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Abstract

The objective of this study is to find the best trajectory for an autonomous vehicle which

has to move from point A to point B in the minimum distance possible while avoiding all fixed

obstacles between these points. Moreover, we assume that there is a safe distance r to be kept

between the vehicle and the obstacles at all times. Also, the maneuverability of the vehicle is

not easy, that is it cannot make abrupt turns and the trajectory has to follow a smooth curve.

Obviously, if there are no obstacles, the best route is a straight line between A and B. In this

work we propose a nonparametric method of finding the best path. If there is measurement

error, a consistent stochastic estimator is proposed in the sense that as the number of observa-

tions increase the stochastic trajectory converges to the deterministic one.

Index terms: autonomous vehicle, B-splines, optimization, consistent estimator, confidence el-

lipses.
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1 Introduction

From the DARPA Grand Challenge (http://www.darpa.mil/grandchallenge) we take the follow-

ing definition: “An autonomous ground vehicle is a vehicle that navigates and drives entirely on

its own with no human driver and no remote control. Through the use of various sensors and

positioning systems, the vehicle determines all the characteristics of its environment required

to enable it to carry out the task it has been assigned.”

In this work, we are assuming that the autonomous vehicle has to move from point A to

point B in the minimum distance possible while avoiding all fixed obstacles between these

points. Moreover, we assume that there is a safe distance r to be kept between the vehicle and

the obstacles at all times. Also, we assume that the maneuvering of the vehicle is not easy, that

is it cannot make abrupt turns and the trajectory has to follow a smooth curve. Obviously, if

there are no obstacles, the best route is a straight line between A and B.

The proposed procedure considers only obstacle that cannot be transposed even in low

velocities. Moreover, the penalization approach takes into account only the feasible trajectories

thus saving computer resources and time.

Without loss of generality we can consider A = (0, 0) and B = (b, 0) (if not, a rotation of

the plane will accomplish the change). For a function f : [0, b] → R such that f(0) = 0 and

f(b) = 0, then

Graf (f) = {(x, y);x ∈ [0, b] and y = f(x)}

represents a trajectory in the plane from point A to point B. To be precise on what we called

a smooth trajectory, consider only functions f belonging to the Sobolev space H2
2 := {f :

f ′ abs. continuous and
∫

(f ′′)2 < ∞}. This is an infinite-dimensional space, however one may

assume that f can be well approximated by a function belonging to a finite dimensional space HK

which is spanned by K (fixed) basis functions, such as Fourier expansion, wavelets, B-splines,

natural splines. See, for example, Silverman (1986), Kooperberg and Stone (1991), Vidakovic

(1999), Dias (1998) and Dias (2000). Although this fact might lead one to think that the non-

parametric problem becomes a parametric problem, one notices that the number of parameters

can be as large as the number of observations, and there may be difficulties in estimating the

density. Moreover, if the number of observations is large, the system of equations for exact solu-

tion is too expensive to solve. This is an inheritance from the approximation theory of functions.
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In this paper, we will analyze the problem under two different scenarios: deterministic and

stochastic one. In Section 2 the deterministic case is analyst where we will assume that the

vehicle has perfect vision and can find the obstacles without error. In this case, the path

planning is obtained by solving a penalized optimization problem. In Section 3 we consider that

each obstacle is read with some measurement error and a stochastic solution is found. In the

case of multiple independent readings the stochastic solution converges to the solution of the

deterministic case. Moreover, in Section 4 we consider briefly the case where the vehicle cannot

see the whole space. The partial vision is important not only per se but because it allows that

the vehicle follows a trajectory that cannot be represented by the graph of a function. In this

case, the trajectory is constructed piecewisely using the same algorithm. Similar ideas were used

in practice during the 2005 DARPA Challenge by Caltech Team, see Cremean et al. (2006).

2 An optimization problem

Assume first that we have L obstacles, with coordinates ξi = (wi, vi), i = 1, . . . , L. The goal

is to find a smooth function belonging to H2
2 satisfying:

1. The trajectory has to go through the points A = (0, 0) and B = (b, 0), i.e. f(0) = 0 and

f(b) = 0.

2. The distance between any point of Graf (f) and obstacle field N := {ξ1, . . . , ξL} has to

be at least r, that is d(f, ξi) ≥ r, for all i = 1, . . . , L where d(., .) is the Euclidean distance.

3. The function f minimizes the trajectory in the sense that the length of Graf (f) is mini-

mum.

For any f differentiable, the length of Graf (f) is given by

∫ b

0

√

(1 + f ′(t)2)dt. (2.1)

Therefore, we want to find f ∈ H2
2 which minimizes

Qr(f) =

∫ b

0

√

(1 + f ′(t)2)dt (2.2)

constrained to d(f, ξi) ≥ r, i = 1, . . . , L, f(0) = 0 and f(b) = 0.
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Notice that the constrained minimization problem can be viewed as a penalized problem

where the penalty is 0 or ∞ according to d(f, ξi) ≥ r or not. That is, we want a solution of

min
f∈H2

2

∫ b

0

√

(1 + f ′(t))2dt+ J∗(f) (2.3)

where

J∗(f) =







0, if d(f, ξi) ≥ r, i = 1, ..., L

∞, if d(f, ξi) < r, i = 1, ..., L.
(2.4)

However, there is no smooth solution for this kind of penalization. To overcome this problem,

first we approximate the penalization by the smooth functional

Jψ,α,n(f) = ψΦ(Zα +
√
n(r − d(f,N))) (2.5)

where Φ is the cumulative standard Gaussian distribution, Zα is its αth percentile and (ψ, α, n)

are tuning parameters. This penalization is convenient since it follows that Jψ,α,n(f) → J∗(f)

when ψ → ∞, α→ 0 and n→ ∞. In Section 2.1 we explain the roles of the tuning parameters.

Second, we will fix K and a sequence t = (t1, . . . , tK−2) and consider f belonging to the

space HK spanned by B-splines with interior knot sequence t. That is,

f(x) = fθ(x) =

K
∑

j=1

θjBj(x) (2.6)

where Bj are the well-known cubic B-spline basis (order 4) and θ = (θ1, . . . , θK) is a vector of

unknown coefficients.

Figure 2.1 presents 6 B-splines functions for equally spaced knots in the intervals [0, 10].

From the picture we can see some of the most useful computational properties presented by

B-splines. They are splines which have smallest possible support. In other words, B-splines are

zero in a large set. Furthermore, a stable evaluation of B-splines with the aid of a recurrence

relation is possible. For details, see de Boor (1978).

Therefore, we want to find fθ ∈ Hk, or equivalently θ = (θ1, . . . , θK) ∈ R
K which minimizes

Qα,ψ,r,n(θ) =

∫ b

0



1 + (
K

∑

j=1

θjB
′
j(t))

2





1/2

dt+ ψΦ



Zα +
√
n(r − d(

K
∑

j=1

θjBj(·), N))



 , (2.7)

subject to fθ(0) = 0, fθ(b) = 0.
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Figure 2.1: Basis Functions with 6 knots placed at t = (0.0, 0.2, 0.4, 0.6, 0.8, 1.0)

2.1 The tuning parameters

Notice that the functionals J∗ and Jψ,α,n depend on the function f only through its distance to

the obstacle field (d(f,N)), thus we can think of them as real-valued functions. The function

Jψ,α,n is a continuous analog of J∗. The roles of the tuning parameters (ψ, α, n) are ψα =

Jψ,α,n(r), ψ = maxx≥0 Jψ,α,n(x) and n controls the steepness of Jψ,α,n at the point r. They

should be chosen in such way that, when the trajectory tries to violate the restriction that

the distance between the vehicle and the obstacles have to be bigger than r at all times, the

penalization is so much bigger than the gain in the distance that this trajectory cannot occur.

Figure 2.2 shows the effect of the tuning parameter n on the penalty Jψ,α,n(f), for a better

visualization we fixed ψα = 30. However, for computation and numerical examples we will use

α.ψ = 0.05.

Tables 2.1, 2.2 and 2.3 present some simulation results for a set of 3 obstacle fields given

by Figures 2.3, 2.4 and 2.5. These fields present increasing degrees of difficulty for the vehicle

to find the best trajectory. Notice that as ψ increases (α decreases, recall that ψ = 0.05/α)

and/or n increases we get closer and closer to the best trajectory until it stabilizes. From these
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Figure 2.2: Effect of the tuning parameter n on the penalty function Jψ,α,n(f), ψ = 100, α = 0.3,

r = 0.5.

α 3.333 ∗ 10−9 3.333 ∗ 10−8 3.333 ∗ 10−7 3.333 ∗ 10−6

n ∗ 10−3

.5 15.29637 15.29671 15.29717 15.29781

1 15.29076 15.29179 15.29303 15.29454

5 15.28292 15.28317 15.28353 15.28404

10 15.28216 15.28223 15.28233 15.28249

20 15.28202 15.28202 15.28204 15.28206

40 15.28202 15.28201 15.28201 15.28201

50 15.28202 15.28201 15.28201 15.28201

150 15.28202 15.28201 15.28201 15.28201

1500 15.28202 15.28201 15.28201 15.28201

15000 15.28201 15.28201 15.28201 15.28201

Table 2.1: minθQZα,ψ,r,n(θ) for Obstacle Field 1 presented in Figure 2.3. The length of the chosen

trajectory for n = 500 is 15.29503 and for all other values of n, it is 15.28201.
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α 1.666 ∗ 10−9 1.666 ∗ 10−8 1.666 ∗ 10−7 1.666 ∗ 10−6

n ∗ 10−3

.5 30.2067 30.54674 30.2067 30.2067

1 30.20574 30.2067 30.2067 30.2067

5 30.19141 30.19238 30.19354 30.19495

10 30.18695 30.1876 30.18842 30.18947

20 30.18436 30.18467 30.18510 30.18568

40 30.18333 30.18343 30.18356 30.18377

50 30.18321 30.18326 30.18335 30.18348

300 30.18308 30.18308 30.18308 30.18308

3000 30.18308 30.18308 30.18308 30.18308

30000 30.18308 30.18308 30.18308 30.18308

Table 2.2: minθQZα,ψ,r,n(θ) for Obstacle Field 2 presented in Figure 2.4. The length of the chosen

trajectory for n = 500, 1000 is 30.2067 and for all other values of n, it is 30.18308.

α 8.333 ∗ 10−10 8.333 ∗ 10−9 8.333 ∗ 10−8 8.333 ∗ 10−7

n ∗ 10−3

.5 60.03327 60.03329 60.03332 60.03338

1 60.03322 60.03322 60.03332 60.03332

5 60.03322 60.03322 60.03332 60.03332

10 60.03322 60.03322 60.03332 60.03332

20 60.03322 60.03322 60.03332 60.03332

40 60.03322 60.03322 60.03332 60.03332

50 60.03322 60.03322 60.03332 60.03332

600 60.03322 60.03322 60.03322 60.03332

6000 60.02502 60.02542 60.02594 60.02663

60000 60.0231 60.0231 60.0231 60.02311

Table 2.3: minθQZα,ψ,r,n(θ) for Obstacle Field 3 presented in Figure 2.5. The length of the chosen

trajectory for n ≤ 600 ∗ 103 is 60.03322 and for all other values of n, it is 60.0231.
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Figure 2.3: Obstacle Field 1
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Figure 2.4: Obstacle Field 2
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Figure 2.5: Obstacle Field 3

simulated results, we choose ψ = 106b, α = 0.05/ψ e n = 106b.

How many knots? In fact, in approximation theory, one of the most challenging problem

is how to select the dimension of the approximant space. A similar problem is encountered in

the field of image processing where the level of resolution needs to be determined appropriately.

Figure 2.6 presents several obstacle fields with different degrees of difficulty for finding a

trajectory. These fields were construct to test the strength of the algorithm since the best route

is not “easy”. We could see that increasing the number of interior knots above 4 did not bring
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any improvement. With 3 or 4 interior knots we obtain the “best” possible fθ. If necessary,

the choice of the number of knots can be very adaptive, see for example Gu (1993), Antoniadis

(1994) De Vore, Petrova and Temlyakov (2003), Bodin, Villemoes and Wahlberg (2000), Kohn,

Marron and Yau (2000) and easily implemented.

3 A stochastic problem. Complete Vision

In the previous section, we assumed that the sensors of the vehicle can see the whole field and

detect with certainty the placement of the obstacles. This is not realistic, there is always a

measurement error involved. In this section, we will suppose that the vehicle can see the whole

field (partial vision will be considered in Section 4) but instead of seeing N , it sees:

η = N + ε

where ε = (ε1, . . . , εL) is the measurement error. Specifically, we will assume that the vehicle

sees a field composed of independent random variables

(Wℓ, Vℓ) = (wℓ, vℓ) + (εℓ1, εℓ2), ℓ = 1, ..., L (3.1)

where (εℓ1, εℓ2) ∼ N2((0, 0),Σi), ℓ = 1, . . . , L and independent and Σℓ is a covariance matrix

(that can depend on the obstacle) given by

Σℓ =





σ2
ℓ,1 ρσℓ,1σℓ,2

ρσℓ,1σℓ,2 σ2
ℓ,2



 . (3.2)

This scenario incorporates several practical situations, for example large variance for dark spots,

increasing variance depending of the distance to the obstacle, etc.

Moreover, we have for each obstacle, n independent readings. Thus, our data is composed

of n readings of the obstacle field ηi = {(W1,i, V1,i), . . . , (WL,i, VL,i)} for i = 1, . . . , n. Denote

Wℓ = (Wℓ,1, . . . ,Wℓ,n) and Vℓ = (Vℓ,1, . . . , Vℓ,n), ℓ = 1, . . . , L.

For fixed γ ∈ (0, 1), the proposed estimator for fθ is the function

fγ
θ
∗(x) =

K
∑

j=1

θ∗jBj(x) (3.3)
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Figure 2.6: Obstacle fields and the estimated “best” trajectory using 4 internal knots
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where θ
∗ is the solution of the minimization problem

θ
∗ = arg min

∫ b

0



1 + (

K
∑

j=1

θjB
′
j(t))

2





1/2

dt+ ψΦ



Zα +
√
n(r − d(

K
∑

j=1

θjBj(·), ηγ)



 , (3.4)

subject to fγ
θ
(0) = 0, fγ

θ
(b) = 0 (cf. with Equation (2.7)). The set ηγ is defined by

ηγ =
L
⋃

ℓ=1

Gγ(Wℓ,Vℓ) (3.5)

where for each ℓ = 1, . . . , L, Gγ(Wℓ,Vℓ) is a 100(1 − γ)% confidence ellipse based on the n

readings for the ℓth obstacle (Wℓ,Vℓ) defined as the ellipse formed by the points (x, y) that

satisfy the equation

((Wℓ,Vℓ) − (x, y))tΣ−1
ℓ ((Wℓ,Vℓ) − (x, y)) ≤ χ2

2(γ)

where Wℓ and Vℓ are the sample average of the vectors Wℓ and Vℓ respectively, χ2
2(γ) is

the 100γ-percentile of the chi-square distribution with 2 degrees of freedom. These ellipses are

centered at the sample mean (Wℓ,Vℓ) and have axes (χ2
2(γ)

√

λℓ,jeℓ,j ,−χ2
2(γ)

√

λℓ,jeℓ,j), where

λℓ,j , j = 1, 2 are the eigenvalues of Σℓ and eℓ,j are the corresponding eigenvectors. Here, ηγ can

be thought as a fattening of the average obstacle field η̄ = 1
n(η1 + . . . + ηn) to account for the

variability due to measurement errors.

Remark If the covariance matrices Σℓ are unknown, the points (x, y) belonging to the

confidence ellipses have to satisfy

((Wℓ,Vℓ) − (x, y))tS−1
ℓ ((Wℓ,Vℓ) − (x, y)) ≤ F2,n−2(γ)

where Sℓ is the standard sample covariance of the vectors Wℓ and Vℓ and F2,n−2(γ) is the

100γ-percentile of the F distribution with (2, n− 2) degrees of freedom.

Figure 3.1 shows confidence ellipse for a bivariate normal distribution centered at one

observation.

3.1 Numerical examples

In this section we present simulations performed with different obstacle fields. For illustration

purposes, we exhibit the case where we have one and ten readings for each obstacle.
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Figure 3.1: Confidence ellipses with γ = 0.05 and γ = 0.01 for bivariate normal random variable

with σ1 = 0.1, σ2 = 0.2 e ρ = −0.8

In all the plots the black points are the real obstacle, the crosses are mean of the observed

obstacles, the confidence ellipses curves are drawn in gray. The solid curve is the curve we would

obtain by the procedure described in Section 2 if we had no error. The dashed and dash-point

curves are the one obtained by (3.4).
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Figure 3.2: Estimated trajectories for iid case: deterministic trajectory (solid curve), trajectories

based on one and ten observations (dashed line, dash-point line). The errors are normally distributed

with (a) σ1 = 0.1,σ2 = 0.2 and ρ = −0.8 and (b) σ1 = 0.07, σ2 = 0.15 and ρ = 0.6.

Figures 3.2 and 3.3 show that in the presence of random variability, the paths tend to

stay further from the obstacle, but as the number of reading increases it will converge to the
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Figure 3.3: Estimated trajectories for independent case: deterministic trajectory (solid curve),

trajectories based on one and ten observations (dashed line, dash-point line). The errors are normally

distributed with (a) ρ = 0.6, σℓ,1 ∼ U(0, (.8/30)Wℓ) and σℓ,2 ∼ U(0, (.6/30)Wℓ), (b) ρ = −0.7,

σℓ,1 ∼ U(0, (.7/30)Wℓ) and σℓ,2 ∼ U(0, (.5/30)Wℓ).

deterministic trajectory.

4 Partial vision

In the previous sections, we assumed that the whole obstacle field can be seen from the

starting point and the strategy can be computed before leaving. However, it is more realistic

to imagine that the sensors have a finite range R smaller than the total field. In this case, a

sequential procedure is necessary. Let us assume that when the vehicle is located at (u, v) it

can see up to Su,v = {(x, y) : 0 < x− u ≤ R}. The algorithm to estimate the best trajectory is:

1. Let N1 be the obstacle field restricted to S(0,0). Let f̂1 ∈ HK be the minimizer of the cost

function
∫ B

0

√

1 + f ′1(t)
2dt+ λΦ(Zα +

√
n(r − d(f1, N1))) (4.1)

where f1(0) = 0, f1(b) = 0.

2. Given the solution f̂i−1 at step i− 1, let Ni be the obstacle field restricted to S((i−1)R,0).

Let f̂i ∈ HK be the minimizer of

∫ B

0

√

1 + f ′i(t)
2dt+ λΦ(Zα +

√
n(r − d(fi, Ni))), (4.2)
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subject to f
(ν)
i ((i− 1)R) = f̂

(ν)
i−1((i− 1)R), for ν = 0, 1, 2, fi(b) = 0.

This sequential procedure can be interpreted as: the vehicle “thinks” at step i that there is

no obstacles after distance R. When it arrives at checkpoints R, 2R, . . . it restarts the procedure

joining smoothly the paths. Another important remark is that, at step i the procedure is not

exactly as it was in the beginning because the vehicle will be at a point (iR, yi), form some yi

not necessarily 0.

Notice that this estimation considers that up to a distance R, the vehicle has perfect vision.

The stochastic procedure can be easily implemented in this case.

Figure 4.1 show the simulated results for this case.
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Figure 4.1: The solid curve is the goal path estimated using (2.7), the dashed and dash-point curves

are sequentially estimated reloading stepwisely at the gray vertical lines. The errors are normally

distributed with com (a) ρ = 0.5, σℓ,1 ∼ U(0, (.6/30)Wℓ), σℓ,2 ∼ U(0, (.4/30)Wℓ) and reload at steps

of size 6 (b) ρ = −.6, σℓ,1 ∼ U(0, (.5/30)Wℓ), σℓ,2 ∼ U(0, (.6/30)Wℓ) and reload at steps of size 15.

Figure 4.1(b) raises a very important issue that is to be addressed in a future paper. Since

the vehicle only reloads after running the whole R distance, and the path has to be smooth,

if there is an obstacle very close to the vehicle when it gets there it will not deviate from it

and crashes. To fix this problem, the vehicle should reload at shorter steps and the procedure

redone. In this case, a very interesting scenario appears. Assume that the range of vision of the

vehicle is R, it reloads after steps of size R/2ν and the measurement errors are more precise as

the distance between the sensors and the obstacles decrease, how to combine different readings,
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for example from point 0, point R/2ν , R/2ν−1, etc?

5 Conclusion

It is important to emphasize that the methodology presented in this paper considers a hypo-

thetical situation which is simpler than the real setting faced by the members of DARPA Great

Challenge or any other practical situation. It is necessary to take into account more complex

forms of reloading the data (Markovian dependence), allowing obstacles that can be transposed

in low velocities, incorporating the race corridor among other real data constraints. The beauty

of the penalty approach is its flexibility to allow incorporation of these new factors. However,

to face a complex problem it is necessary to dissect it into smaller and simpler pieces. This is

the goal of this paper, to begin considering more adaptive obstacle avoidance strategies that

can be built efficiently into more sophisticated algorithms.
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