0

k. Set m = 0.
Compute r0

k = −J(xk)s
0
k − F (xk), βk = ‖r0

k‖, v1 = r0
k/βk.

Step 2: While ‖rm
k ‖ > ηk‖F (xk)‖ do

GMRES iteration:
2.1: Set m = m + 1.
step 2.2: Compute J(xk)vm and

hi,m = (J(xk)vm)T vi, i = 1, 2, ...,m,
vm+1 = J(xk)vm −

∑m
i=1 hi,mvi,

hm+1,m = ‖vm+1‖,
vm+1 = vm+1/hm+1,m.

Let H̄m ∈ IR(m+1)×m be the upper Hessenberg matrix whose nonzero entries are the
coefficients hi,j, i = 1, ..., j + 1, for j = 1, ..., m.
step 2.3: Find the vector ym ∈ IRm that solves the least-squares problem

min
y∈IRm

‖βke1 − H̄my‖.

step 2.4: Set ‖rm
k ‖ = ‖βke1 − H̄mym‖.

step 3: Define Vm ≡ [v1, v2, ..., vm] ∈ IRn×m and form

sm
k = s0

k + Vmym.

step 4: Set sk = sm
k .
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We shall henceforth distinguish between inner iterations (within the GMRES cycle),
denoted by the superscript m, and outer iterations of the Newton algorithm, denoted by
the subscript k. At each inner iteration, sm

k solves the least-squares problem

min
s∈s0

k+Km

‖J(xk)s + F (xk)‖. (7)

Step 2.2 is the Arnoldi process [18] for the construction of the orthonormal basis {vi} of
Km. From this process it follows that

J(xk)Vm = Vm+1H̄m, (8)

[23], and so the least-squares problem (7) is reduced to

min
y∈IRm

‖βke1 − H̄my‖. (9)

One keeps iterating until the residual vector rm
k = −J(xk)s

m
k − F (xk) satisfies ‖rm

k ‖ ≤
ηk‖F (xk))‖, i.e., until sk = sm

k satisfies the stopping criterion (4). Then, the vector sk is
used to form the Newton iterate xk+1 = xk + sk.

It is known that, computationally speaking, GMRES is more expensive than other
Krylov subspace methods, such as Bi-CGSTAB, [18], QMR [24] for general square ma-
trices, or LSQR [20], [21] for anti–symmetric matrices. Nevertheless, it is widely used
for solving linear systems derived from the discretization of partial differential equations,
since in theory the 2–norm of the residual vector is minimized inside the Krylov subspace
at each step.

Since the dimension of the Krylov space keeps increasing, the memory cost and com-
plexity of the mth GMRES step increase with m. A modified version called GMRES(m)
is used in large scale problems. In this version, the GMRES proceeds in cycles of m
iterations, see [18], [23]. The final vector sm for one cycle is used as the initial vector s0

for the next cycle; in parallel, rm = b − Asm is used as initial residue. At each cycle an
m–dimensional Krylov subspace is generated from the initial residue, following the usual
GMRES procedure.

As mentioned, the restart policy has computational advantages but may lead to stag-
nation [17], [24], [25], [26] and [28]. A rather expensive remedy would be to monitor
the eigenvalues of the Hessenberg matrices generated during the GMRES, [25]. Other
schemes, such as the one mentioned in [26], store some vectors created at the jth cycle
and use them at the (j + 1)th cycle.

2.2 Line search

Line search or trust region techniques are often used to obtain global properties for New-
ton’s method, [8]. d ∈ IRn is called a descent direction of f(xk) if f(xk + ξd) < f(xk) for
ξ > 0 small enough. If f is differentiable, this occurs when∇f(xk)

T d < 0. It is known that

4



d is a descent direction for f(x) = ‖F (x)‖2/2 if the inequality ‖J(xk)d+F (xk)‖ < ‖F (xk)‖
is satisfied (Proposition 3.3 of [6]).

In the case of Newton’s method, we conclude from (4) and Algorithm 1 that each
outer iterate sk is a descent direction for f, even if the corresponding residue violates
‖rm

k ‖ ≤ ηk‖F (xk)‖. When restarted GMRES is used, sk is not always a descent direction.
The step length ξ is typically chosen by backtracking, starting with ξ = 1 and repeat-

edly decreasing ξ until f is sufficiently small [8], [11]. Several backtracking methods were
formulated for improving convergence of inexact Newton methods from arbitrary starting
points, see [5], [6], [11]. In these papers, a monotone decrease of f is used to activate the
line search. For example, in [2] and [22] the line search is activated only if the condition

‖F (xk + sk)‖ ≤ (1− t(1− ηk))‖F (xk)‖, (10)

proposed by Eisenstat and Walker, [11] (where t ∈ (0, 1) is fixed) is not satisfied.
Monotone strategies may incur an increase in the function evaluation count due to

repeated backtracking, as we indeed found in numerical tests. We preferred to choose a
non-monotone line search, due to its increased tolerance during the first iterations. In
the technique proposed by Birgin, Krejić and Martinez [1], adopted here, the line search
condition (10) is replaced by

‖F (xk + ξsk)‖ ≤ (1− ξσ)‖F (xk)‖+ µk, (11)

where the sequence {µk} is such that µk > 0 for all k = 0, 1, 2, . . . and
∑∞

k=0 µk = µ < ∞,
σ ∈ (0, 1) and ξ ≤ 1.

Algorithm 2 describes the inexact Newton algorithm with non-monotone line search
which we used. Let x0 ∈ IRn be an arbitrary initial guess. Given xk ∈ IRn, and the
tolerance ε > 0, xk+1 is calculated as follows:

Algorithm 2. NGNLS ( Newton-GMRES method with non-monotone line search):

While ‖F (xk)‖ > ε, perform steps 1 to 5:
Step 1: Choose ηk.
Step 2: Find sk such that

‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖; (12)

Step 3: compute xaux = xk + sk and F (xaux).
Step 4: (backtracking loop) Take ξ = 1,

while
‖F (xaux)‖ > [1− ξσ]‖F (xk)‖+ µk,

perform the steps 4.1 and 4.2:
step 4.1: compute ξnew ∈ [%minξ, %maxξ];
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step 4.2: set ξ = ξnew and compute xaux = xk + ξsk.
Step 5: Take ξk = ξ, compute xk+1 = xk + ξksk and update k.

The constants %min and %max are such that 0 < %min < %max < 1.

3 A new descent direction.

Our aim in this work is to modify Algorithm 2 (NGNLS) by a safeguard which activates
a change in the descent direction sk when a large increase in f is detected. The number
of activations is limited, for two reasons: avoiding loss of convergence or robustness; and
the empirical fact that a large increase in f typically occurs only in the first few outer
iterations. The modified algorithm and direction will be denoted by NDNG (New Direc-
tion for Newton-GMRES) and sb. We make sb dependent on two parameters: the norm
ratio ‖F (xaux)‖/‖F (k)‖ and the GMRES computational cost.

Ignoring, for the time being, the specific form of the new descent direction, the kth
nonlinear step in the modified algorithm is described by Algorithm 3.

Algorithm 3. (General formulation):
Let xk, ε > 0, L > 0.
While ‖F (xk)‖ > ε, perform steps 1 to 4:
Step 1: Choose ηk.
Step 2: Find sk such that (12) is satisfied
Step 3: compute xaux = xk + sk and F (xaux).
Step 4: if ‖F (xaux)‖ > L‖F (xk)‖, change sk by sb.

Apply the backtracking loop (Step 4, algorithm 2).
Step 4: Update xk.

3.1 Describing the descent direction sb

As seen in Section 2, line search procedures are based on descent directions for a merit
function f whose global minimum is a zero of F ; often, f = ‖F‖2/2 is used. Let xk be the
current iteration of the Newton-GMRES method. The first restart-GMRES cycle (Step
2 of algorithm 2) starts with s0

k = 0. In [2] (beginning of section 3.1 there) it is proved
that it is possible to extract several descent directions from the GMRES process, for the
function f at xk, without additional cost. This equality is satisfied:

∇f(xk)
T vj = (−‖F (xk)‖2)h1j.

where h1j is the (1, j) element of the Hessenberg matrix H̄m and vj is the jth row vector of
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the matrix Vm : n×m, (step 2.2 and 3 of algorithm 1 respectively). Besides ‖F (xk)‖2 > 0
then a vector vj, j = 1, . . . , l, column vector of matrix Vm, will be a descent direction for
f at xk if h1j > 0.

The general idea of our proposal is to consider, besides sk, an alternative direction, sd,
available through the GMRES process, and then choose sb = (1 − β)sk + βsd, a convex
combination, as the new direction. It is required that sd (hence also sb) be also a descent
direction.

For the first cycle of GMRES, r0 = F (x0). A reasonable candidate would be a column
vj of the matrix Vm, provided the 1j entry in the matrix H̄m is strictly positive. We shall
choose as sd the first column of this type. We choice j from j = m,m− 1, ..., 1.

Meanwhile, we want to choose β as dependent on the inner iterations count as well
as the rate of increase of ‖F‖. To understand better this dependence, look at Fig. 1.
Assuming the norm increase ‖F (xaux)‖ > ‖F (xk)‖, we get a triangle with height ak =
log ‖F (xaux)‖ − log ‖F (xk)‖ > 0 and base bk = max{log(iterink), 1} > 0. Here, iterink is
the cumulative number of inner iterations since the onset of the GMRES cycle of the kth
iteration of Algorithm NGNLS. It is reasonable to consider β as a function of the angle ξk

in this triangle. When ξk ∼ π/2, indicating a large increase in ‖F‖ and fewer iterations,

the weight β should favor sd. The function sen(ξk), where sen(ξk) = ak/
√

a2
k + b2

k, is

consistent with this objective.

ξ
k
 

 
b

k
 

a
k
 

Figure 1: Geometric motivation for the weight β

Actually, we prefer to work with β = sen2(ξk), in order to avoid unnecessary root
calculations and based on empirical performance data. Thus, sb and xaux will be defined
as

sb = (1− sen2(ξk))sk + sen2(ξk)sd, xaux = xk + sb (13)

with β ∈ (0, 1). As mentioned, sb is a descent direction for f at xk as long as sk and sd

are.
We denote by Algorithm NDNG the version of Algorithm 3 amended by the modifi-

cation (13) whenever an increase is detected in the norm of F . For maintain convergence
properties, this modification is used a finite times. Then, the new version for the algo-
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rithm 3 is:

Algorithm 4. NDNG (New Descent direcction in Algorithm 3-Newton GMRES):

Let xk, ε > 0, L1, L2 > 0, C = 0.
While ‖F (xk)‖ > ε, perform steps 1 to 4:
Step 1: Choose ηk.
Step 2: Find sk such that (12) is satisfeito
Step 3: compute xaux = xk + sk and F (xaux).

Step 4: if ‖F (xaux)‖
‖F (xk)‖ > L1 and C < L2,

step 4.1: sk = sb from (13).
step 4.2: C = C + 1.
step 4.3: Apply the backtracking loop (Step 4, algorithm 2).

Step 5: Update xk.

Pre-conditioning techniques are commonly used, in order to increase the conver-
gence rate of Krylov methods. We can observe that this process is consistent with
pre-conditioning. The analysis is given in [2]. GMRES is consistent with matrix-free
implementation, then NDNG method is too.

3.2 Convergence

The convergence of the usual inexact Newton method with monotone line search is guar-
anteed by [11], and the modification for non-monotone line search is made in [14].

Lemma 1. Let xk be a sequence generated by Algorithm 4. If, for some sequence of
indices Q0 ∈ {0, 1, 2, ...}, limk∈Q0 F (xk) = 0, then
limk→∞ F (xk) = 0.
In particular, if x∗ is a limit point of xk such that F (x∗) = 0, then every limit point of
the sequence xk is a solution of (1).

Proof (See [1]).

Lemma 2. Let xk be a sequence generated by Algorithm 4 and assume that all the
limit points of the sequence xk are solution of (1). Assume also that x∗ is a limit point of
xk such that J(x∗) is nonsingular and
limk→∞ ‖(xk+1)− xk‖ = 0.
Then the whole sequence converges to x∗

Proof (See [1]).
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Theorem 1. Assume that the sequence xk is generated by Algorithm 4. and that there
exists M > 0 such that, for an infinite sequence of indices Q1 ∈ {0, 1, 2, ...},

‖J(xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖ (14)

and ‖sk‖ < M. Then any limit point of the subsequence {xk}k∈Q1 is a solution of the
system (1). Moreover, if a limit point of {xk} exists, then F (xk) → 0 and every limit
point of {xk} is a solution to (1).

Proof The proof is similar to proof of Theorem 1 in [1], you can see [14].

The version NDNG covered in this paper differs from that of [14] by a limited number
of outer iterations, hence enjoys the same convergence properties. We remark that this
convergence is subject to the nice behavior of restart-GMRES, which may be compromised
in extreme cases of non-linearity of F .

4 Numerical experiments

For the numerical tests we examine the following choices for the forcing term ηk for Step
1 in the algorithm NDNG:

Constant: we chose ηk = 0.1;

EW1: ηk =
‖F (xk)− F (xk−1)− J(xk−1)sk−1‖

‖F (xk−1)‖ (see Eisenstat and Walker [12]);

EW2: ηk = γ

(‖F (xk+1)‖
‖F (xk)‖

)α

, γ ∈ [0, 1], α ∈ (1, 2]. (see Eisenstat and Walker [12]);

GLT: ηk = [1/(k + 1)]ρ cos2(θk)
‖F (xk)‖
‖F (xk−1)‖ (see Gomes-Ruggiero et al, [14]), ρ = 1.1 and

−π/2 ≤ φk ≤ 0.

4.1 Implementation features

We give now more details about the implementation of the algorithms. The implemen-
tation details can be found in [27], pages 26 and 57. All the tests were performed in a
Pentium III - 1.7 GHz computer, using the software MatLab 6.1.

• Line search procedure:
if the vector xaux = xk + ξsk does not give an acceptable decrease in the value of
the function, in the sense of Step 4 of Algorithm 2, then we compute the new step
size as ξnew = 0.5ξ. For the parameter σ used in Step 4, we took σ = 10−4.
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• The sequence µk:
we define:

ftip(0) = ‖F (x0)‖,
ftip(k) = min{‖F (xk)‖, ftip(k − 1)}, if k is a multiple of 3 and
ftip(k) = ftip(k − 1), otherwise.

Then, we set:

µk =
ftip(k)

(k + 1)1.1
.

• The initial value and safeguards for η:
for all the choices for ηk we set the initial value η0 = 0.1. For the choices EW1

and EW2 of [12] and for the choice GLT, we take ηk = min{ηk, 0.1} if k ≤ 3,
and ηk = min{ηk, 0.01} if k > 3. We also take ηk = 0.1 when φk > 0. At
the final iterations we have adopted the safeguard introduced in [22] which can
be described as: since the linear model is F (x) ∼ F (xk) + J(xk)s, at the final
iterations, we can have: ‖F (xk+1)‖ ∼ ‖F (xk) + J(xk)sk‖ ≤ ηk‖F (xk)‖. In this case
it is important to set ηk such that ηk‖F (xk)‖ ∼ ε where ε is the precision required
for the nonlinear system. A safeguard which represents these ideas is: if ηk ≤ 2ε
then we set ηk = (0.8ε)‖F (xk)‖.

• Parameters choice for ηk:
for the choice EW2 it was taken γ = 1 and α = 0.5(1 +

√
5) and for the choice GLT

it was taken ρ = 1.1.

• Stopping criterion:
the process is finished successfully if ‖F (xk)‖ ≤ 10−6 and k < 100.

• Restarts and the maximum number of iterations in GMRES(m):
we fix the restarts at each 30 iterations, m = 30, allowing initially a maximum of
100 cycles (3000 iterations).

4.2 Boundary value problems

The general formulation of the boundary value problems solved in this work is finding
u : Ω = [ 0, 1]× [ 0, 1] → IR, such that, for λ ∈ IR,

−∆u + h(λ, u) = f(s, t), in Ω, u(s, t) = 0 on ∂Ω. (15)

The real valued function h(λ, u), the different values for the parameter λ and the
function f define the different problems tested. All the problems were discretized using
central differences on a grid with 63 inner points in each axis. The discretized system
obtained has 3969 equations and variables. We now make a brief description of the
particular problems that were solved:
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• Problem 1 - A convection–diffusion problem: in this problem, the function h is
given by h(λ, u) = λu(us + ut), where us and ut denote the partial derivatives of
the function u with respect to s and t, and again the function f(s, t) is defined so
that u∗(s, t) = 10st(1− s)(1− t)es4.5

is the exact solution for the problem. This is a
problem considered difficult to solve [16], in particular for values of λ greater than
50.

• Problem 2 - The problem appears in the book of Briggs, Henson and McCormick
[3], page 105. In this case, h(λ, u) is given by h(λ, u) = λueu and the function
f(s, t) = ((9π2 + γe(x2−x3) sin(3πy))(x2 − x3) + 6x− 2) sin(3πy).

Taking in account that the increase in ‖F‖ is usually limited to the first outer itera-
tions, we chose to limit the number of descent direction modifications to 5 among the first
10 iterations. This modification is triggered by the condition ‖F (xaux)‖2/‖F (xk)‖2 > 10.
For computational reasons we modified the calculation of sen(ξk) by a weighting at ak as
follows: if ak/bk ≥ 2 then we set ak = cak, where we chose c = 0.2, for empirical reasons.

We compared NDNG against the Bellavia and Morini algorithm ( algorithm 3 in
[2]), henceforth algorithm BM. To this end we chose 2 problems taken from the Lukšan
collection [19], for which both strategies converged for most initial data: Problem 4.2
(extended Powell badly scaled function), henceforth Powell with xs = (0, 1, . . . , 0, 1); and
Problem 4.7 (Tridiagonal system, henceforth Tridiagonal) with xs = (12, 12, . . . , 12) where
xs represents the initial value indicated by [19]. For each problem, several initial data
were used, including integer multiples of xs and ones = (1, · · · , 1) as well as zero initial
data. ηk was chosen according to EW2.

The BM data are taken from [2] which uses these parameters. A comparison of the
results is shown in Table 1 in terms of the numbers of outer iterations (iterex) and func-
tion evaluation (feval). Each pair of numbers represents the results obtained by the two
algorithms, in this order: (BM, NDNG).

In this table, * indicates the triggering of safeguard 4 in Algorithm 4, and - indicates
lack of convergence. We observe that in all cases NDNG was better than BM, even if the
safeguard 4 was not activated, except where both algorithms failed to converge. In both
problems, the reduction in feval is especially notable. It seems that this is primarily due
to the introduction of a non-monotone line search.

In Table 2 we compare NDNG against the usual Newton-GMRES method NGNLS
in solving Problems 1 (convection-diffusion) with x0 = (0, 0, . . . , 0) and 2 (Briggs) with
x0 = (−2,−2, . . . ,−2), both with λ = 100. Each pair of numbers represents the results
obtained by the two algorithms, in this order: (NGNLS, NDNG). We observe a con-
siderable reduction across the board in Problem 1, in which Safeguard 4 was invariably
triggered. Only marginal improvement was detected in Problem 2. A comparison of the
performance profiles of these algorithms is presented in Figure 2, where both choices EW2
and GLT for ηk were examined.
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Table 1: Comparison of BM and NDNG

Powell Tridiagonal

x0 iterex feval iterex feval

xs (135, 104 ) (1034, 316) (58, 39)* (493, 98)
2xs (133, 102) (1029, 306) (215, 87) (3061, 391)
5xs (125, 93)* (1009, 381) – –
−xs – – (15, 17)* (74, 22)
−2xs – – (17, 17) (70, 18)
−5xs – – (19, 19) (85, 22)
ones (133, 102) (1040, 312) (0,0) (0,0)
2ones (134, 99) (1031, 296) (9, 9) (45, 10)
5ones (120, 93)* (918, 379) (25, 25)* (152, 46)
null – – (10, 8)* (58,10)

Here, EW2 and GLT refer to these choices within the NGNLS algorithm, while an extra
“d” refers to the modified NDNG version. The following nine problems were considered:
6 variants of Problem 1 with λ = 50, 75, 100, 110, 125, 150 and x0 = (0, 0, . . . , 0);
Problem 2 with λ = 100, 1000 and x0 = (−2,−2, . . . ,−2); and Problem 2 with λ = 1000
and x0 = (−1,−1, . . . ,−1).

Table 2: Comparing NGNLS and NDNG

ηk problem iterex iterin feval CPU time

Cte. conv-dif (21, 15) (5567, 2704) (68, 40) (256, 156)
Briggs (10, 9) (451, 434) (13, 13) (27, 26)

EW1 conv-dif (20, 15) (7716, 2641) (75, 44) (306, 149)
Briggs (9, 8) (419, 392) (12, 12) (28, 23)

EW2 conv-dif (21, 14) (7730, 2631) (75, 44) (459, 202)
Briggs (9, 8) (375, 381) (12, 12) (25, 27)

GLT conv-dif (18, 14) (6164, 2578) (66, 44) (239, 130)
Briggs (9, 7) (383, 349) (12, 11) (25, 26)

We observe that NDNG, especially with choice GLT, was optimal with respect to
all four measures, solving about 50% of the problems with the least value for iterin,

feval, CPU time and 80% for iterex. It was also the most robust with respect to all
four measures.
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Figure 2: Performance profile of NGNLS and NDNG

4.3 Conclusions

A strategy for improving the Newton-GMRES performance (with non-monotone line
search) was introduced. The strategy consists of a modification of the descent direction
generated by GMRES when a sharp increase in the norm of F is detected. Only a small
number of modifications is allowed, so as not to interfere with the convergence pattern.
Numerical results show an improvement relative to the usual Newton-GMRES algorithm,
in terms of outer and inner iterations, function evaluations and CPU time. The obtained
process is consistent with pre-conditioning and with matrix-free implementation.
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[1] E. G. Birgin, N. Krejić, and J. M. Mart́ınez, Globally convergent inexact quasi-
Newton methods for solving nonlinear systems, Numerical algorithms 32 (2003) 249–
260.

[2] S. Bellavia and B. Morini, A globally convergent Newton-GMRES subspace method
for systems of nonlinear equations, SIAM J. Sci. Comput. 23 3 (2001) 940–960.

[3] W. L. Briggs, V. E. Henson and S. F. McCormick, A Multigrid Tutorial, Second
Edition, SIAM, Philadelphia, 1987.

[4] P. N. Brown, A local convergence theory for combined inexact-Newton/finite-
difference projection methods, SIAM J. Numer. Anal. 24 (1987) 407–434.

[5] P. N. Brown, and Y. Saad, Hybrid Krylov methods for nonlinear systems of equations,
SIAM J. Sci. Stat. Comput. 11 3 (1990) 450–481.

[6] P. N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algo-
rithms, SIAM J. Optim. 4 (1994) 297–330.

[7] R. S. Dembo, S. C. Eisenstat and T. Steihaug, Inexact Newton methods, SIAM J.
Numer. Anal. 19 2 (1982) 401–408.

[8] J. E. Jr. Dennis, and R. B. Schnabel, Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations, SIAM Classics in Applied Mathematics, 1996.

[9] M. A. Diniz-Ehrhardt, M. A. Gomes-Ruggiero, V. L. R. Lopes and J. M. Mart́ınez,
Discrete Newton’s method with local variations for solving large-scale nonlinear sys-
tems, to appear in Optimization.
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